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ABSTRACT
Understanding the structure of complex networks and un-
covering the properties of their constituents has been for
many decades at the center of study of several fundamen-
tal sciences, such as discrete mathematics and graph theory.
Especially during the previous decade, we have witnessed
an explosion in complex network data, with two cornerstone
paradigms being the biological networks and the social net-
works. The large scale, but also the complexity, of these
types of networks constitutes the need for efficient graph
mining algorithms. In both examples, one of the most im-
portant tasks is to identify closely connected network com-
ponents comprising nodes that share similar properties. In
the case of biological networks, this could mean the identifi-
cation of proteins that bind together to carry their biological
function, while in the social networks, this can be seen as
the identification of communities. Motivated by this anal-
ogy, we apply the Power Graph Analysis methodology, for
the first time to the best of our knowledge, to the field of
community mining. The model was introduced in bioinfor-
matics research and in this work is applied to the problem of
community detection in complex networks. The advances in
the field of community mining allow us to experiment with
widely accepted benchmark data sets, and our results show
that the suggested methodology performs favorably against
state of the art methods for the same task, especially in
networks with large numbers of nodes.
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1. INTRODUCTION
Complex networks are a prosperous field for data mining

research. The representation and visualization of complex
networks as graphs and the application of data mining tech-
niques can help us uncover interesting knowledge regarding
how the constituents of the graphs interact, and, more pre-
cisely, which are the components that have a high degree
of internal links, yet lower density of links connecting them
to the rest of the components. This knowledge is crucial
in research areas such as bioinformatics, where for example
protein-to-protein interactions are modelled in a huge graph,
and the aim is to identify the proteins that bind together to
perform a certain biological function.

In analogy, in social networks the respective knowledge is
crucial to identify communities, i.e., clusters of nodes that
have high density of internal links between their constituents
but connect more loosely to the rest of the clusters. In this
direction, there have been many advances to the field of
community mining and several novel algorithms have been
suggested that attempt to identify efficiently the respective
communities [2, 5]. Motivated by this analogy, and also
by the fact that very recently we applied successfully Power
Graph Analysis to predict the authors’ evolution over time in
bibliographical databases [9], in this paper we present for the
first time, to the best of our knowledge, the application of a
previously successful methodology in bioinformatics, namely



(a) Huge biological ”fur ball“ network. (b) After the application of Power Graphs. (c) Basic motifs recognized by
Power Graph Analysis.

Figure 1: Figure1(a) shows an example of a huge biological network. Figure 1(b) shows the corresponding
Power Graph. The three basic motifs recognized by Power Graphs are shown in Figure 1(c): Star, Clique and
Biclique. Power Nodes are sets of nodes and Power Edges connect Power Nodes. A Power Edge between two
Power Nodes signifies that all nodes of the first set are connected to all nodes of the second set.

Power Graph Analysis [8], to the field of community detec-
tion [5]. The benefits of applying Power Graph Analysis
for community detection are twofold: (1) the methodology
allows for fast and large-scale node clustering experiments,
since it can compress by even up to 90% the information
of the original network in a lossless information manner [8],
and, (2) efficient visualization of the original network be-
comes feasible, through identifying several motifs, such as
cliques and bi-cliques.

In all, the contributions of this work can be summarized
into the following: (a) application of the bioinformatics-
based Power Graph Analysis methodology to the field of
community detection, and, (b) thorough experimental eval-
uation that demonstrates the feasibility and the efficiency of
our approach in benchmark datasets. The rest of the paper
is organized as follows: Section 2 presents some preliminary
concepts and discusses related work. Section 3 discusses how
Power Graph Analysis can be applied to community detec-
tion. Section 4 presents our experimental evaluation, and,
finally, Section 5 concludes and provides pointers to future
work.

2. PRELIMINARIES AND RELATED WORK

2.1 Power Graph Analysis
In the bioinformatics field, networks play a crucial role,

but their efficient visualization is difficult. Biological net-
works usually result in ”fur balls”, from which little insight
can be gathered. In the direction of providing an efficient
methodology for visualizing large and complex networks,
such as protein interaction networks, the authors in [8] in-
troduce Power Graph Analysis, a methodology for analyz-
ing and representing efficiently complex networks, without
losing information from the original networks. The analy-
sis is based on identifying re-occurring network motifs us-
ing several abstractions. The three basic motifs recognized

by Power Graphs are shown in Figure 1(c). These are the
Star, the Clique and the Biclique, and constitute the ba-
sic abstractions when transforming the original graph into
a Power Graph with Power Nodes, i.e., sets of nodes, con-
nected by Power Edges. Power Graphs offer up to 90%
compression of the original network structure [8], allowing
for efficient visualization. Figure 1 shows an example of a
”fur ball” network, and its transformation after the applica-
tion of Power Graph Analysis. Observing Figure 1(b) now
constitutes feasible the task of identifying the main protein
interactions, compared to examining the original biological
network in Figure 1(a). Motivated by the efficiency of Power
Graph Analysis to uncover the complex structure of such
networks, in this work we transfer the same methodology to
identify communities.

When transferring Power Graph Analysis from biology to
community detection, one would expect a discussion whether
the basic constructs can be seamlessly and completely trans-
ferred to community network data. Do the main motifs also
occur in community data, or, vice versa, are there other mo-
tifs that could be identified but that are not considered in
Power Graphs in biology? The Power Graph transformation
is based on the network motifs Biclique and Clique. Power
Graphs have been successfully applied in the biological do-
main as its networks are rich in such motifs. Community
networks are implicitly built on such motifs, as a commu-
nity comprises of densely linked nodes, identified by the mo-
tifs of Biclique and Clique. Hence, Power Graph Analysis is
perfectly suited for community detection.

2.2 Community Detection Algorithms
As the aim of the community detection algorithms is to

identify clusters of nodes, within which the intra-node con-
nections are dense, and outside which the inter-node con-
nection is less dense, a large focus has been given to the use
of betweenness centrality measures. In this direction, the



most influential algorithm has been the Girvan-Newman al-
gorithm [4], which extends the notion of vertex betweenness
to the notion of edge betweenness. The algorithm uses this
notion in order to identify the least central edges, curing this
way the pathologies of methods that attempt to identify the
most central edges or vertices in a graph. One such pathol-
ogy is for example the fact that nodes which are connected
to the network with only one edge, cannot be classified to a
community.

Though influential, the Girvan-Newman algorithm has
been shown to be less effective for the detection of com-
munities, compared to recent approaches that utilize greedy
strategies for community detection [5]. Examples of such
recent approaches are the Label propagation algorithm [6],
heuristic methods for modularity optimization [1], multires-
olution community detection algorithms [7], and greedy size-
constrained community detection approaches [2].

In [6] the authors present a greedy label propagation al-
gorithm to detect communities. The algorithm resembles
the way k−nearest neighbors operate in the data classifi-
cation paradigm. Initially all the nodes of a network are
assigned a unique label, i.e., a unique community identifier,
and the algorithm propagates these labels iteratively apply-
ing a very simple methodology; each node in each iteration
will be assigned the label that most of its neighbors belong
to. The process continues until there are no further changes
in the label assignment, and the final communities are de-
fined by the nodes’ labels, i.e., nodes with the same label
belong to the same community. However, a major drawback
of this approach is that it does not have a unique solution,
as convergence of such a greedy approach is hard to prove.
Another problem is that often the solution is reduced to one
single community, i.e., all the nodes are assigned with the
same label after many iterations. In [1] the authors use again
the notion of label propagation, but the approach differs in
the greedy step. The nodes are assigned labels based on
the gain of modularity this assignment would have. In ad-
dition, they introduce a second phase, that is executed after
each label propagation phase, which consists of contracting
partitions into a new network. The whole process finishes
when there is no further gain in the modularity. In [7] the
authors use again the notion of label propagation, with the
difference being again on the assignment criterion of the la-
bels. They introduce the Absolute Potts Model which is used
as their membership decision function. The method can be
used to compute partitions of nodes in different resolutions,
and significant structures, i.e., communities, can be identi-
fied by measuring strong correlations between the multiple
partitions. Finally, in [2], the authors introduce an approach
for identifying size-constrained communities. It belongs to
the category of greedy approaches that attempt to maxi-
mize modularity, where their decision function is based on
the notion of affinity that measures the strength with which
a node is connected to a cluster of nodes, i.e., a community.

2.3 Benchmark Datasets and Evaluation
The creation of benchmark datasets for evaluation has

been a long-standing problem in the area of community de-
tection [4, 5]. The problem stems from the fact that there is
no common consensus on how exactly a network with com-
munities is defined. However, the past few years there seems
to be an acceptance of the planted l-partition model [3]. Ac-
cording to that model, partitions that consist of a certain

number of nodes are planted to a network. For each node,
there is a probability pin signifying the chances of the node
to get connected with nodes of its group. Respectively, there
is a probability pout denoting the chances that the node is
connected to nodes of different groups. The assumption is
that as long as pin > pout the planted groups represent com-
munities, while if pin ≤ pout the produced network is simply
a random graph. In this work we follow this model for cre-
ating LFR benchmark synthetic datasets [5] for evaluating
our community detection approach1. The respective soft-
ware can be parameterized to produce synthetic graphs of
different sizes, different number and sizes of communities, as
well as different mixture probability models. In all cases, the
software produces the ground truth, i.e., which are the com-
munities that should be identified by the tested approaches.

The problem of evaluating different community detection
approaches is now reduced to comparing how good the pro-
vided partitions by the tested methods are against the ground
truth. Motivated also by the data mining area (clustering),
as well as from the information theory discipline, the respec-
tive research community has adopted widely for this pur-
pose the use of the Normalized Mutual Information Measure
(NMI ). NMI operates directly on the confusion matrix cre-
ated by setting as rows the original communities, i.e., the
ground truth, and as columns the communities identified by
an approach. Let C be the confusion matric, and Nij the
element at row i and column j. Nij denotes the number of
nodes in the intersection of the original community i and
the generated community j. If CA denotes the number of
the communities in the ground truth, CB the number of the
generated communities by an approach, Ni the sum of row
i, Nj the sum of column j, and N the sum of all elements in
C, then the NMI score between the ground truth partition
A, and the generated partition B can be computed as shown
in the following equation.

NMI(A, B) =
−2

∑CA
i=1

∑CB
j=1 Nij log(

NijN

NiNj
)∑CA

i=1 Nilog(
Ni
N

) +
∑CB

j=1 Nj log(
Nj

N
)

(1)

NMI can also be modified to handle the evaluation of parti-
tions where overlapping communities exist [2, 5], but in this
work we only experiment with networks where each node
belongs to exactly one community.

3. POWER GRAPH ANALYSIS FOR COM-
MUNITY DETECTION

In this section we present the details of applying Power
Graph Analysis for community detection. Primarily, we
make the assumption that the input networks are undirected
and unweighted graphs.2 We proceed by formally describ-
ing the problem. Let G = {V, E, f} be an input graph,
where V is the set of vertices, E is the set of edges, and
f : V × V → E. The Power Graph Analysis transforms this
graph into a new graph PG = {PV, V ′,PE, E′, g, f ′}, where
PV are the Power Nodes of the graph, V ′ are simple nodes,
i.e., V ′ ⊂ V , PE are the Power Edges, E′ are simple edges,
i.e., E′ ⊂ E, g : PV× {PV ∪ V ′} → PE, f ′ : V ′ × V ′ → E′.

1Software is publicly available at: http://santo.
fortunato.googlepages.com/inthepress2
2In future work we plan to address directed and/or weighted
graphs.



Input: A Power Graph PG = {PV, V ′,PE, E′, g, f ′}
Output: Assignment of all nodes to communities

C = {Cj}
1 foreach vi ∈ PVj do
2 Cj = Cj ∪ vi

3 foreach PVi ∈ PVj do
4 Cj = Cj ∪ Ci

5 Ci = ∅
6 foreach vi ∈ V ′: vi is connected to a set of Power

Nodes {PVk} with {PVk} 6= ∅ do
7 P ′ = dk=1..mPVk

8 j = argmaxj |PVj |, PVj ∈ P ′

9 Cj = Cj ∪ vi

10 foreach vi ∈ V ′: vi is connected to a set of nodes {vk}
and vk ∈ Ck do

11 C′ = dk=1..mCk

12 j = argmaxj |Cj |, Cj ∈ C′

13 Cj = Cj ∪ vi

14 foreach Node vi ∈ V ′ that is not member of a
community do

15 foreach Edge e ∈ E′ between vi ∈ V ′ and vk ∈ V ′

do
16 if vk ∈ Ck then
17 C′ = dk=1..mCk

18 j = argmaxj |Ck|, Cj ∈ C′

19 Cj = Cj ∪ vi

20 else
21 Cij = ∅ ∪ {vi} ∪ {vj}

Algorithm 1: Community detection given the Power
Graph Analysis output.

The aforementioned description implies that the resulting
Power Graph may contain Power Nodes, as well as simple
nodes. A Power Node comprises several nodes from the
original graph. An edge between Power Nodes, or between
a Power Node and a simple node, is a Power Edge, which
means that all the components of one end of the edge are
connected to all components of the other end of the edge.
However, the resulting Power Graph may also contain simple
edges, i.e., edges between simple nodes. Thus, not all nodes
in the resulting Power Graph are necessarily part of a Power
Node, and not every node is necessarily connected with an
edge to a Power Node.

Given the output of this transformation during which the
motifs described in Figure 1(c) are recognized in the original
graph G, in Algorithm 1 we describe how the nodes of PG
are assigned to communities.3 According to Algorithm 1,
the output of the Power Graph Analysis execution is pro-
cessed as follows: First, the nodes that belong to the same
Power Node are assigned to the same community. Second, in
the case of Power Nodes contained in other Power Nodes, all
the nodes belonging to the wider Power Node are assigned
to the same community, i.e., the sub-communities shaped
by smaller Power Nodes inside the larger Power Node are
merged. Finally, all the remaining nodes, which have not
been assigned into a Power Node, i.e. into a community, are

3The software to compute the Power Graph of any in-
put graph is publicly available from: http://www.biotec.
tu-dresden.de/research/schroeder/powergraphs/

Figure 2: An example of detecting communities us-
ing Power Graph Analysis.

explicitly assigned to a community based on the following
cases, which are examined in that particular order: (1) a
node v ∈ V ′ has a Power Edge pe ∈ PE to a Power Node
PV. In this case, v will be assigned to the same community
with the nodes inside PV. This is in essence the star motif.
In case v has many Power Edges towards different Power
Nodes, then v is assigned to the community of the nodes be-
longing to the largest of these Power Nodes. Ties are broken
using uniform distribution; (2) a node v ∈ V ′ has an edge
e ∈ E′ towards another node v′ that is part of a Power Node.
In this case, v will be assigned to the same community as v′.
In case v has more than one such edges, then it is assigned
to the largest of the communities; (3) a node v ∈ V ′ has an
edge e ∈ E′ towards another node v′ that is not part of a
Power Node. In this case, v and v′ are assigned to the same
community. In case v′ is already member of a community,
due to cases (1) or (2), then v joins the same community. In
case v has many such edges, then it joins the largest of the
communities. Again, ties are broken uniformly. The com-
plexity of Algorithm 1 is O(PV+V ′ +V ′E′), and since V ′E′

is typically larger than PV and V ′, the complexity is, thus,
O(V ′E′). However, since the vast majority of the nodes in
a Power Graph are typically members of a Power Node, it
holds that V ′ << V , and thus V ′E′ << V E, making the



Dataset Mixing Par. µt = 0.1 µt = 0.2 µt = 0.3 µt = 0.4 µt = 0.5 µt = 0.6 µt = 0.7 µt = 0.8 µt = 0.9

1k, S #Edges 9,595 9,700 9,869 9,777 9,837 9,755 9,803 9,837 9,758

1k, S #Power Edges 3,686 4,812 5,780 6,522 7,222 7,781 8,204 8,400 8,350

1k, S #Edge Reduction Rate 0.6157 0.503 0.4143 0.3329 0.2657 0.2022 0.163 0.146 0.1443

1k, L #Edges 9,737 9,774 9,667 9,750 9,779 9,890 9,806 9,780 9,764

1k, L #Power Edges 5,788 6,209 6,788 7,371 7,783 8,240 8,342 8,345 8,347

1k, L #Edge Reduction Rate 0.4053 0.3646 0.2978 0.2439 0.204 0.1668 0.1493 0.1466 0.145

5k, S #Edges 49,082 48,620 48,621 49,081 48,834 48,807 48,704 49,183 48,806

5k, S #Power Edges 18,367 24,167 28,566 33,055 36,256 39,633 41,926 43,712 43,562

5k, S #Edge Reduction Rate 0.6256 0.5028 0.4124 0.3248 0.2514 0.1879 0.1391 0.112 0.1074

5k, L #Edges 48,898 48,829 48,996 48,959 49,056 48,841 49,200 48,868 48,713

5k, L #Power Edges 28,983 31,939 35,020 37,761 39,631 41,545 43,346 43,558 43,506

5k, L #Edge Reduction Rate 0.4072 0.3458 0.2852 0.2286 0.1921 0.1493 0.1189 0.1086 0.1068

100k, L #Edges 977,592 977,277 977,112 977,557 977,776 978,051 975,703 978,124 978,975

100k, L #Power Edges 579,012 639,430 695,539 748,338 795,649 839,030 871,719 889,352 888,551

100k, L #Edge Reduction Rate 0.4076 0.3456 0.2881 0.2344 0.1862 0.1421 0.1065 0.093 0.092

Table 1: Number of edges in the original LFR graphs and in the constructed Power Graphs.

algorithm applicable even for huge Power Graphs.
For the execution of Algorithm 1 however, one must also

add the computational cost of the Power Graph creation,
given the original graph. Though the created Power Graph
is considered as input to Algorithm 1, we explain in the
following the theoretical complexity of creating it: the pro-
cess comprises two-phases. In the first phase the algorithm
identifies potential Power Nodes using a Jaccard-based sim-
ilarity metric on the neighbors of each node and a similarity
based hierarchical clustering algorithm. The second phase
of the Power Graph algorithm performs a greedy search for
Power Edges, by examining the problem of minimizing the
Power Graph structure as an optimization problem. Thus,
its complexity is relative to the complexity of the hierarchi-
cal algorithm, which has the higher cost (O(n2log(n))), if
the priority-queue HAC algorithm is implemented, and to
the complexity of the greedy power edge search algorithm,
which is linear to the number of Power Nodes (O(pn)).

In Figure 2 we present an example of the application of
Algorithm 1 into the original graph shown in Figure 2(a).
The resulting Power Graph is shown in Figure 2(b). The
original graph was created using the LFR benchmark with
20 nodes, an average degree of 4, a mixing parameter of
0.3, and minimum and maximum community sizes set to
5 and 10 respectively. The ground truth is that there ex-
ist three communities, namely: C1 = {1, 3, 5, 6, 7, 17, 18},
C2 = {2, 8, 13, 15, 19}, and C3 = {4, 9, 10, 11, 12, 14, 16, 20}.
Our algorithm finds four communities, namely: C′

1 = {1, 5},
C′

2 = {4, 6, 9, 10, 11, 12, 16, 20}, C′
3 = {2, 8, 13, 15, 19}, and

C′
4 = {3, 7, 14, 17, 18}, producing an NMI score of 0.6789.

4. EXPERIMENTAL EVALUATION
In the following, we present the results of our experimental

evaluation by detecting communities using synthetic LFR
benchmark datasets.

4.1 Experimental Setup
We follow the same experimental setup as in [5], in or-

der to produce LFR benchmark graphs. More precisely, in
order for our results to be comparable with the reported
results in the bibliography, we created undirected and un-

weighted graphs according to the following setup4: (i) 900
graphs with 1, 000 nodes each, community sizes between 10
and 50 nodes, and a mixing parameter µt ranging from 0.1
to 0.9 (100 graphs for each different µt). We will refer to
this dataset as 1k, S, due to the small size of communities;
(ii) 900 graphs with the same set up as before, but with
community sizes between 20 and 100. We will refer to this
dataset as 1k, L; (iii) and (iv) with the same setup as (i) and
(ii) respectively, but with the number of nodes in the graph
being 5, 000 nodes. We will refer to these two datasets as
5k, S and 5k, L respectively. In total, for the experiments
of the datasets (i)-(iv) we processed 3, 600 graphs. In ad-
dition, to demonstrate the scalability of our approach, we
created graphs following setup (iv), but changing the num-
ber of nodes to 100, 000. We refer to this dataset as 100k, L.

4.2 Results
Table 1 shows the efficiency of the suggested approach

in compressing the original LFR graphs, without loosing
information. The table shows for all the aforementioned
datasets (horizontally), and all the different mixing param-
eters (µt) used, the average number of edges in the original
graphs (#Edges), the average number of Power Edges in
the constructed Power Graphs (#Power Edges), and the
average edge reduction rate occurred from this transforma-
tion (#Edge Reduction Rate). Two important conclusions
may be drawn: (1) the approach can achieve a compres-
sion rate of up to 61.67%, which means that the resulting
Power Graph holds a lot less than the half of the original
edges, enabling the application of our methodology to very
large graphs, and (2) as the number of nodes increases from
1, 000 to 100, 000 in the original LFR graphs, the edge reduc-
tion rate is not affected much, reaching even up to 40.76%
for the 100k, L dataset. We can also observe how difficult
it becomes for the Power Graph Analysis to detect cliques
and bi-cliques as the mixing parameter increases from 10%
to 90%. This also shows that in cases where the mixing pa-
rameter increases, we expect a dramatic drop in performance
with regards to the successfully detected communities.

4If not stated otherwise, in all produced graphs the average
degree is 20 and the maximum degree is 50.



Figure 3: Results on the LFR benchmark datasets. 1,000 nodes, 5,000 nodes and 100,000 nodes respectively.

In Figure 3 we present the results of our method in de-
tecting communities, using the previously described LFR
benchmark datasets. The three graphs show respectively
the results when using initial graphs of 1, 000 nodes, 5, 000
nodes, and 100, 000 nodes. In the first two graphs we exper-
imented both in small (1K, S, and 5K, S) and large (1K, L,
and 5K, L) planted communities. In the large graphs of
100, 000 nodes we used only the large community setup, i.e.,
all communities are between 20 and 100 nodes in size. Com-
paring the results of the first two plots, with the respective
reported results of 12 different community detection meth-
ods presented in [5], we may see that our method is always
amongst the top-5 performing methods. However, compar-
ing our results in the 100, 000 nodes graphs with the rest of
methods, we may see that our method is the best performing
one among the reported ones in the respective setup [5]. The
most interesting findings of our Power Graph Analysis ap-
proach to detect communities is the fact that if we examine
closely the three plots of Figure 3 we may observe that: (1)
our approach performs better in identifying smaller commu-
nities (blue lines) than large ones (red lines), and, (2) as the
number of nodes in the LFR graphs increases, our approach
constantly becomes better, with its performance in the case
of 100, 000 LFR graphs being the best reported among all
related methods [5]. The respective methods report an NMI
score between 0.2 and 0.3 for mixing parameters between 0.6
and 0.7, while our method for the same mixing parameters
reports an almost double NMI score.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduced a novel methodology for com-

munity detection, transferring the paradigm of Power Graph
Analysis from the bioinformatics domain to the domain of
community mining. The advantages of the suggested ap-
proach are twofold: (a) the methodology allows for effi-
cient large-scale community detection experiments, as it may
compress the original LFR benchmark graphs up to, approx-
imately, 60%, and, (b) efficient visualization of the original
network and the communities becomes feasible, through the
visualization of the Power Graph. Our experimental evalu-
ation in more than 4, 000 LFR graphs ranging from 1, 000
to 100, 000 nodes showed that the suggested approach has
a reported NMI score among the top-5 best approaches in
the field, and the top performance for the tested networks
of the larger size. Our approach has definitely some lim-

itations; primarily it requires the execution of the Power
Graph Analysis to the input graphs. This is not a trivial
computational cost, especially for large graphs, but, as the
experiments showed, it is certainly feasible to apply it in
graphs that are in the order of magnitude of hundreds of
thousands nodes. As a future work, we plan to investigate
the role of embedded Power Nodes as sub-communities, and
we also aim at investigating other types of graphs as well,
such as directed and/or weighted. It is also in our next plans
to experiment with large real world data sets.
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