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ABSTRACT
Skyline queries have been studied in centralized systems,
but also in distributed environments, such as web informa-
tion systems and peer-to-peer networks. Most of the existing
work focuses on efficient processing of skyline queries that
return the exact and complete result set. In this paper, we
study skyline computation in a distributed environment un-
der the assumption of a given upper bound on the bandwidth
consumption. Supporting such a constraint is very impor-
tant in a mobile environment, where data transmissions may
lead to deterioration of query processing performance, while
imposing high cost for the mobile device in terms of energy
consumption. Therefore, the cost of transferring all data
points that may contribute to the skyline result set to the
querying server is often prohibitive. Our target is, given an
upper bound of bandwidth consumption, to maximize the
quality of the retrieved skyline approximation. For this pur-
pose, we propose a framework for bandwidth-constrained
skyline query processing, based on the intentional selection
of a limited amount of data points from each participat-
ing mobile device. We propose a novel method to carefully
select the most promising data points based on subspace
dominations and analyze its properties. In our extensive
experimental evaluation, we demonstrate that result sets of
high quality are achieved, while reducing the communication
cost considerably.

1. INTRODUCTION
The recent advances in wireless communications have en-

abled the widespread usage of mobile devices. Moreover,
the capabilities of mobile devices – such as PDAs, cellular
phones, netbooks – in terms of storage capacity, processing
power and network connectivity have increased significantly.
Thus, mobile devices store data locally and provide access
to their data by means of wireless connectivity. For ex-
ample, consider a tourist interested in highly ranked and
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cheap restaurants that are near by its location. Other mo-
bile devices that are in the same region are likely to store
information and personal opinions about local restaurants.
Thus, a tourist could benefit from this information. In our
scenario, the communication between mobile devices is facil-
itated through a base station. For the deployment of several
useful applications, it is important to design distributed al-
gorithms for efficient query processing over data stored by
mobile devices.

Skyline queries help users make intelligent decisions over
complex data, where different and often conflicting criteria
are considered. Such queries return a set of interesting data
points – from the user’s perspective – that are not dominated
by any other point on all dimensions [2]. Skyline queries
have been studied in centralized systems [2], but also in dis-
tributed environments such as web information systems [1,
12], peer-to-peer networks [5, 7, 9, 17, 18, 19] and mobile
ad-hoc networks [10]. Although distributed skyline query
processing has been studied in a variety of domains, the fo-
cus has been on providing the exact and complete result
set. However, our primary goal is to maximize the quality
of the retrieved result set when given an upper bound of
bandwidth consumption. The reason is two-fold: first, to
reduce the latency of the system, which is associated with
increased data transfers, and second, to restrict the energy
consumption of the mobile device, which is affected by high
rates of data transmissions.

Figure 1: System architecture

In this paper, we study the efficient processing of bandwidth-
constrained skyline queries. We assume a system architec-
ture that consists of a server equipped with a wireless net-
work access point, and several mobile devices in the vicinity
of the server at a given time, as depicted in Figure 1. The



server can directly communicate with any device and re-
quest data. In such a setting, each time the server sends a
skyline request to a mobile device, all points that are not
dominated locally (local skyline points) have to be trans-
ferred to the server, in order to ensure the exactness of the
result set. Nevertheless, many points are actually discarded
by the server, since they are dominated by points stored at
other mobile devices. In our approach, each mobile device
transfers only a fraction of the local skyline points, namely
those that have the highest probability to belong to the sky-
line set. Quantifying the probability of a point to belong to
the skyline result set poses inherent challenges due to the
distribution of content and the lack of global knowledge.

In this context, we propose a framework for bandwidth-
constrained skyline query processing, based on the inten-
tional selection of the most promising local skyline points
from each participating mobile device. We study the proper-
ties that local skyline points should have, in order to increase
the probability of belonging to the global skyline. Towards
this goal, we propose a novel method to carefully select local
skyline points based on subspace dominations and compare
it with two methods previously proposed in related work for
ranking of skyline points. The main contributions of our
work are:

• We propose a framework for processing bandwidth-
constrained skyline queries over mobile devices, aiming
at computing an approximate skyline result set that
contains as many skyline points as possible.

• We analyze the main properties of skyline points that
qualify them as skyline points.

• We present a novel method based on subspace domi-
nations for selecting of a limited amount of local sky-
line points. We also identify two existing skyline rank-
ing methods that fit in our framework and study their
comparative performance.

• We conduct a thorough experimental evaluation that
demonstrates the efficiency of our approach, in terms
of high quality of retrieved approximations, with im-
portant savings in bandwidth consumption. Our algo-
rithm consistently outperforms its competitors in all
examined setups.

The remaining of this paper is organized as follows: Sec-
tion 2 reviews the related work. Then, in Section 3, we
provide the necessary preliminaries and definitions. In Sec-
tion 4, we present a system overview. In Section 5, we
present a framework for bandwidth-constrained skyline query
processing and propose a novel method that exploits sub-
space dominations to identify the most promising local points
to belong to the skyline. The experimental evaluation is
presented in Section 6. Finally, we conclude the paper in
Section 7.

2. RELATED WORK
Skyline computation has received considerable attention

in the database research community. Börzsönyi et al. [2] first
investigated the skyline computation problem in the context
of databases. Thereafter, several techniques have been pro-
posed for efficient skyline computation. For example, in [13],
a branch and bound algorithm (BBS) on a dataset indexed

by an R-Tree, with guaranteed minimum I/O cost, was pro-
posed. Subspace skyline retrieval was studied in [15], and
the SUBSKY algorithm was presented. Pei et al. [14] dis-
cussed subspace skylines primarily from the view of query
semantics. The authors in [21] present a pre-processing ap-
proach, called SKYCUBE, which is defined as the union of
all skyline points of all possible non-empty subspaces. Chan
et al. [3] propose the k-dominant skyline query to restrict
the skyline cardinality. The authors relax the idea of dom-
inance to k-dominance, in order to increase the probability
of one point dominating another point. In [11], the authors
study the problem of selecting k skyline points so that the
number of points, which are dominated by at least one of
these k skyline points is maximized. In [4], the authors intro-
duce a new metric called skyline frequency, to compare and
rank the interestingness of data points based on how often
they are returned in the skyline, when different subspaces
are considered.

There has been a growing interest in distributed [1, 5, 6,
7, 9, 12, 17, 18, 19, 22] and parallel [16, 20] skyline compu-
tation lately. In [1, 12], skyline processing is studied over
distributed web sources. In both cases, the authors assume
vertical partitioning of the dataset across a set of partici-
pating web accessible sources. This is entirely different from
our setup, where the aim is to process skyline queries over
a horizontally distributed dataset to mobile devices.

Huang et al. [10] assume a setting with mobile devices
communicating via ad-hoc networks (MANETs) and study
skyline queries that involve spatial constraints. The authors
present techniques that aim to reduce both the communica-
tion cost and the execution time on each single device. The
communication cost is reduced by sending a filter point to
the devices, that discards local skyline points. This differs
to our goals, since [10] does not focus on bounding the con-
sumed bandwidth. Furthermore, the use of filter points is
orthogonal to our approach and can be used additionally.

In [9], the authors focus on skyline computation in Peer
Data Management Systems (PDMS), where each peer pro-
vides its own data with its own schema. Wang et al. [18]
use the z-curve method to map the multidimensional data
space to one-dimensional values, that can then be assigned
to peers connected in a tree overlay. Later, this work has
been extended resulting in SkyFrame [19]. Chen et al. [5]
propose the iSky algorithm, which employs a different one-
dimensional transformation, in order to assign data to peers
in a tree overlay. SKYPEER [17] is a framework for sub-
space skyline query processing over super-peer architectures.
Similarly, Fotiadou et al. [7] propose BITPEER that uses a
bitmap representation in order to improve the performance
of query processing. These approaches focus mainly on the
efficient propagation of the skyline queries in the overlay
network. In contrast, we do not assume the existence of an
overlay network, and we primarily focus on restricting the
transferred data points.

In [20], Wu et al. address the problem of parallelizing sky-
line queries over a shared-nothing architecture using space
partitioning. Following a different approach, in [16], the
authors present a novel angle-based space partitioning that
outperforms the traditional grid-based partitioning for par-
allel skyline computation. In contrast to our work, which
focuses on bounding bandwidth consumption, the focus of
parallel skyline computation is mainly to minimize the re-
sponse time and share the processing workload to all servers.
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Figure 2: Skyline example

Recently, approaches that assume no overlay network have
been proposed [6, 22]. Cui et al. [6] study skyline query
processing in a distributed environment, where a coordina-
tor can directly communicate with all servers. The authors
propose the use of MBRs to summarize the data stored at
each server. In [22], a feedback-based distributed skyline
(FDS) algorithm is proposed, which also assumes no partic-
ular overlay network. The algorithm needs several round-
trips to compute the skyline result. In both approaches,
similarly to our architecture, a server directly communicates
with other servers, but their aim is to compute the exact
skyline, thereby consuming excessive bandwidth in many
occasions.

3. PRELIMINARIES
Given a data space D defined by a set of d dimensions

{d1, ..., dd} and a dataset S on D with cardinality n, a point
p ∈ S can be represented as p = {p1, ..., pd} where pi is
a value on dimension di. Without loss of generality, let
us assume that the value pi in any dimension di is greater
or equal to zero (pi ≥ 0) and that for all dimensions the
minimum values are more preferable. A summary of the
symbols used in this paper is given in Table 1.

Definition 1. Skyline: A point p ∈ S is said to domi-
nate another point q ∈ S, denoted as p ≺ q, if (1) on every
dimension di ∈ D, pi ≤ qi; and (2) on at least one di-
mension dj ∈ D, pj < qj. The skyline is a set of points
SKY ⊆ S which are not dominated by any other point. The
points in SKY are called skyline points.

Let us assume for example a database containing informa-
tion about hotels. Each tuple of the database is represented
as a point in a data space consisting of numerous dimen-
sions. In our example, the y-dimension represents the price
of a room, whereas the x-dimension captures the distance of
the hotel to a point of interest such as the beach (Figure 2).
According to the dominance definition, a hotel dominates
another hotel because it is cheaper and closer to the beach.
Thus, the skyline points a, i, m and k, are the best possible
tradeoffs between price and distance from the beach.

Skyline analysis applications often provide numerous can-
didate attributes resulting in high dimensional data spaces.
In our running example, the hotel database could contain
various other attributes, such as the number of rooms, the
size of room and the star rating. The notion of skyline can
be extended to subspaces, where given a set of d-dimensional
points, a subspace skyline query only refers to a user-defined
subset of attributes. Each non-empty subset U of D (U ⊆
D) is referred to as a subspace of D. The data space D is
also referred as full space of the dataset S.

Symbols Description

S Dataset
d Data dimensionality
n Cardinality of the dataset
p = {p1, ..., pd} Data point
D = {d1, ..., dd} Data space
U ⊆ D Subspace of D

SKY Skyline set
SKYU Skyline set on subspace U

N Number of mobile devices
Mi Mobile device(i = 1..N)
Si Partition of dataset on Mi

SKY i Skyline set of Mi

Table 1: Overview of symbols

Definition 2. Subspace Skyline: A point p ∈ S is said
to dominate another point q ∈ S on subspace U ⊆ D, de-
noted as p ≺U q, if (1) on every dimension di ∈ U , pi ≤ qi;
and (2) on at least one dimension dj ∈ U , pj < qj. The
skyline of subspace U is a set of points SKYU ⊆ S which
are not dominated by any other point on subspace U . The
points in SKYU are called skyline points on subspace U .

Consider for example the dataset depicted in Figure 2.
The skyline points are SKY = {a, i, m, k}, while for the
subspace U = {x} the subspace skyline set is SKYU = {a}.

4. SYSTEM OVERVIEW
The system architecture consists of one central server, also

called coordinator, and a set of mobile devices Mi (1 ≤ i ≤
N), which exist within the coordinator’s area of coverage,
at a given time. The coordinator can directly communi-
cate with any device Mi. A mobile device Mi has enhanced
capabilities in terms of local storage capacity and process-
ing power. Each device stores a portion Si of the complete
dataset S, thus horizontal partitioning of data to devices is
assumed S = ∪1≤i≤NSi and Si ⊆ S. Moreover, a device is
capable of processing the skyline of its local data. Given a
skyline query, the coordinator is responsible for computing
the skyline set of the entire dataset S.

Observation 1. A point p ∈ S cannot be a skyline point,
unless there exist a partition Si ⊆ S (1 ≤ i ≤ N) with p ∈ Si

and p ∈ SKY i, where SKY i denotes the skyline set of the
data points in Si.

In other words, the skyline points over a horizontally par-
titioned dataset are a subset of the union of the skyline
points of all partitions. For sake of simplicity, we assume
that each mobile device Mi stores locally the skyline set
SKY i based on the local data partition Si (mentioned also
as local skyline points), and we do not take into consider-
ation the local processing cost. This is because we assume
that the dataset stored at each mobile device changes in-
frequently, while the most dynamic part of our system is
caused by the mobility of devices that enter or leave the
region of responsibility of the coordinator. The coordina-
tor gathers the local skyline points SKY i of all mobile de-
vices. Then, the local skylines are merged to the overall
skyline set, by computing the skyline of the local skyline
sets. Thus, local skyline points that are dominated by points
stored by another mobile device are discarded. The above
observation guarantees that the distributed skyline compu-
tation returns the exact skyline set, after merging the local
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Figure 3: Distributed query processing

skyline results sets. For example, consider Figure 3 where
two mobile devices participate in the skyline computation.
Each mobile device computes its local skyline set, namely
the sets SKY 1 = {a, h, m, k} and SKY 2 = {b, i, n} respec-
tively. Then, these points are transmitted to the coordinator
server. During the merging phase, points b, h and n are dis-
carded, since they are not part of the skyline result set.

It is obvious that given a set of N mobile devices, the
overall performance of skyline query processing mostly de-
pends on the number of local skylines that are transferred
to the coordinator. In a mobile environment, the amount
of transferred data can be excessive, in terms of both band-
width and energy consumption caused by the data trans-
mission. Therefore, in this paper, we focus on bandwidth-
constrained skyline queries, where an upper limit for the
amount of transmitted data is given. The aim is to retrieve
as many of the skyline points of dataset S as possible, by
transferring only a limited number of local skyline points
from each device.

5. BANDWIDTH-CONSTRAINED SKYLINE
QUERIES

Given an upper bound on the bandwidth consumption, we
present a framework for supporting bandwidth-constrained
skyline queries. We assume that it is not possible to trans-
mit all the local skyline points to the coordinator. Thus,
the coordinator requests only a fraction of the local skyline
points from each mobile device. The number k of requested
local skyline points is straightforwardly derived from the
given upper bound (B) on the bandwidth consumption, the
number of participating mobile devices (N) and the size of
each data point (|p|), as: k=⌊ B

N∗|p|
⌋.

5.1 Motivation and Aims
The cardinality of the skyline set SKY depends on the

data distribution and increases rapidly as the dimensional-
ity increases. The high cardinality of the skyline operator,
leads to a high number of local skyline points, which in turn
causes high amount of transferred data during skyline query
processing. During the merging phase many local skyline
points are discarded, since they are dominated by skyline
points of other mobile devices. For example, in Figure 3,
points b, h and n are not part of the skyline result set, and
these points could have been avoided to be transferred to

the coordinator.
In a mobile environment, where the dataset is horizontally

distributed, the local skyline points are many more than the
skyline points. For example, if every mobile device holds ap-
proximately an equal number of random points, then each
peer is expected to have approximately the same number
of skyline points s = |SKY i|. Therefore, the total num-
ber of local skyline points is equal to N ∗ s. It has been
shown [8] that the expected number of skyline points for
a random dataset depends mainly on the dimensionality of
the dataset, while the cardinality of the dataset influences
only slightly the cardinality of the skyline set. Thus, the
number of skyline points is expected to be around s, much
smaller than the total number of local skyline points, i.e.,
|SKY | <<

∑N

i=1 |SKY i|. Therefore, only a fraction of the
local skyline points is necessary to compute the skyline re-
sult set, and the aim is to discover the local skyline points
that are not dominated by points stored on other mobile
devices.

Based on a given upper bound of bandwidth consumption,
each mobile device selects only k local skyline points to send
to the coordinator. This approach reduces the amount of
transferred data, however it also leads to approximate sky-
line results. Since some local skyline points are not returned
to the coordinator, we can not guarantee that the coordina-
tor receives all the points that are necessary to compute the
skyline set. The quality of the approximate skyline set, i.e.,
the number of retrieved skyline points, depends on which
local skyline points are selected to be transmitted to the
coordinator. Given a scoring function that ranks higher lo-
cal skyline points that have a high probability of belonging
to the skyline set, only a small fraction of the local skyline
points are necessary, to compute the complete skyline set.
Therefore, in the following, we investigate scoring functions
that rank highly skyline points that have a high probability
of dominating local skyline points of other partitions and a
small probability of being dominated by other skyline points.

5.2 Methods for Selecting Skyline Points
In [13] the importance of skyline points is defined based on

the number of dominated points. [13] discusses enumerating
queries that return for each skyline point p, the number
of points dominated by p. Similarly, in [11], the number
of points that a skyline point dominates is considered as a
measure of importance of the skyline points. In the running
example of Figure 2, hotel m dominates 6 points, whereas
hotel a dominates only one point. Under the assumption
that all data partitions follow the same data distribution,
a local skyline point p that dominates more data points in
a partition Si, probably dominates also many data points
in all other partitions. In this spirit, we define a scoring
function based on the number of dominated points.

Definition 3. Number of dominated points: The score
of a skyline point p is defined as the number points q that
are dominated by p, i.e., scoreDOM (p) = |{q ∈ S : p ≺ q}|.

The number of dominated points is equivalent to the prun-
ing power of a skyline point, and its importance has been
recognized by many approaches, for example for selecting fil-
ter points. On the other hand, Pei et al. [14] aim to answer
the question why a point belongs to the skyline set, men-
tioned as skyline membership query, based on which sub-
space skyline sets a point belongs to.



Observation 2. A skyline point p ∈ SKYU on a sub-
space U ⊆ D is either a skyline point on D, or is dominated
on D by another skyline point q ∈ SKYU for which pi = qi,
∀i : di ∈ U .

Under the assumption that all the data points have dis-
tinct values on each dimension, this means that a subspace
skyline point is definitely a skyline point. In our running ex-
ample (Figure 2) skyline point a is a subspace skyline point
on U = {distance}, which indicates that point a is a skyline
point because it has the best value on the distance, while the
price of the hotel is not important. On the other hand, point
i is a skyline point only when both distance and price are
considered, thus point i qualifies as a skyline point, since the
price combined with the distance are better than any other
point. Following this concept, in [4] the skyline frequency,
i.e., how often a point is returned in the skyline when dif-
ferent subspaces are considered, was proposed as a scoring
function for skyline points.

Definition 4. Skyline frequency: The skyline frequency
of a skyline point p is defined as the number of different sub-
spaces for which p is in the subspace skyline result set, i.e.,
scoreFREQ(p) = |{U ⊆ D : p ∈ SKYU}|.

Intuitively, as stated in [4], a skyline point p with high sky-
line frequency has a higher probability of dominating other
points, since p dominates points in many subspaces. Let us
for example assume that our hotel dataset has 4-dimensions
in total: distance, price, size of room and the star rating.
Let us further assume that point i is skyline point not only
in the subspace {distance, price}, but also in the subspace
{star rating}. Under the assumption of distinct values, this
means that i is also a skyline points for all subspaces U , for
which {star rating} ⊆ U or {distance, price} ⊆ U . There-
fore, skyline point i is also a skyline point in the 4 dimen-
sional data space. Even if skyline point i is dominated by
a point stored by another device in subspace {star rating},
point i may still qualify as a skyline point based on subspace
{distance, price}.

The above scoring functions capture two parameters that
influence whether a point is a skyline point. In the following,
we combine the two parameters into a novel scoring function.
We define the subspace dominance scoring function that re-
turns a score for skyline point p based on the number of
skyline points that p dominates in different subspaces.

Definition 5. Number of subspace dominations: The
score of a skyline point p is defined as the number of skyline
points q that are dominated by p, such as scoreSDOM (p) =
|{∃q, V, U : p ∈ SKYU , q ∈ SKYV , p ≺U q, U ⊆ V, |U −V | =
1}|, where V, U subspaces of D.

To explain this better, let us consider the example de-
picted in Figure 2. Point a is a subspace skyline on sub-
space U = {distance} and dominates the skyline points i,
m, k on subspace U . Therefore scoreSDOM (a) = 3, since
point a does not belong to any other subspace skyline set.
Now, let us assume that the dataset is 3-dimensional, namely
{distance, price, star rating} and that point h is a skyline
in the 3-dimensional data space. Point i dominates h on
the subspace {distance, price}, so the score of i increases
by one. On the other hand, a does not dominate h on the
subspace {distance, price}, even though a is a skyline point.

Nevertheless, a dominates h in the subspace {distance}, but
this does not increase the score of point a, since h is not a
skyline point in subspace {distance, price}. This is because,
each time we take into consideration dominations of skyline
points, only if the condition |U−V | = 1 holds. The intuition
is that if i did not exist, then h would be a subspace skyline
in {distance, price}, and therefore also in the 3-dimensional
space, even if a dominates h in {distance}. Notice that dur-
ing the computation of the number of subspace dominations,
only the skyline points are taken into account, in order to
capture better the distribution of the skyline points that are
sent to the server by other mobile devices.

To summarize, a skyline point p is highly ranked based
on scoreSDOM (p), if it dominates many other skyline points
in many subspaces. Therefore, skyline point p has a high
probability to dominate skyline points of other mobile de-
vices in many subspaces. Thus, skyline point p also has a
higher probability to dominate points in the original data
space (Observation 2).

Notice that other approaches have been also proposed for
determining a set of k skyline points [3, 11], based on k-
dominance or on representativeness. However, in our frame-
work, we are interested in supporting arbitrary k values per
query, as k is a parameter that is dynamically defined by the
server, based on the available bandwidth and the number of
mobile devices at a given time. Therefore, we do not evalu-
ate approaches that require pre-specified values for k in our
framework.

6. EXPERIMENTAL STUDY

In our experimental evaluation, we studied the perfor-
mance of our framework using simulations. The simulator
was implemented in Java and in order to test the algorithms
with a realistic number of mobile devices, we simulated mul-
tiple instances of mobile devices on the same machine and
simulated the network communication.

6.1 Experimental Setup

In the following, we study the performance of the approx-
imate skyline set, under the assumption that only a frac-
tion of the local skyline points of the mobile devices are
transferred to the coordinator. We evaluate different scor-
ing functions for selecting the points that are transferred,
namely the skyline frequency (FREQ), dominance (DOM)
and subspace dominance (SDOM) methods. Moreover, we
compare against the case where local skyline points are se-
lected at random (RAND) to be sent to the coordinator.

In order to assess the performance of the approximation,
we compare the retrieved skyline set, using the aforemen-
tioned scoring functions, to the actual skyline computed on
the total dataset S, as if S were available centrally at one
server. We define as quality of the approximation the per-
centage of skyline points that are retrieved. Furthermore, we
define as success ratio the percentage of transferred points
that are skyline points, indicating how many points we could
avoid transferring. In order to evaluate our approach, we
also define an optimal (OPT) upper bound both for the
quality and the success ratio. In the case of quality, the

bound is computed as: min(kN,|SKY |)
|SKY |

, whereas in the case

of success ratio, the bound is: min(kN,|SKY |)
kN

. The optimal
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Figure 4: Comparative performance of scoring functions vs. dimensionality for uniform datasets
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Figure 5: Comparative performance of scoring functions vs. transferred data (k) and cardinality (|S|)

value represents the case where all transferred data points
are skyline points under the condition that the skyline points
are more than the transferred data points.

In order to evaluate the scalability of our framework we
use synthetic data collections, namely uniform, anti-correlated
and correlated datasets, horizontally partitioned evenly among
the mobile devices. The synthetic datasets are generated as
described in [2], for varying dimensionality (d=3 − 9) and
cardinality (S=10K − 100K). Furthermore, we use differ-
ent numbers of mobile devices (N=25 − 100) to test the
scalability in terms of the size of the system. Additionally,
we study how increasing values of transferred skyline points
(k=10 − 50) improve the approximation. All experiments
are repeated 20 times and the average values are depicted.

6.2 Experimental Results

In the first experiment, we use a set of N=50 mobile
devices and each device stores |Si|=200 points that follow
a uniform data distribution. Thus, the cardinality of the
dataset is |S|=10K points. Each device sends to the co-
ordinator only its k=20 highest ranked skyline points and
we evaluate the result using only this small subset of local
skyline points, in comparison to the case where each mobile
device sends all local skyline points. Figure 4(a) depicts the
number of skyline points compared to the total number of
local skyline points at all mobile devices, verifying that the
local skyline points are many more that then actual sky-
line points. As the dimensionality increases, the number
of skyline points increases rapidly, but the number of local
skyline points increases even faster. The total number of
transferred data points are 1000, except for the case of d=3
where some mobile devices have less than 20 local skyline
points, resulting in less than 1000 transferred data points.

In Figure 4(b), we present the achieved quality of the

approximation as we vary the dimensionality. The results
show that the SDOM approach performs better, followed
by FREQ. The decreasing tendency in all cases as the di-
mensionality increases is because the cardinality of the sky-
line set also increases. Thus, as each mobile device sends
only k=20 points, after a certain dimensionality value these
points are not sufficient to provide higher quality values.
Consequently, the values of OPT decrease as well, which
reflect the best quality that can be achieved by transfer-
ring k points per device. However, SDOM performs as good
as OPT for low dimensionality values (d=2 − 3) and high
dimensionality values (d=8 − 9). For the lower dimension-
ality, this is caused by the small cardinality of the skyline
set (|SKY |), which also explains why the RAND approach
performs sufficiently well. In contrast, for higher dimension-
ality values, the performance of RAND deteriorates, while
SDOM performs effectively since it exploits the high number
of subspaces (2d − 1), in order to select and transfer points
that will belong to the skyline of S with higher probability.

In Figure 4(c), we measure the success ratio for the same
experimental setup. Again, the overall performance of the
SDOM is the best, followed by FREQ. The low values of
success ratio for small dimensionality values are due to the
small cardinality of the skyline set. As the skyline cardinal-
ity increases, the success ratio also increases. Again, SDOM
performs almost as good as OPT.

Then, for the same experimental setup, we vary the num-
ber of points (k=10 − 50) each mobile device sends to the
coordinator, while the dimensionality of the dataset is set to
d=6. In Figure 5(a), the values of quality are depicted for
varying number of k. As expected, the quality of the approx-
imation improves as the number of transferred data point
increases. An interesting observation is that even by trans-
ferring only a small subset of local skyline points, SDOM
manages to achieve results of high quality. Furthermore,
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Figure 6: Comparative performance of scoring functions vs. number of mobile devices (N)
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Figure 7: Comparative performance of scoring functions for anti-correlated data

for k=50, SDOM achieves almost the optimal value of qual-
ity, while RAND produces results of very low quality. Fig-
ure 5(b) depicts (in logarithmic scale) the number of skyline
points and local skyline points that are obviously not influ-
enced by the increasing values of k. In addition, the number
of transferred data is shown, which increases as k increases.
However, the transferred data points are much fewer than
the local skyline points. Figure 5(b) also depicts the num-
ber of skyline points that SDOM retrieves, verifying that for
k=50 almost all skyline points are retrieved.

In the next experiment, we vary the cardinality of the
dataset (|S|=25K − 100K), thus each mobile device holds
from |Si|=500 to |Si|=2000 points respectively. Again, each
mobile device (N=50) sends only 20 local skyline points.
The dimensionality of the dataset is set to d=6. Figure 5(c)
verifies that the number of skyline points is not significantly
influenced by the cardinality of the dataset. Notice that
SDOM succeeds in transferring points that are skyline points,
independently of the cardinality of the dataset. Thus, the
success ratio is also not influenced by the cardinality, whereas
the quality of the result set decreases only slightly. These
figures are omitted due to space limitations.

In Figure 6(a), we vary the number of mobile devices
(N=25 − 100), while the cardinality and the dimensional-
ity of the dataset are set to |S|=100K and d=6 respectively.
In Figure 6(a), the quality of the approximation is depicted.
Again SDOM outperforms the other scoring functions. No-
tice that for all scoring functions the quality of the approx-
imation increases with the number of mobile devices, since
the total number of transferred data increases (k=20 per de-
vice), while the number of skyline points does not change.
Nevertheless, in all cases the transferred data are less than
8% of the local skyline points (that also increase as the num-
ber of devices increases), which leads to more than 92% sav-
ings in bandwidth consumption.

Figure 6(b) depicts the savings (in %) in transferred data
points against the naive approach (transferring all local sky-
line points) for varying number of participating mobile de-
vices and for different data distributions, namely uniform
(UN), anti-correlated (AC) and correlated (CO). Clearly,
the savings are higher for uniform and anti-correlated data,
since in the case of correlated data the local skyline points
are fewer. Therefore, for correlated data, approximations
of high quality values are retrieved, as also depicted in Fig-
ure 6(c). For the case of anti-correlated data the savings
in transferred data are very high (Figure 6(b)), since the
number of local skyline points is huge, i.e., up to 85% of
the dataset. Notice that the cardinality of the skyline set
is also high, around |SKY |=24K data points. This leads
to very low absolute values of quality, as depicted in Fig-
ure 7(a), even though SDOM and FREQ return as good ap-
proximations as OPT. Nevertheless, for anti-correlated data,
a fraction of the result set is sufficient, since for example in
the case of N=50 mobile devices, there exist |SKY |=24512
skyline points and SDOM manages to achieve 4% quality,
which means that 996 out of 1000 transferred points are sky-
line points that is sufficient for the majority of applications.
Also notice that the success ratio is near 100%.

In the next series of experiments, we study the scalabil-
ity in terms for dimensionality of our approach for all data
distributions. The number of mobile devices is set to N=50
and each of them holds |Si|=200 points (|S| = 10K). Fig-
ure 7(b) depicts the savings in transferred data. We notice
that for the correlated dataset the gain is only marginal,
due to the small number of local skyline points, caused by
the small number of points per mobile device. The sav-
ings for uniform and anti-correlated data are more signifi-
cant. Figure 7(c) depicts the quality of the retrieved result
set for anti-correlated data. It is obvious that the quality
drops rapidly with increasing dimensionality, much faster



than the uniform case (Figure 4(b)). This is due to the high
cardinality of the skyline result set, but most of the points
that SDOM transfers to the coordinator are skyline points,
therefore for higher dimensions SDOM achieves the optimal
value. For example, for d=6 the success ratio of SDOM is
99%, whereas for RAND it is only 57%.

To summarize, the high cardinality of the skyline results
causes a high amount of data to be transferred in the net-
work, whereas the proposed approach significantly restricts
the number of transferred points. This leads to important
gains in bandwidth consumption and, subsequently, energy
savings for the mobile devices. Even though the exact sky-
line set can not be guaranteed, our experiments have shown
that result sets of high quality are computed and moreover
a high fraction of transferred data are skyline points.

7. CONCLUSIONS
In a mobile environment, exact skyline computation re-

quires transferring the local skyline points of the mobile de-
vices to the server, which computes the skyline set based on
received points. However, the high cardinality of the local
skyline sets leads to excessive communication costs. In this
paper, we study bandwidth-constrained skyline queries. In
such queries, a fixed amount of data is transferred to the
server, by requesting only a limited set of the most promis-
ing local skyline points from each mobile device, thus leading
to communication savings. The goal is to retrieve as many
skyline points as possible, even if only a fraction of the lo-
cal skyline points are transferred through the network. For
this purpose, we study different methods that intentionally
select the local skyline points that most probably belong to
the skyline result set. In our experimental evaluation, we
study the performance of our approach with respect to the
quality of the retrieved skyline set, showing that in the most
cases results of high quality are retrieved.
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