
Schema-Assisted Peer Selection for XML Querying in
Unstructured P2P Systems

Christos Doulkeridis1, Kjetil Nørvåg2, Michalis Vazirgiannis1

1Department of Informatics, Athens University of Economics and Business, Greece
2Department of Computer Science, NTNU, Trondheim, Norway
{cdoulk,mvazirg}@aueb.gr, Kjetil.Norvag@idi.ntnu.no

ABSTRACT
XML is emerging as the de-facto standard for semistructuredcon-
tents and metadata. Searching this content in mobile environments
is challenging, since centralized approaches are not appropriate in
a very dynamic environment with limited resources available for
keeping a centralized index up-to-date. A more appropriateso-
lution is to organize the mobile devices in an unstructured peer-
to-peer (P2P) network. The main challenge in the context of un-
structured P2P is to determine the peers that might store documents
matching a query, i.e.,peer selection. In this paper, we propose a
summary caching method for increasing the efficiency and recall
of peer selection during XML querying. Our approach is basedon
caching parts of XML schemas along the query path, to enable sub-
sequentjumpsto remote peers storing content relevant to the query.
We evaluate the performance improvements of our search strategy
in terms of completeness of the search and reduced latency. The
results show that our approach can significantly enhance a naive
query mechanism such as flooding, and consistently outperform a
baseline path caching technique similar to techniques usedin re-
lated work.

1. INTRODUCTION
XML is emerging as the de-facto standard for semistructured

contents and metadata. Searching this content in mobile environ-
ments is challenging, since centralized approaches are notappro-
priate in a very dynamic environment where devices have limited
resources available for keeping a centralized index up-to-date. A
more appropriate solution is to organize the mobile devicesin a
peer-to-peer (P2P) network. In this way, devices will cooperate in
the search, thus avoiding the need for the central index, as well as
providing an up-to-date view of contents in the network.

Thus, assuming that XML data is available on the devices and
that these devices are organized in a loosely connected P2P topol-
ogy, the challenge is to enable facilities for searching andquerying
XML data in a P2P context. In a system with high churn rate,
constantly changing topology (due to the movement of the mobile
devices), and high latency, maintaining a structured P2P overlay
deployed as a distributed hash table is very costly, so instead we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

base our approach on an unstructured (Gnutella-like) P2P network.
The basic query routing mechanism in unstructured P2P networks
is flooding. However, this technique is not scalable, and in practice,
given a specified search budget in terms of number of messages, it
limits the search to only a neighborhood of the querying peer. Sev-
eral techniques have been proposed for reducing the search cost,
and one particular class of techniques is those based on summary
caching. A common approach that is widely adopted in previous
work when querying XML data over a P2P network is caching
XML paths on peers (henceforth referred to asPCache).

In this paper we present a novelsummary cachingapproach of
XML schemas for efficient peer selection and querying of XML
data. Our new approach to summary caching is particularly useful
in the context of XML data, aiming to improvepeer selectionat
query time. Our approach is based oncaching (parts of) schemas
of XML documents stored at remote nodes. Schema information is
cached at all peers on the query return path, in order to enable sub-
sequentjumpsto remote peers storing content relevant to a query.
Assuming a query based on a path expression (which is the casefor
both XPath and XQuery), the schemas can be used for determining
peers with high probability of matching the query. Thus the query
is more directed than flooding, as it can be forwarded to peersthat
are more likely to contain relevant data. The result is that given a
certain search cost, recall1 is significantly improved in comparison
to the basic routing mechanism.

Compared to previous work, our innovation lies in exploiting hi-
erarchical schema information to cache representative summaries
of peers’ contents based on the query workload. This is an im-
portant difference compared to recent work on P2P keyword-based
caching, since we devise caching techniques that inherently exploit
the hierarchical structure of data. Moreover, contrary to previous
work [2, 6, 8], we cache the structure of data, not data itself. Fur-
thermore, peer selection is also based on the structure of data. This
has two important advantages: 1) the cache is more resilientto
data updates, and 2) the peer selection constitutes the firststep to-
wards schema mediation, as jumps are enabled to peers with rele-
vant schemas. Then query routing efficiency increases, by directing
the query to peers that can return results with higher probability.

The main contributions of our work are:

• A summary caching technique that uses (parts of) cached
XML schemas to improve peer selection and query routing
in unstructured P2P networks. This contrasts to previous ap-
proaches caching values, and has important benefits includ-
ing robustness to dynamic data (schemas change less fre-
quently than the actual data).

1Recall is the fraction of all relevant material that is returned by a
search.

• An algorithm that encompasses different routing variants,en-
abling jumpsto topologically remote peers, based on the lo-
cal cache contents.

• An extensive evaluation of the approach, through large-scale
simulations. The results show that our approach: 1) reduces
query processing cost and 2) increases the probability of find-
ing the relevant XML data in a P2P network where we can
not afford to search all peers. More importantly, our ap-
proach is consistently better than a baseline path caching
technique, widely used in related work.

The organization of the rest of this paper is as follows. In Sec-
tion 2, we overview related work. In Section 3, we define the sys-
tem architecture, the data and query model. In Section 4, we de-
scribe schema-assisted P2P querying of XML data. In Section5,
we provide an evaluation of our approach based on a simulatorpro-
totype of a P2P system. Finally, in Section 6, we conclude and
outline issues for further work.

2. RELATED WORK
An extensive review on P2P management of XML data can be

found in [10]. One of the research challenges identified in this con-
text is indexing XML data and subsequent efficient query routing.
This is the issue addressed by our work. While several approaches
in P2P XML data management assume schema-less XML docu-
ments [9], this is expected to change. So our approach capitalizes
on the use of schemas. The lack of schema might have been good
enough for previous document-centric XML documents, but will
probably not be for data-centric documents. A schema is a very
valuable resource in query processing and should always be used
when available. Further, the existence of automatic schemagener-
ation techniques allows management of schema-less XML databy
our approach too, without requirements of explicit schema defini-
tion by a peer.

It should be noted that result caching is not considered in our
work as an appropriate alternative solution, mainly due to the high
associated storage and maintenance cost. In particular, updates of
actual results can lead to excessive bandwidth consumption, de-
pending on the size of the cached objects. Therefore we mainly
consider index caching mechanisms, an approach similar to the
one adopted in [21]. This protocol (DiCAS) organizes peers into
disjoint groups and selectively caches index data on the query re-
turn path, to improve some limitations of uniform index caching
employed by Gnutella. Compared to DiCAS, our work exploits
the hierarchical structure of XML data, more precisely its schema,
to cache summary information along the query return path andto
subsequently supportjumpsto remote peers holding data relevant
to the query. Our approach can be enhanced by this protocol, an
issue that we will investigate in future work, to harness themerits
of both approaches. Another approach that employs query-driven
caching, in which similarly to our work the information cached is
generated by the query load, is presented in [18].

Furthermore, in most P2P systems queries are keyword-based,
thus supporting only exact matching, that usually does not accom-
modate the user’s needs or requirements. It is therefore important
to use more expressive and powerful languages (like XML) that go
beyond keyword matching, exploiting the (hierarchical) structure
of the data [10].

In the following, we first review related work in XML query pro-
cessing in unstructured P2P systems, which is more tightly con-
nected to our approach, and we then proceed with an overview of
improvements to basic search in unstructured P2P networks.

2.1 XML query processing in unstructured P2P
systems

Among the most closely related research papers to our work
are [2, 6, 8]. In [6], it is assumed that the XML tags provided by the
participating nodes have-system wide defined semantics. This is
practically a text indexing approach, which does not exploit the hi-
erarchical information. The system does not try to compensate for
semantic heterogeneity, which is considered an orthogonalprob-
lem. Whenever a new node joins the system it has to propagate
information to every node in the network, which clearly is not scal-
able. Incremental updates are used to send only changes to data
and in the approach mainly stable peers are assumed.

A different family of approaches is based on the concept of rout-
ing indices [4] and their variants. In [8], the authors propose strate-
gies for routing and query processing in unstructured P2P systems.
The basic mechanism adopted is a variant of the compound routing
index, following the query shipping approach, i.e., no caching is
assumed. In the same context, in [2], schema-aware routing indices
are used to guide queries following a super-peer based approach.
Routing of XML queries in P2P databases is researched in [11].
The authors try to propose a scalable solution with respect to both
query processing and data updates. They also discuss the infeasi-
bility of flooding or global index maintenance in a dynamic P2P
environment, which motivates our approach.

Koloniari and Pitoura [9] present an approach for summary in-
dexing using multi-level Bloom filters. In their work, they con-
sider hierarchical content-based organization of peers, to subse-
quently route queries efficiently based on the summaries. In[17],
a super-peer approach towards a P2P XML database system is pre-
sented, where peers are organized in a hierarchy, too. Different
data schemas are supported and peers are clustered togetherbased
on schema-similarity, to reduce the querying cost. Query routing is
based on query propagation up to the root of the hierarchy.

In previous work [5, 14], we have studied the issue of summary
caching for improved query processing in unstructured P2P sys-
tems. In [14], taxonomy caching is employed for data indexedby
a taxonomy. In [5], we presented the notion of schema cachingfor
XML data. In this paper we extend the work presented in [5, 14]
with a more elaborate caching technique and algorithms for peer
selection as well as a more detailed experimental evaluation.

2.2 Search in unstructured P2P systems
Several papers describe improvements [22] to the basic flooding

strategy usingquery jumps(direct contact with remote peers known
or believed to contain relevant information) to remote peers [13,
19]. In the approach described in [13] the object location isalso
stored in the return path and query jumps can be employed. How-
ever, only one answer is assumed for a given search key. In our
case, we can have many results and provide mechanisms to find
the most appropriate query matches. Sripanidkulchai et al.[19]
also present an approach where they useshortcuts(direct links to
remote peers) which can be used for jumps. Shortcuts are made
based on successful previous queries and are not associatedto the
actual queries (i.e., a shortcut with a particular ranking is used for
all queries). This is different from our approach, where we relate
summary information to actual information contents. In [3], a dy-
namic network adaptation mechanism is used, which is in a sense
similar to our approach. Other papers that try to improve theba-
sic search mechanism include the approach described in [12]and
APS [20]. Finally, in [7], an approach that utilizes the pastbehavior
of peers in order to boost the search performance is presented.

3. BACKGROUND
In this section we give an overview of the system and the data-

and query models.

3.1 System overview
We consider a system of peers connected in an unstructured

(Gnutella-like) P2P network. A peerP that joins the P2P net-
work first establishes connection to one or more peers, as part of
the basic P2P bootstrapping protocol (the actual protocol depends
on the variant of unstructured P2P network, possible techniques in-
clude use ofknown peersas well as multicasting). Thus initially,
peers are only aware of theirNn immediate neighbors, whereNn

is determined as a function of the basic P2P network creationand
peer-join strategies.

When no performance-improving technique like caching is em-
ployed, querying in an unstructured P2P system is performedas
follows: the queryQ originating from the querying peerPQ is for-
warded to other peers, denotedremote peers. The process of de-
ciding to which peer(s) to forward the query is calledquery routing
(a basic query routing algorithm flooding). Attached to the query
is a time-to-live (TTL) value which is initialized by the querying
peer. The TTL is decremented each time the query is forwarded,
and when it reaches zero the query is not propagated further.The
peers that can be reached at a particular time fromPQ constitute
thequery horizonof PQ.

3.2 Data model
The peers in the system store data that is searchable by other

peers in the network. This data is represented as XML documents
that are stored either as files or in a database, the only requirement
is that it should be possible to query these documents as willbe de-
scribed shortly. Although documents stored as files (and possible
also XML documents stored in databases) might have a filename,
in a system-wide context the file names are not of interest as our
approach is data-centric2. XML documents may or may not have
an associated description using XML Schema. We expect that for
new data-centric applications based on XML the use of schemas
will be the rule (or can be automatically generated). An important
aspect of schemas is thatgiven the schemas of the XML documents
in a collection, it is possible to determine from the schemaswhether
there can be documents in the collection matching a particular path
expression in a query. In other words, the XML schemas are used
to select which collections to query, and prune collectionsthat cer-
tainly contain no documents matching the query.

In a P2P context all peers are autonomous. This means that
there is no global schema or authority that can control or verify
schemas that are used. Thus we expect that on each peer a num-
ber of schemas are used. In the general case schemas on different
peers will not be related, but in many cases peers will use standard-
ized or at least commonly accepted schemas, which is necessary in
the case of communication and e-Business. Our approach specifi-
cally targets at such focused application scenarios. It should also be
mentioned that although our approach is most useful when XML
schemas are used, we expect that a certain fraction of documents
will still be created without an associated schema. In orderto im-
prove query efficiency also for queries involving these documents,
a schema can be created that is compliant with the current instance
of the document.

2Data-centric XML documents are typically documents meant for
computer consumption, while document-centric XML documents
are typically meant for human consumption (like books, papers,
etc.)

3.3 Query model
There exist a number of approaches to query XML documents.

This includes standardized languages like XPath and XQuery, as
well as vendor-dependent languages and SQL-extensions (which
has been the typical approach in commercial relational DBMSs).
Most of these approaches have in common that they employ a vari-
ant or subset of XPath, in order to filter out relevant elements from
the XML documents before further processing. Our system-wide
query model is also based on XPath.

The most important aspect of XPath is the notion oflocation
paths(LP). Example of location paths are/person/address/city
and//address/city. It is interesting to note about location
paths that a pathP1 that is a prefix of a pathP2 will match a su-
perset of the elements matched byP2. For instance, the number of
elements matched by/a/b will be the same or larger than those
matched by the more specific path/a/b/c. This is exploited by
our approach, which caches information about the more specific
path, in order to improve the efficiency of the cached entries.
Example: /person/addresswill match allperson elements
containing an address element, while/person/address/city
will only match those person elements that contain anaddress el-
ement containing acity element. A location path can also contain
predicates, which can be tests on strings as well as on numerical
values.

In general, the full XPath language or XQuery will be used at a
querying peerPQ. However, given a query issued byPQ, only the
location path, possibly including predicates, is actuallyforwarded
to other peers. When a query is issued, the following steps take
place:

1. The local query processor extracts the location pathLP from
the query.

2. LP will be forwarded to appropriate peers (as will be de-
scribed in more detail in the following sections).

3. When aLP is received at a peer, it will be applied to XML
documents having a schema matching theLP. The result of
applying theLP is a set of elementsE (i.e., XML data). The
elementsE are returned toPQ.

4. PQ will receive a setE for each peer having matching docu-
ments. In the case of XQuery additional manipulation might
be performed, in order to generate the final results.

In the description above we have assumed adata-centricappli-
cation context where all matching data of contacted peers will be
retrieved and be part of the process of generating the result. How-
ever, we note that indocument-centricapplication areas, only a
subset of the matching documents will be needed and retrieved.
Which documents to retrieve is based on a ranking decision. For
these application areas the identifiers and relevant metadata of the
documents containing matching elements are returned, instead of
the actual elements. In document-centric application areas also
the whole documents and not only individual elements might be
needed in the final result. Our proposed techniques are equally ap-
plicable for both data- and document-centric application areas, but
for simplicity of presentation we will assume a data-centric context
in the rest of this paper.

4. SCHEMA-ASSISTED P2P QUERYING OF
XML DATA

The problem of using the basic approach for P2P querying, as
described above, is the high cost associated with flooding. The

result is that in order to find as many results as possible, a very
high number of peerspotentiallyhaving relevant data have to be
contacted. In order to have a more targeted query forwarding, we
employ summary information retrieved during past queries to better
decide on candidate peers.

4.1 Result caching vs. summary caching
One particular kind of information from previous queries isthe

actual results, i.e., after receiving thequery resultsfrom a number
of peers, the querying peer can cache the query results for more
efficient processing of future queries as described in, e.g., [1, 16].
An expiration time (presumably with a low value) is attachedto
the result, to ensure that the results will be discarded after a certain
amount of time. In particular for static contents and stablepeers,
the result caching technique can significantly reduce the search
cost. However, 1) the results might soon get invalid/stale,caching
the results incurs a considerable storage cost and thus the results
are only kept for a certain amount of time, limiting the usefulness
of the caching, 2) the stored results are only useful when theexact
same query is issued several times, 3) result caching in itself will
not improve the probability of finding contents outside the query
horizon (although this can be improved on, by allowing queryre-
sults to be used also for queries from remote nodes, i.e., notonly for
local query processing), and 4) the associated storage and mainte-
nance cost of result caching is high. Even though secondary storage
media is getting cheaper, result caching in a dynamic P2P system is
not a wise design decision, since the system becomes vulnerable in
terms of bandwidth consumption, depending on the rate of updates
and the size of updated objects.

An alternative to result caching is to instead cachesummary in-
formation of contents located at remote peers. This summary infor-
mation can be returned together with the query results. Ideally, such
summary information should be compact and robust to changesof
the actual contents. In the following, we will describe our XSCache
approach for summary caching.

4.2 XSCache overview
Our approach, which is the topic of this paper, is to cache (parts

of) the schemaof remote data (instead of, for example, caching
summary based on actual contents), as illustrated in Figure1. No-
tice that the actual values from query results are not cached. In the
case of XML, a query will involve a path as described in the pre-
vious section, and information about possible paths can be found
in the schema. Thus having the schema cached locally can be used
to know which peers most likely have data that matches the query.
In the most extreme case (although not likely in practice), when all
schemas from all peers would be available, the exact set of peers
matching a query can be found before query forwarding.

The advantage of our approach is that even if contents of an XML
document change frequently, schemas change less frequently. It is
also the case that usually when a new document is created, it will
belong to an existing schema. Although in the worst case a new
document will have a new schema associated with it, this willbe
the case only for very few documents on a peer, as there existsno
real application where each document has a separate schema.

It should also be noted that our approach can be employed in
combination with result caching. This is in particular useful for
very frequent queries, which then only have to be reissued atregu-
lar times. When our approach is used for query routing, the query
horizon is also extended in a more robust way than when using re-
sult caching alone. It will also gradually be extended with time as
schema information is further distributed.

We will now describe in more detail our new approach for query

<Schema2>
<A1>

<B3></B3>
<B6></B6>
<B8></B8>

</A1>
<A2>

<B3></B3>
<B7></B7>

</A2>
<A3>

<B2></B2>
<B6></B6>

</A3>
</Schema2>

<Schema1>
<A1>

<B1></B1>
<B2></B2>

</A1>
<A2>

<B3></B3>
<B4></B4>

</A2>
</Schema1>

Local Schema

<LocalSchema>
<A4>

<B5>
<C1></C1>
<C2></C2>

</B5>
</A4>
<A5>

<B1></B1>
<B4></B4>

</A5>
</LocalSchema>

Querying
peer

Target
peer 2

Target
peer 1

Sub-Schema Caching

P1: <Schema1>
<A2>

<B3></B3>
<B4></B4>

</A2>
</Schema1>

P2: <Schema2>
<A2>

<B3></B3>
<B7></B7>

</A2>
</Schema2>

Full Schema
Caching

P1:
<Schema1>
<A1>…</A1>
<A2>…</A2>
</Schema1>

P2:
<Schema2>
<A1>…</A1>
<A2>…</A2>
<A3>…</A3>
</Schema2>

Query:
//A2

Path Caching

P1:
<Schema1>

<A2>
</A2>

</Schema1>

P2:
<Schema2>

<A2>
</A2>

</Schema2>

Figure 1: Schema caching variants (full-schema, sub-schema
and path caching) as result of a query for //A2.

routing. The main contributor to increased query routing efficiency
is the XML schema cache (XSCache), a structure for maintenance
of remote schema information.

4.3 Schema-assisted query routing
Query routing is the process of deciding where to forward a

query, performed by all involved peers, i.e., both the querying peer
as well as intermediate peers. In both cases, when a lookup inthe
XSCache for schemas matching the XPath expression gives as re-
sult a set of matched peers, the query can be forwarded directly to
one or more of these peers. This forwarding is called ajump. Note
that unlike routing indices that only maintain informationof the
neighborhood and are used to choose appropriate neighbor peers
for query forwarding, information about contents at very remote
peers (also beyond the query horizon) can be contained in theXS-
Cache. In the case when a peer does not find a match in the XS-
Cache, the query is forwarded using the basic query routing algo-
rithm. Notice that even if a query match is found at a peer and
results returned to the querying peer, the query is further forwarded
until the TTL reaches zero. This is because ideally in a data-centric
approach,all relevant results to a query need to be retrieved. For
an illustrative example of query routing assisted by jumps see Fig-
ure 2, where grey-colored peers are the ones contacted by thequery.
The figure explains how the query horizon is extended; because of
the jumps and the continuation of routing at remote locations, con-
tents of remote XSCaches can be queried and potentially result in
new jumps.

Querying
peer

Query routing path

... ...

...

Figure 2: Query routing employing jumps (dashed lines show
remote parts of the P2P network, while grey-colored peers are
the ones contacted by the query).

Algorithm 1 Peer selection during query routing.
Require:

PN = {P1, ..., Pn} {Neigbors to consider,n = Nn − 1}
XSCRV ∈ {XSCacheB, XSCacheNB, XSCacheN2B,
XSCacheAll} {XSCache routing variant}
PC = {PC1, ..., PCc} {Peers of thec matching entries in XS-
Cache, decreasing rank}

Ensure:
PF {Peers to which the query will be forwarded}
PF = ∅
if (c < n) then

PR = (n − c) randomly selected peers fromPN

end if
if (XSCRV = XSCacheNB) then

if (c ≥ n) then
PF = {PC1, ..., PCn}

else
PF = PC

⋃
PR

end if
else if (XSCRV = XSCacheB) then

PF = PC1

⋃
PN

else if (XSCRV = XSCacheAll) then
if (c ≥ n) then

PF = PC

else
PF = PC

⋃
PR

end if
else if (XSCRV = XSCacheN2B) then

if (c ≥ n) then
h = n/2
PF = {PC1, ..., PCh}

⋃
random selection ofh other peers

in PC

else
PF = PC

⋃
PR

end if
end if

In general, a lookup in the XSCache returnsc peers having a
schema matching the query, and the query is forwarded tok of these
peers and in addition to a subset of the neighbors. Whenk < c a
decision has to be made to which of the peers to forward the query.
Our current approach is to simply rank the candidate peers based
on the number of XML document elements they contain that match
the cached schema (note that this approach can easily be extended
to for example consider position in the hierarchy etc.). Those that
have the highest number are considered most useful for the query
and are more appropriate to answer the query. The value ofk is
an important parameter, and different strategies for determining k
results into a number ofXSCache routing variants. AssumingNn

to be the average connectivity degree (and letn = Nn − 1) for the
P2P network then the query is routed to thek highest ranked peers
in the cache and ton − k randomly selected neighbors:

1. XSCacheB: k=1, select the highest ranked peer from the cache.

2. XSCacheNB: k=n, select then highest ranked peers from the
cache.

3. XSCacheN2B:k=n/2, select then/2 highest ranked peers
from the cache.

4. XSCacheAll: k=c, select all peers from the cache.

The approaches are presented formally in Algorithm 1, where
the set of neighbors to consider is denoted asPN = {P1, ..., Pn}

(wheren = Nn − 1) and the set of the peers of thec match-
ing entries in XSCache, ordered by decreasing rank, asPC =
{PC1, ..., PCc}.

When forwarding the query there is also the issue on how much
the TTL should be decremented. We reduce TTL by 1 during
jumps, so as to enable the continuation of flooding at remote lo-
cations. This means that given a particular TTL the total flooding
cost is in the same order whether jumps are performed or not. Nev-
ertheless we emphasize that because of the jumps, more peerswill
be contacted, since fewer messages are wasted by reaching already
contacted peers. We study the best XSCache variants (XSCacheB
and XSCacheNB) in terms of performance experimentally in Sec-
tion 5.

4.4 Distributing schema information
The basic mechanism for distributing schema information isby

piggybacking the appropriate schema(s) with the result of the query.
The query results are routed to the querying peer through there-
turn path, possibly involving jumps. The reasons for this are: 1)
to enable caching the schema(s) at peers on the return path, and 2)
to make it possible for these intermediate nodes to validateor in-
validate their cached routing information. In particular jumps are
performed because the peer from which the jump is initiated has in-
formation about the destination peer containing data related to the
query. This information is kept in the XSCache and has a valid-
ity time. By routing the information back, the peer reinitializes the
time counter, when it knows the entry is valid. It is also possible to
return an invalidation message indicating that the destination peer
does not have any data matching the query anymore, if that is the
case.

4.5 XML schema caching
The XSCache is a fairly traditional cache. When a new schema

is to be inserted but the cache is full, one of the schemas is removed
based on an LRU policy. Because of high cost of invalidation we
use the soft-state approach which is most common in highly dis-
tributed systems, i.e., each item has an associated expiration time,
so that if the validity of the schema with respect to the associated
peer has not been confirmed within a certain time, the schema will
be removed from the cache. The expiration time is set to a fixed
value, which is higher for remote peers that are already known
and where churn statistics are available, than for newly discovered
peers.

When caching a schema based on query results, we have the op-
tion of caching the whole schema or just the part of the schemarel-
evant to the current query. The first approach is calledfull-schema
cachingand it is considered an aggressive caching technique, while
the second is calledsub-schema caching. For completeness we
also mention that an even coarser caching can be performed:path
caching. In a path caching approach only the actual path in the
query is cached, i.e., not the subpaths being part of the schema.

The three alternatives are illustrated in Figure 1. The figure
shows the contents of the XSCache after a query for//A2. The
grey-shadowed areas of the figure show the contents of XSCache
in case of: 1) full-schema caching (the whole schema is cached),
2) sub-schema caching (only the part of the schema that contains
//A2 is cached), or 3) path caching (only the path ending with
//A2 is cached).

Which of the three approaches (path caching, full-schema caching,
and sub-schema caching) to use depends on applications and query
patterns. Path caching is the most conservative approach, however
it results in savings in communication and reduces associated stor-
age and maintenance costs. Full-schema caching has the advantage

person

address(P1,3)
(P2,2)

(P
1
,1)

(P1,1)

(P1,1)

(P2,2)
(P3,5)

city

street

country

Figure 3: Tree representation of (parts of) schemas cached
from different peers.

of supporting a larger number of different future queries. However,
the added communication cost and memory usage can be signif-
icant, so in the general case when no assumptions can be made
regarding schema sizes and access patterns, sub-schema caching is
a safer approach, thus it will be the context of the followingdiscus-
sion.

The items in the cache, the (sub-)schemas, are represented as
a tree. In order to ensure efficient access and use of memory,
schemas from different peers are merged when possible. Thisis
illustrated in Figure 3. Each node in the tree is annotated with
a set of tuples(P, N), whereP is a peer identifier andN is the
number of leaf elements matching the path from the root to this
node in the schema tree. The value ofN is used in the rank-
ing of peers as described above. The part of the tree illustrated
in Figure 3 can be the result of a number of queries, including
/person, /person/address, and//address. However, a
query/person/address/streetwould not generate the tree
depicted in Figure 3. The annotated(P, N)tuples are based on infor-
mation provided together with the schemas from the remote peers.

One important aspect to note about the XSCache is that the val-
ues resulting from a query, for example the text string “Athens” in
the city element returned from peers, is not cached in the XSCache.
The reasons are that caching all values would result in high storage
cost and more importantly high maintenance cost in the case of data
updates. Also, caching the values on all peers along the return path
(see above) will in general not be beneficial. However, in appli-
cations areas where caching the valuesis beneficial, result caching
can be applied in addition to schema caching, most typicallyon the
querying peer only.

5. EXPERIMENTAL STUDY
In this section, we first present the experimental setup and we

then proceed to describe and discuss the results of our experiments.
An unstructured P2P network is considered withNP peers that
store XML data that conform to a variety/number of schemas. Some
overlap among the schemas that belong to different peers is as-
sumed. A fraction of peers (qp) act as querying peers issuing ran-
domly generated queries to the network to find relevant XML data.
Several routing strategies are tested to study their comparative per-
formance.

Our approach is a generalization of path caching, or in other
words path caching is a special case of our approach. Therefore, in-
stead of comparing against all other approaches, we study PCache
in a comparative way to our approach in an unstructured P2P con-
text.

5.1 Experimental setup
We evaluate the performance of the proposed approach through

Symbol Description Range of values (Default)
NP # of peers 2000...8000 (2000)
NS # of schemas 100...2000 (500)
ND # of data items 100000...400000 (50×NP)
NQ # of queries - (100)
qp Fract. of querying peers 0.2...0.5 (0.2)
a Query distr. param.r 0.6...2 (1.4)

CS Cache size - (50)

Table 1: Symbols, descriptions and default values used in the
experiments.

simulations, in order to test its scalability and feasibility. We use
a simulator, created by our group and written in Java, for studying
the performance of different routing strategies in unstructured P2P
networks.

In the experiments, two different P2P network topologies are
used: 1) a grid-like topology of constant connectivity degree which
is more dense, i.e., each pair of neighboring peers share 3-5com-
mon neighbors, and 2) a random graph topology created with the
GT-ITM topology generator3. Due to space constraints we only re-
port resuls from the former, results from the latter can be found in
the extended version of the paper4 We use different network sizes,
up to NP =8000 peers. Unless mentioned explicitly, we used the
topology with a connectivity degree of 8. We also tried othercon-
nectivity degrees in our experiments leading to similar conclusions.

Peer-residing data is described by XML schemas that may have
common parts. Also some peers may share a common schema, to
resemble the real world case, for instance peers within the same
organization. It should be mentioned that the decision to use syn-
thetic generated schemas is due to the difficulty of finding a real
XML dataset that entails a large number of schemas, as required
for large-scale P2P experiments. The total number of available data
values in the network isND = 50 × NP , whereNP denotes the
number of peers. The allocation of data to peers follows the Pareto
principle (also known as the 80-20 rule), i.e., 20% of the peers hold
80% of the total data. We also used uniform allocation to peers. For
each data value, a path expression of the peer’s local XML schema
is used to describe it.

At each simulation experiment a set ofqp × NP (qp ≤ 1) peers
is selected to act as querying peers. Each peer initiatesNQ queries,
which are XPath expressions picked from the union of available
XML schemas. In the experiments shown in this paper, we only use
a simple type of XML queries, namely queries for location paths,
i.e. no predicates are used. The queries are randomly generated
using the zipfian distribution (with parametera), in order to sim-
ulate the users’ interests. This is based on previous reports (e.g.
see [15]), which state that file popularity on the Web followsa zip-
fian distribution.

Symbols of parameters, range of values, and default values are
summarized in Table 1.

In our simulation study, we assess the performance of different
routing strategies using as quality measures: 1) recall, which shows
the completeness of the search (in contrast to file-sharing,database
applications usually require finding all relevant peers, and retriev-
ing all answers to a given query), 2) latency for: i) the first result,
ii) the first 10 results, and iii) all results, in terms of number of hops

3Available at: http://www-static.cc.gatech.edu/
projects/gtitm/
4Available at http://www.idi.ntnu.no/grupper/db/
research/technical_report/2007/231_art8.pdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5

R
ec

al
l

Fraction of Querying Peers

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

(a) Recall.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.2 0.3 0.4 0.5

La
te

nc
y

1

Fraction of Querying Peers

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

(b) Latency for first result.

 260

 280

 300

 320

 340

 360

 380

 400

 420

 0.2 0.3 0.4 0.5

#C
on

ta
ct

ed
 P

ee
rs

Fraction of Querying Peers

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

(c) Number of contacted peers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5

R
ec

al
l

Fraction of Querying Peers

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

(d) Recall (Uniform allocation).

Figure 4: Measurements from using different number of query-
ing peers, given as the fraction of peers in the network.

required to return the matching XML data to the querying peer, and
3) the number of contacted peers due to the routing strategy.

All measurements are taken after half of the total queries have
been issued, in order to eliminate the warm-up effect of the cache.
We study the effect of the following parameters on the performance
of these strategies: 1) TTL values, 2) network sizes, 3) different
topologies, 4) different skew in query distributions, 5) percentage
of querying peers, and 6) total number of available schemas in the
network.

In the experiments presented in this section, we present twovari-
ants of sub-schema caching (denotedXSCacheBandXSCacheNB),
according to the way the cached schemas are utilized during query
routing. We choose to show only two variants, in order to make
the charts readable. Moreover, the results of the other XSCache
variants do not offer any substantial additional insight. It should be
reminded here that with each cached XML schema, also the num-
ber of associated data values is kept. Query routing variants are
based on how to pick peers to forward the query. A peer is ranked
according to the number of data it possesses.

We use flooding as the naive baseline approach. A more sophis-
ticated baseline thannaive is considered as well. This is achieved
by adapting the basic technique used in practically the majority of
related work (namely XML path caching) into our simulator, in or-
der to compare against. We refer to this strategy asPCache. It
is interesting to note that PCache is actually a special caseof XS-
Cache, namely it corresponds to the path caching variant. Infull ac-
cordance with the two variants of XSCache, PCache is used in our
experiments with two variants:PCacheBandPCacheNB. The vari-
ants of our approach are compared against these two approaches in
the experiments.

It should also be stressed that we compare the performance of
the aforementioned approachesusing the same number of messages
and the same setup parameters, in order to present directly compa-
rable results. As can be seen, our approach both enhances thenaive
search strategy and outperforms PCache in all experiments.

5.2 Experimental results
In this section we study the effect of the most important param-

eters for a system employing the XSCache.
In Figure 4, we study the effect of increasing the number of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.6 0.7 0.8 0.9 1 1.4 2

R
ec

al
l

Query Distribution Skew

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2000 3000 4000 5000

R
ec

al
l

Number of Peers

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

Figure 5: Recall from using different skew in the query distri-
butions (left) and for different network sizes (right).

querying peers in the network. The number of querying peers is
increased from 20% to 50% of the total peers. The results show
that recall increases with the percentage of querying peers(Fig-
ure 4(a)). In a real P2P system all peers are expected to issue
queries for data, so this is a strong argument in favor of the scala-
bility of our approach with the number of querying peers. Notice
also that our approach presents significantly lower latencyfor the
first result compared to the naive approach (Figure 4(b)). XSCache
also outperforms PCache in all other latency-related metrics (first
10 and all results). Another interesting observation comesfrom
Figure 4(c), namely that XSCache manages to achieve 4 times the
recall of flooding, by only contacting approximately 40 extra (out
of 380) peers, using the same number of messages. This means
that XSCache manages to find a higher number of peers that ac-
tually match the query. Furthermore, in the case of flooding,the
number of contacted peers (given a certain number of messages)
totally depends on the underlying topology. In contrast, XSCache
is oblivious to topological parameters. In other words, XSCache
overcomes some of the problems of a basic routing mechanism re-
lated to the structure of the underlying topology, such as the density
of the network topology.

Finally, we tested uniform allocation of data to peers in Fig-
ure 4(d), which is exactly the same experiment as shown in Fig-
ure 4(a) except that the data allocation is uniform. The compara-
tive results are practically the same with 80-20 allocation, only the
absolute values are lower when the distribution is uniform.We use
the 80-20 allocation rule in the rest of the experiments.

In Figure 5 (left), we gradually increase the skew in the query
distribution by increasing the value of the query distribution pa-
rametera), to study the behavior of our approach. As expected,
when the query distribution is more skewed, recall increases, as a
result of many recurring queries. This is due to the fact thatthe
cached XML schemas become useful for more queries.

In Figure 5 (right), the scalability of our approach with respect
to the number of peers is illustrated. We stress here that thein-
creasing recall values with network size are not expected, yet this
is explained by the fact that we also increase the TTL as we in-
crease the network size. Unfortunately, the TTL does not increase
analogously to the number of peers, rather it increases faster, hence
recall increases with network size in the chart. The important find-
ing of this experiment is that the higher recall achieved by XSCache
relative to PCache (and naive) is sustained as the network size in-
creases.

In Figure 6 (left), we study the effect of increasing TTL values
on the performance of the search strategies. The effect of varying
the number of available schemas in a P2P network of 2000 peersis
depicted in Figure 6 (right). We use up to 2000 different schemas
in this experiment, which is a reasonable value since even ifdata in
a P2P system is some orders of magnitude larger than the number
of peers, the number of schemas employed is definitely comparable

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 6 8 10 12 14 16

R
ec

al
l

TTL

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 500 1000 1500 2000

R
ec

al
l

#Schemas

naive
XSCacheB

PCacheB
XSCacheNB

PCacheNB

Figure 6: Recall when using different TTL values in the search
(left) and with different number of available schemas in the net-
work (right).

to the number of peers.
We see that for small number of schemas (100) our approach per-

forms similar to PCache, but far better than naive. However as the
available number of schemas increase, XSCache constantly outper-
forms PCache. This recall does not increase monotonically,as can
be seen for 2000 schemas, where the achieved recall admittedly
drops, however it still surpasses PCache. The reduced recall as the
number of schemas increase is expected, as in the extreme case that
each peer has a completely different schema from other peers, any
schema caching mechanism will only benefit queries for this peer
only. Moreover, when the number of available schemas decreases,
as would be the case when schema mediation is employed, the ef-
ficiency of XSCache is not reduced significantly. All in all, with
increasing number of schemas, our approach achieves 2-4 times
the recall of naive, and 1.5-2.5 times the recall of PCache.

Concluding, our approach significantly outperforms the baseline
search strategies in terms of recall and associated latency(for the
first, the first 10 and for all results), while utilizing the same num-
ber of messages. In other words, given a certain recall, XSCache
needs a lower number of messages to achieve it. Furthermore,our
approach increases the number of peers that need to be contacted,
with the same search cost.

Comparing the individual variants of XSCache (XSCacheB and
XSCacheNB), we conclude that using the highest ranked entryin
the cache performs similarly to the approach that usesn entries.
As a rule of thumb, even one cached entry (the highest ranked)
is enough to achieve high recall and low latency. This conveys that
XSCacheB is a suitable approach when designing a search protocol
for P2P networks similar to the ones tested in our simulations.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a new approach aiming at reducing

XML query processing costs in mobile environments. We intro-
duced the usage of XML schema caching for query routing as well
as the underlying mechanisms. We also performed an extensive
analysis of the approach through large-scale simulations.The re-
sults showed that our approach: 1) reduces query processingcost
and 2) increases the probability of finding the relevant XML data
in a P2P network where we can not afford to search all peers.

Plans for future work include more sophisticated ranking ofcan-
didate peers for peer selection, and integrating actual XMLproces-
sors in an implementation to develop a P2P XML search engine.

7. REFERENCES
[1] B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan,

P. Keleher, and B. Silaghi. Efficient Peer-to-Peer Searches
Using Result-caching. InProceeding of IPTPS’03, 2003.

[2] I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and
C. Wiesner. Distributed queries and query optimization in

schema-based P2P-systems. InProceedings of DBISP2P’03,
2003.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P systems scalable. In
Proceedings of SIGCOMM’03, 2003.

[4] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. InProceedings of ICDCS’02, 2002.

[5] C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis. Schema
caching for improved XML query processing in P2P
systems. InProceedings of IEEE P2P’06, 2006.

[6] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Processing
queries in a large peer-to-peer system. InProceedings of
CAISE’03, 2003.

[7] V. Kalogeraki, D. Gunopoulos, and D. Zeinalipour-Yazti. A
Local Search Mechanism for Peer-to-Peer Networks. In
Proceedings of CIKM’02, 2002.

[8] M. Karnstedt, K. Hose, and K.-U. Sattler. Query routing and
processing in schema-based P2P systems. InProceedings of
DEXA workshops 2004, 2004.

[9] G. Koloniari and E. Pitoura. Content based routing of path
queries in peer-to-peer systems. InProceedings of EDBT’04,
2004.

[10] G. Koloniari and E. Pitoura. Peer-to-peer management of
XML data: issues and research challenges.SIGMOD Rec.,
34(2):6–17, 2005.

[11] N. Koudas, M. Rabinovich, D. Srivastava, and T. Yu. Routing
XML queries. InProceedings of ICDE’04, 2004.

[12] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In
Proceedings of ICS’02, 2002.

[13] D. A. Menascé and L. Kanchanapalli. Probabilistic scalable
P2P resource location services.SIGMETRICS Performance
Evaluation Review, 30(2):48–58, 2002.

[14] K. Nørvåg, C. Doulkeridis, and M. Vazirgiannis. Taxonomy
caching: A scalable low-cost mechanism for indexing remote
contents in peer-to-peer systems. InProceedings of IEEE
ICPS’06, 2006.

[15] V. N. Padmanabhan and L. Qiu. The content and access
dynamics of a busy web site: findings and implications. In
Proceedings of SIGCOMM’00, 2000.

[16] S. Patro and Y. C. Hu. Transparent query caching in
peer-to-peer overlay networks. InProceedings of IPDPS’03,
2003.

[17] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A
self-organizing XML P2P database system. InProceedings
of EDBT Workshops 2004, 2004.

[18] G. Skobeltsyn and K. Aberer. Distributed Cache Table:
Efficient query-driven processing of multi-term queries in
P2P networks. InProceedings of P2PIR’06, 2006.

[19] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient
content location using interest-based locality in peer-to-peer
systems. InProceedings of INFOCOM’03, 2003.

[20] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic
Search for Peer-to-Peer Networks. InProceedings of IEEE
P2P’03, 2003.

[21] C. Wang, L. Xiao, Y. Liu, and P. Zheng. DiCAS: an efficient
distributed caching mechanism for p2p systems.IEEE
Transactions on Parallel and Distributed Systems,
17(10):1097–1109, 2006.

[22] B. Yang and H. Garcia-Molina. Improving search in
peer-to-peer networks. InProceedings of ICDCS’02, 2002.

