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ABSTRACT
Graph clustering, often addressed as community detection, is a
prominent task in the domain of graph data mining with dozens
of algorithms proposed in recent years. In this paper, we focus
on several popular community detection algorithms with low com-
putational complexity and with decent performance on the artifi-
cial benchmarks, and we study their behaviour on real-world net-
works. Motivated by the observation that there is a class of net-
works for which the community detection methods fail to deliver
good community structure, we examine the assortativity coefficient
of ground-truth communities and show that assortativity of a com-
munity structure can be very different from the assortativity of the
original network. We then examine the possibility of exploiting the
latter by weighting edges of a network with the aim to improve the
community detection outputs for networks with assortative com-
munity structure. The evaluation shows that the proposed weight-
ing can significantly improve the results of community detection
methods on networks with assortative community structure.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; E.1 [DATA STRUC-
TURES]: Graphs and networks

Keywords
community detection, network assortativity, edge weighting

1. INTRODUCTION
The goal of community detection in networks is to identify sets

of nodes, communities, that are densely connected among them-
selves and have weaker connections to the other communities in the
network. It is a task that can help to analyse large graphs and iden-
tify significant structures within and a classical example is to anal-
yse social networks in order to find social groups of users. Commu-
nity detection faces numerous challenges, the principal one is the
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lack of a consensus on the formal definition of a network commu-
nity structure. The result of the ambiguity of the task definition is
that a significant number of community detection algorithms hav-
ing been proposed, using different quality definitions of a commu-
nity structure or leaving the problem formulation in an ambiguous
informal description only. In this paper, we do not propose yet
another community detection algorithm, nor do we attempt to pro-
vide a new formalization of the task. Rather, we study community
detection methods on real-world networks and the possibility of
improving their precision by pre-processing the network topology.

Motivation. The motivation is that for a class of networks, the
community detection techniques fail to deliver a good partitioning
(in the rest of the paper, we use the term partitioning to address the
result of a community detection algorithm; a partitioning is a set
of detected communities). For example, when using community
detection techniques to analyse the semantic network DBPedia1,
where nodes corresponds to the DBPedia concepts and edges de-
note a relation defined between two concepts, our expectation was
that the analysis would reveal small clusters with semantically re-
lated concepts and entities. The clusters were expected to be, for
example, similar to Wikipedia categories (containing groups of Wi-
kipedia articles handpicked by human contributors and assigned to
be a member of the category, class). However, the detected struc-
ture contains a few very large communities comprising the majority
of the nodes.

Due to the size of the data sets, our choice of community de-
tection methods for the network analysis was limited to a small
family of fast community detection algorithms that are near-linear
in the time complexity. We analysed the link graph using the la-
bel propagation [19] algorithm, a greedy modularity optimization
algorithm [3] and a community detection method with parameter-
ized community size constraint (SCCD) [4]. The community struc-
ture produced by the label propagation algorithm had the largest
community, with over 2.96 million of nodes. The SCCD method
with default setting yielded a structure with 78% of the nodes in
the 20 largest communities, and the greedy modularity optimiza-
tion method produced a partitioning with 88% of the nodes in the
20 largest clusters. The obtained results clearly did not match our
expectations of the community structure of the DBPedia network.

Overview of the study. Motivated by the above observation, we
analyse several large social and information networks with known
ground-truth communities and compare the detected structure ob-
tained by the three community detection algorithms to the ground-
truth clusters. On four of the analysed networks, the detected clus-
ters are a decent approximation of the ground-truth communities.

1Knowledge base derived from Wikipedia, http://dbpedia.org



For the rest of the networks, the similarity scores of the yielded par-
titions with the ground-truth communities are low, and at the same
time, a few of the largest detected clusters contain the majority of
the network nodes.

We then study the assortativity of the analysed networks and
assortativity of their ground-truth communities. The interesting
finding is that the assortativity coefficient of a network can be sig-
nificantly different compared to the assortativity of its community
structure. Based on this, we examine the possibility of modifying
the network by means of edge weighting. The underlying idea is to
examine whether we can increase the precision of the community
detection algorithms by the weighting functions for the networks
with assortative community structure. We describe the weight-
ing heuristics and show empirically that it is a suitable approach
in practice. On our test data, the similarity of the detected com-
munity structure to the ground-truth is significantly increased after
applying the weightings on network with assortative community
structure.

The main contributions of the paper are:

• We show that assortativity of the community structure can
differ from overall assortativity of the network.

• We propose edge weighting functions designed to decrease
the influence of edges connecting disassortative nodes. We
show that such edge weighting on networks with assortative
community structure can increase significantly the similarity
of the communities identified by community detection meth-
ods to the ground-truth communities, an increase of 2 to 10
times compared to the baseline solution is reported.

The organization of the rest of the paper is as follows. Section 2
describes related work and the community detection methods with
near-linear time complexity that are used in this study. Section 3
evaluates the precision of the algorithms on real-world networks
with known ground-truth communities. The finding is that although
on most of the studied networks the algorithms perform decently,
there are networks for which the overlap of the detected clusters
and the ground-truth communities is very low. The assortativity of
the ground-truth community structures are examined in Section 4.
In Section 5, we present the edge weighting designed to decrease
importance of edges connecting disassortative nodes, and show that
a significant increase in precision of community detection methods
is observed on networks with assortative community structure. Fi-
nally, in Section 6 we conclude the paper.

2. PRELIMINARIES AND RELATED WORK
This section summarizes related work and preliminaries. We first

discuss the community detection task and then provide more de-
tailed overview of the three algorithms with near-linear time com-
plexity that we use in our study.

2.1 Community Detection
The task of community detection is to find the community struc-

ture of a given input network. A community structure is considered
to be a collection of clusters of densely connected vertices that are
less densely connected to other parts (or communities) in the net-
work. The problem has been a very popular research topic and has
been extensively studied in recent years; a good evidence of the
topic’s popularity is the overview paper by Fortunato [8] with more
than 450 references. Since its publication in 2010 (until May 2013),
it has attracted more than 1400 citations according to the Google
Scholar service. Despite the significant research effort on this prob-
lem, there is no consensus on the formalization of the task and au-
thors often use different definitions of a community or even leave

the notion of the community structure in an informal description.
The most widely used approach is to focus on maximizing the mod-
ularity measure (introduced by Newman and Girvan[17]) that com-
pares how community-like the partitioning of the input network is
to a random network with the same degrees of vertices. Modular-
ity is a quality function for estimating how good the partitioning
of a network is. The basic formulation of the community detection
task expects as an output a partitioning of a network; that is, each
node is a member of exactly one community. Numerous variants of
the problem have been studied, including detection of overlapping
communities where a vertex can belong to multiple communities
(e.g., works by Gregory [9] and Zhang et al. [22]), clustering of
bipartite graphs (e.g., Papadimitriou et al. [18]), and detection of
clusters exploiting additional information in addition to network
structure (e.g., attributes on nodes/edges, Yang et al. [21]).

Community-detection algorithms are usually evaluated against
artificial benchmark graphs, where a community structure has been
injected (e.g., [11]). The advantage is that the evaluator can tune
the parameters of the generated network, the disadvantage is the
artificiality itself. The real-world networks with known commu-
nity structure studied in the literature are usually small ones (e.g.,
Zachary’s karate club (36 nodes) or Dolphin social network (62
nodes)), with few exceptions; e.g., in a recent study by Yang and
Leskovec [20], the authors identify the ground-truth communities
for several large networks and study their properties. In this work,
we reuse their data sets. Abrahao et al. in [1] study structural prop-
erties of the ground-truth communities and compare them with the
properties of clusters discovered by several community detection
approaches. The finding is that the communities produced by dif-
ferent approaches are clearly separable according to the studied
properties, with the approaches based on the random walk produc-
ing communities with structural properties the most similar to the
ground-truth groups. Their study focus on communities with less
than 1000 nodes. The aim of our work lies in overcoming the prob-
lem of collapsing the majority of network nodes into a few huge
groups.

Leskovec et al. in [14] provide an empirical comparison of com-
munity detection algorithms, studying community quality scores of
clusters detected by various algorithms, with the focus on the con-
ductance measure. One of the main finding in their study was that
although community detection methods often optimize the clus-
ters quality scores nicely, there are classes of networks where the
community detection techniques perform sub-optimally. Our work
confirms that observation for the near-linear community detection
approaches and we show that, to a certain extent, we can over-
come that behaviour. We demonstrate that a weighting of the edges,
based on the assortativity of connected nodes, can increase the pre-
cision of the studied algorithms for a class of networks. The con-
cept of edge weighting as a preprocessing for community detection
has been explored before, e.g., in [2][10] where authors use differ-
ent approach to the weighting; they re-weight the edges based on
edge betweenness centrality and common neighbour ratio.

2.2 Algorithms with Near-Linear Complexity
A large number of the community detection methods proposed

in the literature are heuristics with polynomial time complexity. In
practice, the time complexity often limits the usability of a large
part of community detection algorithms to small networks (e.g.,
see the comparative study in [12]). In our work, we intend to study
the behaviour of community detection methods on large real-world
networks, which limits our options to a small family of commu-
nity detection techniques with near-linear time complexity. This
section describes the fast greedy algorithms we have used. The



discussed algorithms are the label propagation approach by Ragha-
van et al. [19], a heuristic for modularity optimization by Bondel
et al. [3] and a heuristic for Size-constrained Community Detec-
tion (SCCD) [4]. The base method is the label propagation (LP),
the two other use the same underlying principle as LP with several
modifications.

Label propagation algorithm. The label propagation approach
is based on the simple idea that a node should be assigned to the
community to which most of its neighbours belong to. When start-
ing from scratch, i.e., the community structure is unknown, the la-
bel propagation algorithm assigns a unique label to all the vertices.
In randomized order, the algorithm iterates over vertices and re-
computes the label for each vertex in the following way: the num-
ber of neighbours with distinct labels is computed and then the ver-
tex label is set to the label with the most members. It is repeated in
iterations in which the community membership of all the nodes are
updated in random order. If, during an iteration, none of the ver-
tices change their label, the algorithm stops. However, there might
be nodes changing their membership in each iteration (e.g., nodes
with equally strong ties to several stable clusters), so this termina-
tion condition is not sufficient. It has been argued by the authors
that in practice a good community structure is found after a few
iterations and we can set the maximal number of the iterations to
be performed. This results in linear time complexity (a constant
number of iterations over N vertices). The problem of the method
is that one (or a few) label(s) often becomes dominant and the ma-
jority of the network collapses into one single community.

Louvain method. The Louvain method proposed by Bondel et
al. in [3] has two phases. The first one is based on a process very
similar to the label propagation. The main difference is the label
assignment, the Louvain method does not use the number of neigh-
bours with the same labels as principal factor. Rather, it computes a
possible gain in the modularity in case a vertex changes its label to
other given label. In the second phase, a new community network is
constructed by contracting community members into single nodes.
The first phase is then used on the derived network and a hierarchy
of communities is constructed.

SCCD. The Size-Constrained Community Detection method [4]
is another method based on the label propagation principle. The
main difference is in the scoring function that governs the label
assignment of a node, where the SCCD method discriminates the
scores according to the sizes of target communities. The underlying
idea of the approach is to increase the ability to detect small-sized,
compact clusters independently of the network size, as opposed to
the modularity optimization methods that are known to have a reso-
lution limit and tend to increase the size of generated communities
with the increase of the network size.

All these three algorithms have near-linear time complexity, and
the two latter have a confirmed decent precision on the artificial
benchmark networks [4, 12], competitive to other well-performing
methods.

3. DETECTED COMMUNITIES VS.
GROUND-TRUTH CLUSTERS

In this section, we evaluate the three studied algorithms on large,
real-world data sets with ground-truth clusters. The main motiva-
tion is to observe whether the partitioning produced by community
detection algorithms approximate well the ground-truth communi-
ties. We consider this section particularly interesting as this exer-
cise puts algorithms to a tough test because of the large sizes of the
networks that are studied. We first describe the data sets, focus-
ing mainly on how the ground-truth communities were identified,

and introduce a ground-truth communities data set for the DBPe-
dia knowledge graph. We then describe the evaluation functions
used to assess the quality of the detected partitioning compared to
ground-truth communities. We summarize the results of the anal-
ysis and discuss questions raised by the experiment; namely, the
suitability of the ground-truth communities data for the commu-
nity detection task and the failure of the used community detection
methods to approximate well ground-truth communities for a class
of networks.

3.1 Data Sets
We reuse five networks with ground-truth communities from the

Stanford Large Network Dataset Collection (SLNDC) and we in-
troduce ground-truth communities for the network based on DBPe-
dia.

SLNDC data sets. We have used five graphs from the SLNDC
collection, containing the ground-truth communities introduced in
[20]. For the LiveJournal (LJ) social network containing friend-
ship networks, user-defined groups are considered as the ground-
truth communities. Similarly, user defined groups are considered as
ground-truth communities in the Orkut and YouTube datasets. The
DBLP dataset provides co-authorship network. Here, the ground-
truth communities are created by grouping authors publishing on
same venue or in the same journal. The Amazon data network
contains products as nodes and the edges indicate a co-purchasing
relation. The ground-truth clusters are equivalent to the product
category in Amazon. In all the data sets, the identified groups were
further split to connected components and each connected compo-
nent is regarded as a distinct ground-truth community. In addition,
all communities with less than 3 nodes were removed.

Ground-truth communities for DBPedia. We describe the data
set containing ground-truth communities for the DBPedia sepa-
rately, as it has not been used so far in the context of community
detection. DBPedia is a knowledge base derived from Wikipedia,
mostly by parsing the infoboxes of Wikipedia articles. It can be
viewed as a graph of interconnected entities, where the entities can
have properties (e.g., a concept related to a person can have at-
tributes such as birth date, height, occupation) and are linked by
labelled relations or edges to other entities. In our previous work
on ad-hoc retrieval from semantic data we were faced with the chal-
lenge to extract semantically related sets of entities from the DB-
Pedia knowledge base [5]. As the first approximation we took the
members of Wikipedia categories as such semantic sets. In DB-
Pedia, the category membership translates into relation labelled
’subject’ connecting members to the entity representing the cate-
gory. This approach has two disadvantages: a) even though a large
number of Wikipedia categories group semantically related enti-
ties, there are many trivial categories (e.g., Category:1970_births
containing people born in 1970 - those entities can hardly be con-
sidered similar in other respects than the date of the birth); b) data
set size - the categories contain only a subset of such semantically
related sets (e.g., for some music bands, there could be a category
grouping ’members_of ..’, while there is no such category for a
number of other entities of the same type).

We have approached b) by exploiting the semantic relations (la-
belled edges) in DBPedia to identify additional potentially seman-
tically related sets. We have selected all the sets of vertices that
fit to the following two patterns: a set of vertices connected by an
outgoing edge of the same label to a common vertex v, or a set of
vertices that have an incoming edge of the same label from a sin-
gle vertex. We have used all the labels, except the ’wikilink’ label
that denotes an existence of a hyperlink between the two Wikipedia
articles, but the true semantics of the relation is not given.



The remaining problem was to distinguish good semantic groups
and the trivia groups. We have used several similarity scores to
measure the relatedness of the entities in the sets. We have used
text-based similarity (as the DBPedia nodes contain also abstracts
of related articles, we have quite a rich textual component) as well
as structural similarities (using the topology of the DBPedia graph).
The details are provided in [5], and to summarize, most of the used
similarity measures had a high correlation, even the text-based co-
sine similarity with the structural similarities. We then chose the
sets with similarity scores above a certain threshold.

We exploit the data set of the semantically related entities and use
them to identify the ground-truth communities. From the candidate
set we select groups with high score, computed as the product of
internal density measure and 1-conductance. The internal density
expresses how clique-like is the subgraph generated by the given set
of vertices; more formally, let ai,j be an element of the adjacency
matrix for G, then the internal density is

ψ(S) =
∑

i,j∈S;i6=j

aij/|S| × |S − 1|

The conductance measure expresses how well a group of nodes is
separated from the rest of the network. It is defined as the ratio of
edges outgoing from the given set of nodes to the rest of the graph
and total number of edges outgoing from the given set of vertices.
More formally, let ai,j be an element of the adjacency matrix of G
and a(S) =

∑
i∈S

∑
j∈V aij , the conductance can be defined as:

ϕ(S) =

∑
i∈S,j∈S ai,j

min(a(S), a(S))

We have removed candidate sets with less than 3 members and
having score lower than 0.1. We follow the approach taken in [20]
and produce a reduced set, containing only the top 5000 ground-
truth communities; the candidate sets were ranked by decreasing
scores and the top 5000 were selected. The data sets are provided
on the support web-page2.

3.2 Comparing Detected and Ground Truth
Clusters

For comparing the detected and ground-truth communities, we
use two measures. The first one is based on set similarity and is
introduced in the following text; the second one is Normalized Mu-
tual Information which is popular in the community detection liter-
ature. We report values for both in the presented results.

Comsim - Set similarity based measure. The algorithms stud-
ied in this work output a partitioning of a network, where each
node is assigned to exactly one community. The ground-truth com-
munities in our collection contain groups of nodes that can have
non-empty intersection, i.e. a vertex can be a member of multiple
communities. In addition, not all the vertices of the network have
to belong to a ground-truth community. To compare such struc-
tures, we need a function that measures their similarity. In addi-
tion, the ability to assess approximation of the ground-truth com-
munities one by one would be of advantage, allowing us to analyse
the produce results on a cluster level, rather than on the partition-
ing level. To achieve that, we compute the similarity score of each
of the ground-truth communities with the most overlapping group
from the network partitioning identified by community detection
algorithm. The overall score would be an average of the similarity
scores of distinct ground-truth communities. As we need to com-
pare two subsets, the straightforward approach is to use Jaccard’s

2http://ups.savba.sk/~marek/communities.html

Table 1: Similarity scores - comsim and NMI (in parenthesis)
for the detected partitions and the ground-truth data sets (re-
duced - top5000 and full set of ground-truth communities).

Louvain Label Prop. SCCD
DBLP-top5K 0.53 (0.24) 0.49 (0.25) 0.51 (0.26)
Amazon-top5K 0.76 (0.37) 0.85 (0.46) 0.86 (0.46)
YouTube-top5K 0.23 (0.09) 0.08 (0.02) 0.19 (0.05)
Orkut-top5K 0.04 (0.03) 0.03 (0.02) 0.24 (0.06)
LJ-top5K 0.52 (0.28) 0.57 (0.32) 0.60 (0.32)
DBPedia-top5K 0.004 (0.0008) 0.003 (0.003) 0.13 (0.06)

DBLP-all 0.34 (0.12) 0.32 (0.14) 0.32 (0.14)
Amazon-all 0.42 (0.28) 0.26 (0.24) 0.28 (0.25)
YouTube-all 0.11 (0.03) 0.03 (0.01) 0.10 (0.02)
Orkut-all 0.001 (0.05) 0.0002 (0.04) 0.01 (0.03)
LJ-all 0.03 (0.02) 0.01 (0.03) 0.04 (0.02)
DBPedia-all 0.004 (0.005) 0.003 (0.004) 0.06 (0.02)

similarity coefficient: J(A,B) = |A ∩B|/|A ∪B|. The remain-
ing point to solve, is how to find the best fitting cluster from a
network partitioning for a given set. We select the cluster with the
largest intersection with the given ground-truth set. In case there
are multiple sets with the same maximal size of intersection, we
select the smallest one.

More formally, let G = (V,E) be the graph, let D =
{P1, P2, . . . , Pk|∀Pi, Pj : Pi ⊂ V, Pj ⊂ V, Pi ∩ Pj = ∅ ∧⋃

i=1..k Pi = V } be the partitioning produced by the community
detection algorithm, let E = {T1, T2, . . . , Tl|∀iTi ⊂ V } be the
set of ground-truth communities. Let o(T,D) be a set of clusters
from D having maximal intersection with T :

o(T,D) = {P : P ∈ D ∧ ∀Pi∈D|Pi ∩ T | ≤ |P ∩ T |}

The best fitting clusters for a ground-truth community T is:

b(T,D) = {P : P ∈ o(T,D) ∧ ∀Pi∈o(T,D)|Pi| ≥ |P |}

Fitting score for a ground-truth community T is then sim(T,D) =
J(T,B) : B ∈ b(T,D). Overall score for D and E is

comsim(E,D) =

∑
Ti∈E sim(Ti, D)

|E|

Normalized mutual information. The second measure we use
is Normalized Mutual Information (NMI) [6]. It is a standard mea-
sure used in the community detection literature to compare two
partitionings of a network. It has been designed to evaluate non-
overlapping partitions. Lancichinetti et al. in [13] have proposed
generalized NMI in order to able to compare overlapping commu-
nities as well, and we also report the latter in our experiments.

Evaluation. The number and quality of the ground-truth com-
munities can vary for different data sets. We follow the approach of
[20] where they selected the top 5000 communities for each of the
ground-communities data set, based on average rank of the com-
munity for six different community scores. Extracting and using
the top k communities enables experimentation with high-quality
clusters, and we have selected the top 5000 communities for the
DBPedia data set as well. In our case, we have used the rank of
the community according to conductance and internal density mea-
sures. For the evaluation purposes, we have for all the networks
used both the complete and top-5000 ground-truth communities
data sets. We have used the three studied community detection al-
gorithms to cluster the six networks and we have compared the re-
sulting partitionings with ground-truth communities with comsim



score and generalized NMI measure. Approaches based on label
propagation are sensitive to the order in which the nodes are pro-
cessed, so we have used the same seed for the random number gen-
erator to ensure the same order of nodes so that different algorithms
process the nodes in the same sequence.

The results are summarized in Table 1, where the top half presents
scores for the top 5000 community sets, the bottom half for full
ground-truth communities sets. Scores for the top 5000 commu-
nities are, not surprisingly, significantly higher than the scores for
the data sets with all ground-truth. Another important observation
is that for some networks, the similarity score is quite high (DBLP,
Amazon, LJ, YouTube), for the Orkut and DBPedia data sets, the
scores are low. There are two possible explanations that we are
going to discuss in more detail. First possible explanation could
be that the ground-truth data sets for the three networks with low
scores are flawed, and do not capture the real communities within
the networks and are unsuitable for evaluation of the community
detection task in general. The second explanation could be that the
ground-truth communities are suitable for the evaluation, but the
studied algorithms have been unable to approximate the network
community structure precisely.

Suitability of the used ground-truth communities for the com-
munity detection task. The ground-truth communities were de-
rived from network data where nodes where explicitly assigned to
sets (e.g., user-defined groups). As the results in Table 1 indicate,
the community detection algorithms were not very successful in ap-
proximating the ground-truth communities. A legitimate concern is
whether the used data sets are suitable for testing community de-
tection in general, and the question is whether the assignment to
ground-truth communities corresponds to the community structure
of a network. There is no consensus on the formal definition of a
community structure, the general notion is that a good community
has nodes that are densely linked among themselves and are less
densely linked to other communities in the network. The latter re-
quirement becomes questionable under the model of overlapping
communities. We thus focus on the notion of a community as a
densely linked group of nodes. Internal density function is a suit-
able measure to capture how clique-like a community is (cf. the
measure as described in Section 3.1). We have computed the inter-
nal density of the ground-truth communities and have compared it
to internal density of a same sized group of nodes in a random graph
with identical number of network elements (nodes and edges). The
results are presented in Table 2 and show that the average internal
density of ground-truth communities is high, orders of magnitude
higher than in the case of random graphs. The conclusion is that
the ground-truth communities used in the experiments are related
to the informal notion of a community as a densely connected sub-
graph. A possibility that cannot be dismissed from the results in
Table 2 is that some of the ground-truth sets are possibly subsets
of the ’real’ communities. Even in that case, an important overlap
with the correctly identified communities should exist.

Failure of community detection algorithms. Based on the ob-
servations above, we conclude that the low scores for community
detection methods on three networks indicate their inability to de-
tect the communities precisely. Observations of classes of networks
where the community detection techniques perform sub-optimally
has been also reported in [14]. Based on our preliminary observa-
tion from the introduction about the sizes of top largest detected
communities on DBPedia, we have looked at the community sizes
for the partitionings detected on the six networks with ground-truth
communities. Table 3 presents the sizes of top 50 largest commu-
nities in the partitionings obtained by the studied methods and in
the ground-truth communities data sets. As the results show, for

Table 2: Average internal density for the ground-truth com-
munities and equally sized groups of nodes in random graphs.
Columns prefixed by ’top5k’ report numbers related to the top
5000 best communities, columns prefixed by ’all ’concerns all
the ground-truth communities in the data set.

top5k tok5k − RND all all − RND
DBLP 0.71 9.17× 10−4 0.52 2.21× 10−3

Amazon 0.62 4.89× 10−4 0.49 8.99× 10−4

YouTube 0.35 2.31× 10−4 0.37 1.64× 10−4

LJ 0.78 2.54× 10−4 0.43 2.77× 10−4

Orkut 0.31 1.00× 10−2 0.45 1.00× 10−3

DBPedia 0.98 8.34× 10−5 0.32 1.58× 10−4

Table 3: Fraction of nodes belonging to the top 50 communities
in the partitionings identified by the methods we study and in
the ground-truth communities data sets.

Lou LP SCCD Ground-truth
fract. of N fract. of N fract. of N fract. of N

DBLP 0.11 0.07 0.05 0.32
Amazon 0.03 0.03 0.04 0.83
YouTube 0.50 0.66 0.17 0.01
LJ 0.67 0.71 0.07 0.09
Orkut 0.97 0.99 0.93 0.09
DBPedia 0.98 0.96 0.89 0.001

the Orkut and DBPedia data sets, the majority of the nodes have
been assigned to a few of the largest clusters. For those networks,
also the similarity scores of studied methods with the ground-truth
communities have been very low.

4. ASSORTATIVITY OF THE COMMUNITY
STRUCTURE

As shown in previous section, the studied community detection
algorithms failed to deliver a decent approximation of the ground-
truth community structure for the DBPedia and Orkut networks.
The detected partitionings for both networks also contained the
majority of the nodes in a few huge communities. A possible ex-
planation of the tendency of all examined label-propagation-based
algorithms on DBPedia and Orkut to collapse the majority of the
nodes to a small number of groups is that it is caused by a large
number of edges connecting the majority of nodes to the high de-
gree nodes in the dense core of the network. In the iterative process
of the label propagation, the nodes are gradually reassigned to the
communities centred around the dense network core. We explain
the intuition behind this hypothesis in the following subsection.

4.1 Microscopic Look at the Data Set
We first look at an example of a DBPedia node to gain an intu-

ition on what is the ‘meaning’ of the edges adjacent to a node with
respect to the degrees of nodes connected by those edges (edges in
our DBPedia dataset correspond to hyperlinks between Wikipedia
articles). We have selected a node at random and we look at the
related Wikipedia article. Here are the few first sentences from the
chosen article, links to other articles are enclosed by [ and ] sym-
bols:

Golden Child (play)
Golden Child is an [Obie Award]-winning play by [American] [play-
wright] [David Henry Hwang]. The play was developed
[Off-Broadway] and premiered there on November 19, 1996 at the



[Joseph Papp Public Theater]. It was directed by [James Lapine],
with [Tsai Chin] and [Jodi Long] in the cast.

Let us assume a human evaluator is assigned with the task of
ranking the linked entities by their importance/relation to the topic
of the article (Golden Child (play)). He would probably mark the
author of the play, the director and actresses as more strongly re-
lated than the theatre and the production company, which in turn
would be probably ranked as more strongly related than the con-
cepts ’Playwright’ and ’United States’. We can look on the degrees
of the related nodes in our DBPedia data set: [Golden Child (play);
37], [Obie Award, 731], [United States, 650 509], [Playwright,
5332], [David Henry Hwang, 389], [Off-Broadway, 703], [Joseph
Papp Public Theater, 520], [James Lapine, 299], [Tsai Chin (ac-
tress), 103], [Jodi Long, 61]. The most unrelated concepts to the
entity ’Golden Child (play)’ are probably those with very high de-
gree. One might even formulate a hypothesis that the node degree
in DBPedia is correlated with the topic generality of the related
Wikipedia article.

In our example case, if we try to sort the list of entities according
to the difference in degrees between the target and the inspected
node, we would probably receive a decent approximation of a hu-
man judgement of their relatedness to the examined node (Wiki-
pedia topic). We do not want to draw any conclusions from this
simple example, it only gives us a hint that a degree of connectiv-
ity of the low-degree nodes to high-degree nodes might affect the
outcome of label propagation-based algorithms.

4.2 Assortativity of a Community
There is a well established measure to study how the nodes of

different degrees are connected in the network, the degree assorta-
tivity coefficient. The degree assortativity coefficient (AC) denotes
a tendency of nodes to be connected with other nodes of similar de-
gree. It is defined as the Pearson correlation coefficient of degrees
of pairs of nodes connected by an edge in the network ([16]). Let
M be the number of edges, ji and ki be the degrees of the i-th edge,
the assortativity coefficient can be computed as follows:

r =
M−1 ∑

i jiki − [M−1 ∑
i(ji + ki)/2]

2

M−1
∑

i(j
2
i + k2i )− [M−1

∑
i(ji + ki)/2]2

We examine the assortativity of the networks with ground-truth
communities more closely. Namely, we compute the assortativity
of the whole networks and assortativity of the community struc-
ture; i.e. for the latter, we use only edges belonging to ground-truth
communities, while keeping the original node degree for the com-
putation of the assortativity coefficient. The results are reported in
Table 4, showing assortativity coefficient of the whole network, as-
sortativity computed using only top 5000 clusters, and assortativity
computed using all of ground-truth clusters.

The results show that the assortativity of the community structure
can be very different compared to the assortativity of the original
network. For example, YouTube and DBPedia are disassortative,
while having assortative community structure. Five of the analysed
networks have positive assortativity coefficient of the ground-truth
communities, four of which are strongly assortative. The inter-
pretation is that the networks with assortative community structure
have important parts of communities composed of edges connect-
ing nodes with similar degrees.

5. EDGE WEIGHTING
In Section 3 we studied the similarity of the partitionings yielded

by the community detection algorithms and the ground-truth com-
munities. The results revealed that for the DBpedia and Orkut net-
works, the similarity scores are very low. In the previous section,

Table 4: Assortativity of the networks with ground-truth com-
munities and the assortativity of their community structures.

net AC Top5k Comm. AC All Comm. AC
DBLP 0.267 0.436 0.446
Amazon -0.059 -0.077 -0.026
YouTube -0.037 0.067 0.068
LJ 0.045 0.464 0.365
Orkut 0.016 0.233 0.326
DBPedia -0.018 0.958 0.973

we showed that those two networks have an assortative commu-
nity structure, which means that the communities they comprise are
composed of an important portion of edges connecting nodes with
similar degrees. Based on these observations, we examine the pos-
sibility of modifying the network structure by weighting its edges,
in a way that lower the weight of the edges connecting disassor-
tative nodes. The hypothesis is that, for networks with assortative
community structure, such a modification could affect positively
the similarity of the detected clusters with ground-truth clusters.
We first propose two edge-weighting functions designed to lower
the influence of the edges connecting low and high degree nodes.
We then study the effects of such weighting on the network. We
study the clusters detected on the weighted versions of the networks
by the community detection algorithms; we compute their similar-
ity to the ground-truth communities and compare it to the results
obtained from original, unweighted networks.

5.1 Weighting Heuristic
So far, we have analysed the networks without weights on edges,

which is equivalent to the situation where weights are equal on
all the edges. In the following, we propose heuristic weighting
functions, designed to decrease the importance of edges connecting
nodes with very different degrees, which could lead to an increase
of the network’s assortativity. Instead of the vertex degree, we will
compute the assortativity of the sum of weights of edges adjacent
to a vertex; we will refer to it as weighted degree assortativity. It
is a necessary change to capture the effect of the weight on edges.
For most of the networks with ground-truth communities, we have
no information other than the network structure (that is, we do not
have any attributes on nodes or edges that could be used to derive
nodes similarity). We thus have to base our weighting functions
purely on the network structure.

The assortativity measures the tendency to link similar nodes,
and the similarity in our case is the sum of edge weights. We thus
try to use weighting functions that would penalize the links be-
tween highly disassortative vertices, i.e., vertices with very differ-
ent degrees. The underlying idea is to decrease the importance of
edges connecting disassortative nodes. We propose two weighting
functions that differ in the degree of penalization of the edges link-
ing disassortative nodes. Our first experimental weighting function
would be 101−x, where x is the number of digits in a decimal no-
tation of the division of nodes degrees.

More formally, let d(v) denote the degree of a vertex v. Let

f1(z, y) = floor(log10(max(z, y)/min(z, y))

The weighting function w(ei,j) is:

w1(ei,j) = 10−f1(d(i),d(j))

In practice, this weighting would assign weight of 1 to an edge
connecting nodes with the degrees of a same magnitude, weight



Table 5: Similarity scores of ground truth communities with
the detected communities on: original unweighted network
(Orig), on network re-weighted with w1, on network re-
weighted with w2. Reported values are the similarity measures
Comsim and NMI (in parenthesis).

Network Alg. Orig w1 w2
DBLP Lou 0.54 (0.24) 0.54 (0.26) 0.56 (0.26)

LP 0.49 (0.25) 0.49 (0.24) 0.53 (0.25)
SCCD 0.52 (0.26) 0.51 (0.25) 0.54 (0.25)

Amazon Lou 0.76 (0.37) 0.84 (0.43) 0.83 (0.42)
LP 0.85 (0.46) 0.85 (0.46) 0.83 (0.44)
SCCD 0.86 (0.46) 0.86 (0.46) 0.83 (0.44)

YouTube Lou 0.23 (0.10) 0.23 (0.11) 0.31 (0.12)
LP 0.08 (0.02) 0.14 (0.05) 0.24 (0.09)
SCCD 0.19 (0.06) 0.21 (0.08) 0.26 (0.10)

LJ Lou 0.52 (0.28) 0.49(0.27) 0.52 (0.28)
LP 0.57 (0.32) 0.59 (0.32) 0.62 (0.32)
SCCD 0.6 (0.32) 0.61 (0.32) 0.62 (0.33)

Orkut Lou 0.04 (0.03) 0.04 (0.04) 0.17 (0.05)
LP 0.03 (0.02) 0.03 (0.03) 0.11 (0.04)
SCCD 0.24 (0.06) 0.20 (0.06) 0.25 (0.06)

DBPedia Lou 0.004 0.016 0.053
(0.0008) (0.03) (0.15)

LP 0.003 (0.003) 0.054 (0.14) 0.31(0.17)
SCCD 0.13 (0.06) 0.26 (0.15) 0.34 (0.18)

of 10−1 to an edge connecting a node with degree one order of
magnitude lower that the other’s node degree, and so on.

The second weighting function assigns a weight of 101−x, where
x is the number of digits in a decimal notation of the difference of
nodes degrees. Let

f2(z, y) = floor(log10(|z − y|)

The weighting function w(ei,j) is:

w2(ei,j) = 10−f2(d(i),d(j))

This weighting assigns weights as follows: edge linking nodes with
|d(i)−d(j)| < 10 would be assigned with weight 1, edge ei,j with
|d(i)− d(j)| < 100 would be assigned with weight of 0.1, and so
on. The difference between w1 and w2 can be significant, e.g., if
we compute weights for an edge connecting nodes with the degrees
of 50 and 600;w1 would give the weight of 0.1 while the weighting
w2 would give 0.01.

5.2 Detected Community Structure of
Weighted Networks

The next step is to analyse the effects of the weighting on the re-
sults of the community detection method compared to the ground-
truth communities. We compare the similarity scores (comsim
and NMI) achieved by the very same algorithms on the original un-
weighted networks with the scores achieved on the weighted ver-
sions of the same networks.

The results are summarized in Table 5. For each network, we list
the similarity scores of the ground-truth communities with the par-
titionings detected by community detection methods on: original
unweighted network (column Orig), on network re-weighted with
function w1 and on network re-weighted with function w2. We
provide results of the comparison for the sets of top 5000 ground-
truth communities. We highlight with a bold font the best simi-
larity scores for all the networks and we underline the important
improvements in similarity score achieved by weighting. The first

observation is that there are networks (DBLP, Amazon and LJ and
YouTube data sets) for which the community detection methods
achieve high similarity scores with the ground-truth communities
even without weighting. For those networks, the weighting caused
small increases in similarity scores (in several cases the score has
been marginally decreased). The best performing algorithm for this
class has been the Louvain method. In this context, it is interesting
to mention the work by Dunbar [7], that states that the degree in so-
cial networks can be frequently limited by the inability of the actors
to maintain a large number of connections. This is reflected by the
positive assortativity coefficient of the network and might be the
cause of low effect of the proposed weighting schemes. The sec-
ond class, containing the Orkut and DBPedia data sets, was quite
challenging for the community detection techniques and the sim-
ilarity score were very low on unweighted networks. After the
re-weighting, the detected communities were significantly better
approximations of the ground-truth communities. For the SCCD
and Louvain methods on top 5000 datasets, the similarity score in-
creased 2 to 14 times. For the label propagation method, the in-
crease is even more dramatic (e.g., factor of 116 for DBPedia data
set). The reason for such a dramatic increase in similarity is that
the algorithm often collapses the majority of the node’s network
into a single community. The weighing of the edges was a success-
ful strategy to prevent this behaviour. We can conclude that for the
networks on which the algorithms were achieving marginal similar-
ity scores, the weighting had a very positive effect on the similarity
of the detected communities with ground-truth.

Figure 1 depicts similarity scores for distinct communities in the
ground-truth data sets with the best fitting clusters in the detected
network partitionings for the Orkut, DBPedia and Amazon data
sets. The x-axis is the rank of a ground-truth community, the y-
axis depicts the Jaccard similarity of the compared sets. The figure
visualizes how the weighting improved similarity of the detected
clusters with the ground-truth.

5.3 Comparison with other Weighting
Schemes

The results reported in Table 5 shows that the simple weighting
functions, using only nodes degrees, can significantly improve the
clustering results. In the next study, we look at how the proposed
weighting compares to random weighting. In addition, a compari-
son with other relevant weighting mechanism would be helpful and
illustrative. The natural candidates were the weightings proposed
in [2, 10], however we did not used those weighting schemes due to
their computational complexity, which makes them unsuitable for
the size of analysed networks. Instead, we compare with a mea-
sure used by Milne and Witten in [15] to assess the similarity of
the concepts in Wikipedia (we will refer to this measure as MW
measure). Although, as to our best knowledge, it has not been used
in the context of community detection so far, it exploits network
topology to estimate the similarity of the nodes, has a proven good
performance for node similarity estimation and it is computation-
ally inexpensive. Let a and b be the nodes and sets A and B be the
sets of nodes that link to a and b. The MW measure is:

MW(ea,b) =
log(max(|A|, |B|))− log(A ∩B)

log(|V |)− log(min(|A|, |B|))

The results are reported in Table 6, we summarize the the scores
achieved on weighted versions of networks, using the following
weighting schemes: w2, random weighting (rnd), MW weight-
ing and a linear combination of w2 and MW. An interesting obser-
vation from this experiment is that the methods are quite resilient
to the random weighting and the results are very near the original



Table 6: Similarity scores of ground truth communities with
the detected communities on networks weighted by following
schemes: w2, random weighting rnd, MW weighting and
w2 × MW Reported values are similarity measures Comsim
and NMI (in parenthesis).

Net Alg. w2 rnd MW MW× w2
DBLP Lou 0.56 0.47(0.23) 0.54 (0.26) 0.56(0.26)

LP 0.53 0.48(0.23) 0.56 (0.27) 0.56(0.26)
SCCD 0.54 0.52(0.24) 0.57 (0.27) 0.57(0.27)

Amazon Lou 0.83 0.83(0.43) 0.85 (0.43) 0.83(0.42)
LP 0.83 0.82(0.43) 0.85 (0.44) 0.84(0.43)
SCCD 0.83 0.82(0.42) 0.85 (0.44) 0.83(0.42)

YouTube Lou 0.31 0.15(0.05) 0.20 (0.09) 0.30(0.12)
LP 0.24 0.11(0.04) 0.17 (0.07) 0.29(0.11)
SCCD 0.26 0.21(0.06) 0.32 (0.13) 0.32(0.12)

LJ Lou 0.52 0.50(0.27) 0.53 (0.28) 0.53(0.29)
LP 0.62 0.56(0.31) 0.61 (0.33) 0.63(0.33)
SCCD 0.62 0.62(0.33) 0.63 (0.34) 0.63(0.33)

Orkut Lou 0.17 0.06(0.03) 0.08(0.03) 0.13(0.04)
LP 0.11 0.03(0.02) 0.06(0.03) 0.18(0.04)
SCCD 0.25 0.22(0.05) 0.16 (0.04) 0.19(0.05)

DBPedia Lou 0.05 0.03(0.01) 0.05(0.03) 0.29(0.15)
LP 0.31 0.001 0.33 0.40

(0.001) (0.16) (0.20)
SCCD 0.34 0.15(0.06) 0.36 (0.18) 0.41(0.20)

ones. Another finding is that the mw measure, when used for edge
weighting, can also increase the precision of the studied commu-
nity detection methods. The highest score for DBPedia data set
has been achieved by the linear combination of our w2 and MW
measure, indicating that w2 brought additional discriminative in-
formation to the MW measure, which uses the commonalities in
the neighbourhood vectors to assess weights.

5.4 Discussion
The goal of the work has been to verify whether weighting of

the edges can help in better approximating the clusters in networks
with assortative community structure. An important observation is
that both proposed weighting functions caused significant increase
in similarity scores for the partitionings detected by the studied
algorithms for the DBPedia and Orkut networks. For those two
networks, the proposed topology-preprocessing allowed increasing
the similarity of the detected communities from marginal values.
Interesting improvements can be observed also for YouTube. The
DBLP, Amazon and LJ networks received high similarity scores
for the partitioning detected from original unweighted networks.
After the weighting, the scores for those networks stayed at ap-
proximately the same values. For the Amazon network, which has
a slightly disassortative community structure, the results after the
weighting even marginally decreased. The weighting function w2
is more aggressive in penalizing the links between disassortative
nodes and it has shown to cause higher scores than w1.

We would also like to discuss how the proposed weighting func-
tions can be interpreted. A valid question on the presented work
might be: A graph on real collaboration networks such as DBLP
will have edges between nodes that have large differences in node
degrees. Consider for example the case of a young researcher who
collaborates with a well-known senior researcher, what will be the
effect of weighting discriminating such relation? The important
point is that the approach does not remove the relationship from
the computation, it only lowers its weight. That is, if the young

researcher does not have other connections within the network, he
will be assigned to the same community as the senior researcher.
If the young researcher has already published work with his young
colleagues, he would probably be assigned to a common commu-
nity with them, and the senior researcher would probably be as-
signed to other community, e.g. with his collaborators that are also
senior researchers. The two communities might even be merged on
a higher level of hierarchy in a hierarchical clustering approach.

6. CONCLUSION
In this work, we have studied the behaviour of community de-

tection algorithms with near-linear time complexity on real-world
networks. We have observed that for several networks the stud-
ied algorithms fail to approximate the ground-truth communities
well. We have studied the assortativity of the networks and their
ground-truth communities. We have shown that the assortativity
of the community structure is independent of the overall network
assortativity. Two networks for which the community detection al-
gorithms failed to deliver good partitioning have assortative com-
munity structure. We have proposed weighting functions designed
to decrease the disassortativity of the connected nodes and we have
studied the effect of such weighting on the networks. The empirical
observation is that for the class of networks with assortative com-
munity structure, the weighting of the edges can result in significant
improvements in the similarity of detected cluster. In several cases,
improvements in the similarity score of an order of magnitude have
been observed.
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