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ABSTRACT

In typical mobile applications, mobile users seek points of
interest in their vicinity (e.g., nearby restaurants) that best
match their preferences. We assume a set of points of in-
terest described by a combination of static and dynamic at-
tributes, and a set of mobile users mi, each associated with
a weighting vector wi, which expresses mi’s preferences over
the aforementioned attribute set. The best points of in-
terest for each mobile user correspond to the results of a
top-k query, defined by the weighting vector wi, which is
performed over the combined set of static and dynamic at-
tributes. The dynamic attribute is the current distance be-
tween the mobile user and the point of interest. Under these
assumptions, the potential customers of a given point of in-
terest q are the mobile users whose weighting vectors wi

belong to the reverse top-k set of q. In this paper, we define
the distance-based reverse top-k query suitable for mobile
environments. The problem we target is given a query point
q, how to efficiently monitor q’s distance-based reverse top-k
result set. To address this problem, we introduce novel al-
gorithms that enable efficient monitoring of distance-based
reverse top-k result sets over mobile devices. Our experi-
mental evaluation demonstrates the efficiency of our tech-
niques for a wide variety of diverse setups.
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Figure 1: Motivating example.

1. INTRODUCTION
Location-based queries are widely employed to retrieve

useful information based on the user’s geographical posi-
tion. For example, a tourist that walks around a city may
seek points of interest (e.g., restaurants) in her vicinity that
satisfy her preferences (e.g., cheap and highly-rated). A top-
k query defined by the user preferences can be employed to
return a ranked set of the k best points of interest that are
nearby her current location. The provision of location-based
services is facilitated by the technological advances in hand-
held devices and wireless communications, since they enable
the widespread usage of mobile devices that can report their
current geographic position.

In the application scenario that we target, location-based
services are provided to mobile users as well as to points of
interest, through a centralized server. First, mobile users
register their preferences to the server, and wish to be in-
formed about the k best points of interest in their vicinity.
In this setting, any mobile device can directly communicate
with the server, reports its position periodically, and poses
queries for interesting locations nearby. Second, points of in-
terest (e.g., restaurants) that match the preferences of users
at the current time wish to monitor and detect such users.
This would enable direct, real-time advertising of the point
of interest to users, as shown in the example of Figure 1, or
dynamic improvement of its features (e.g., price) in order to
increase its attractiveness when the interest of users is low.

Although the problem of monitoring top-k queries of mo-
bile users has been studied before [6], we address the prob-
lem from the perspective of the point of interest. Given a
query point of interest q, our objective is to monitor at any
time those mobile users that have q in their top-k result set.



Essentially, this is expressed by means of the reverse top-k
query.

In more detail, we assume a set of mobile devices mi,
each associated with a weighting vector wi that represents
the user preferences over a set of static and dynamic at-
tributes that characterize each point of interest. Static at-
tributes may include the price or the rating of a point of
interest; the dynamic attribute is the distance to the point
of interest, that keeps changing as the user moves. For ex-
ample, the score of a point of interest p for a mobile device
m can be given by f(m, p) = 0.2 · p.price + 0.5 · p.rating +
0.3 · d(m, p), where d(m, p) denotes the distance of m to
p, and w=[0.2, 0.5, 0.3] is the weighting vector of m. Intu-
itively, the existence of the dynamic attribute complicates
query processing because the dataset of points of interest
(i.e., defined by distance, price and rating) differs for each
mobile user. Furthermore, given a specific mobile user m,
the dataset changes each time m moves, as the distance of
m to any point of interest changes.

To this end, in this paper, we define the distance-based
reverse top-k query for monitoring the reverse top-k result
set of a given point of interest, as mobile users move in its
vicinity. We identify various properties of distance-based
reverse top-k queries that enable efficient monitoring of the
result set. Assuming that the distance-based reverse top-
k set is available for the current positions of mobile users,
our premise is to update the distance-based reverse top-k
result set when the users move, without re-computing it from
scratch. To the best of our knowledge this is the first paper
that studies efficient monitoring of distance-based reverse
top-k queries.

The main contributions of our work are:

• We define the distance-based reverse top-k query and
analyze its main properties.

• We present two novel algorithms that exploit the prop-
erties of distance-based reverse top-k queries, in order
to monitor efficiently the reverse top-k result set when
the mobile devices move.

• We conduct a thorough experimental evaluation that
demonstrates the efficiency of our approach. Our al-
gorithms consistently outperform the naive approach
in all examined setups by a few orders of magnitudes.

The remaining of this paper is organized as follows: Sec-
tion 2 reviews the related work. Then, in Section 3, we
provide the necessary definitions and present the problem
statement. In Section 4, we present our algorithms for mon-
itoring distance-based reverse top-k queries. The experimen-
tal evaluation is presented in Section 5. Finally, we conclude
the paper in Section 6.

2. RELATED WORK
Top-k queries have been proposed for the retrieval of a

limited set of the k highest ranked data objects based on
a user-defined preference function [2, 3, 8]. Reverse top-k
queries [10] focus on the reverse problem; given a query point
q, identify the preference functions whose top-k result set
contains q. Numerous applications can benefit from reverse
top-k queries, including identifying the most influential data
objects [11].

Symbol Description

S Dataset of points of interest
|S| Cardinality of S
p, q Points of interest
px,py The spatial location of p
di The i-th dimension describing p
p[i] Value of dimension di of p
M Set of mobile devices/users
|M | Cardinality of M
m A mobile device/user
mx,my The spatial location of m
f Preference function associated with m
w n-dimensional weighting vector of m
d() Distance function
Ppi(q, ri, m) Priority area of q based on pi for device m
P(q, r, m) Global priority area of q for device m
S(q, R, m) Safe area of q for device m

Table 1: Overview of symbols.

Location-based query processing has attracted significant
attention lately. In [6], techniques are presented for process-
ing the location-based top-k query that involves both spa-
tial and non-spatial attributes over data that is broadcast in
wireless networks. This query retrieves the k geographical
data objects with highest scores for a given mobile user. In
contrast, we are interested in monitoring the reverse top-k
result set of a given point of interest, as users move around.
Moreover, our setup is different as we do not assume that
data objects are broadcast over the network. Monitoring of
other types of continuous queries, such as k-nearest neigh-
bor [14] or skyline queries [5, 9] over moving objects is also
related to our work.

Furthermore, top-k monitoring over data streams [7, 13]
bears some similarity with our problem. However, the im-
portant difference is that in our case the dataset is continu-
ously updated due to the mobility of devices.

Our work also differs from approaches that consider data
placed on mobile devices. Huang et al. [4] assume a setting
with mobile devices communicating via ad-hoc networks and
study skyline queries that involve spatial constraints. Their
techniques aim to reduce both the communication cost and
the execution time on each single device. Similarly, Vlachou
et al. [12] study bandwidth-constrained skyline computation
over mobile devices that maintain local datasets. In con-
trast, in our application scenario, the mobile devices only
pose queries for points of interest, while the query process-
ing takes place on a centralized server that keeps track of
their movement.

3. PROBLEM STATEMENT
In this section, we first provide the necessary definitions,

and then we formalize the problem statement.

3.1 Definitions
Consider a dataset S (with cardinality |S|) of points of

interest (e.g., restaurants) described by a set of n−1 dimen-
sions {d1, . . . , dn−1}. Each dimension represents a numerical
scoring attribute, such as price or rating of a restaurant. The



points of interest are maintained as database objects1, and
each object can be represented as a multidimensional point
p ∈ S, such that p = {p[1], . . . , p[n−1]}, where p[i] is a value
on dimension di. Thus, the values p[i] are numerical non-
negative scores that evaluate the corresponding attributes
of database objects. We further assume that smaller score
values are preferable, without loss of generality. In addi-
tion, each point of interest p has a spatial location denoted
as (px, py). An overview of the basic symbols used in this
paper can be found in Table 1.

Let M denote the set of mobile devices, where each de-
vice m ∈ M corresponds to a mobile user and is also as-
sociated with a spatial location (mx, my) that records its
current position. Let d() denote the distance function of
any two spatial locations, e.g., d(m, p) denotes the distance
of mobile device m to a point of interest p. Without lost of
generality, in this paper, we assume the distance between a
mobile device and a point of interest is expressed by the Eu-
clidean distance. However, any other distance function can
be employed, as long as it obeys the triangular inequality.

Furthermore, each device is characterized by a user-defined
scoring function f that aggregates the individual scores of
an object into an overall score. The most important and
commonly used case of scoring functions is the weighted sum
function, also called linear. Each dimension di has an associ-
ated query-dependent weight w[i] indicating di’s relative im-
portance for the specific user. We define the device-specific
score of an object p for a device m as follows.

Definition 1. (Device-specific score of object p for m):
The score f(m, p) of object p for device m is defined as a
weighted sum of the n− 1 individual scores and the distance
d(m, p) between p and m: f(m, p) =

∑n−1
i=1 w[i] · p[i] + w[n] ·

d(m, p), where w[i] ≥ 0 (1 ≤ i ≤ n) and
∑n

i=1 w[i] = 1.

Based on this scoring function, we can also define the con-
cept of distance-based top-k queries from the aspect of a
mobile device in the afore-described context. In this query
type, the user is interested not only to minimize the scores
p[i] of any object p, but in addition the distance d(m, p)
of the current location of m to p. Notice that, since the
weights represent the relative importance between different
attributes, the assumption

∑n

i=1 w[i] = 1 does not influence
the definition of distance-based top-k queries.

Definition 2. (Distance-based top-k query): Given a
positive integer k and the weighting vector w of device m,
the result set TOPk(w) of the distance-based top-k query for
device m retrieves a set of objects such that TOPk(w) ⊆ S,
|TOPk(w)| = k and ∀pi, pj : pi ∈ TOPk(w), pj ∈ S −
TOPk(w) it holds that f(m, pi) ≤ f(m, pj).

A delicate situation arises when two (or more) objects
share the same score for the k-th position. In this case, for
simplicity reasons, we assume that it suffices to report any
one of them as k-th result.

Geometrically, in the Euclidean space a linear top-k query
can be represented by a vector w. Consider the dataset S
depicted in Figure 2 defined by one static (price) and one
dynamic attribute (distance). In the n-dimensional space,
the hyperplane which is perpendicular to vector w and con-
tains a point p defines the score of point p, and all points

1In this paper, we will use the term object to refer to a point
of interest.
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Figure 2: Distance-based top-k queries.

lying on the same hyperplane have the same score based on
w. The rank of a point p based on a weighting vector w is
equal to the number of the points enclosed in the half-space
defined by the perpendicular hyperplane and the origin of
the data space.

In Figure 2(a), assuming that q does not belong to the
dataset, p4 is the top-2 object for a mobile user m1 with
w1=[0.75,0.25], since data objects p1 and p4 are enclosed
in the corresponding half-space. Figure 2(b) depicts the
distance-based top-k query that corresponds to another mo-
bile device m2. Even though the price of the objects remains
the same, the values of the dynamic attribute d(m, q) are
different compared to Figure 2(a), since the locations of m1

and m2 are different. Essentially, the distance-based top-k
query of m2 is processed over a different dataset than m1.
Furthermore, for m1 low price is more preferable than small
distance (i.e., w1[1] is higher than w1[2]), while m2 prefers
nearby restaurants rather than cheap ones.

3.2 Problem Formulation
In this paper, we are interested in a dynamic variant of re-

verse top-k queries [10], namely distance-based reverse top-k
queries. Given a query object q, the distance-based reverse
top-k query identifies all mobile devices (i.e., weighting vec-
tors) for which q belongs to the distance-based top-k result
set. The formal definition of the distance-based reverse top-
k query follows. Notice that this definition corresponds to
the bichromatic version of the reverse top-k query (cf. [10]),
which assumes that a set of user preferences W exists (in
this case W is the set of weighting vectors for all mobile
devices).

Definition 3. (Distance-based reverse top-k query): As-
sume a query object q and a positive number k, as well as
a set S of objects and a set M of mobile devices mi each
associated with a weighting vector wi ∈ W . The distance-
based reverse top-k result set (RTOPk(q)) of q contains a
mobile device mi, if and only if ∃p ∈ TOPk(wi) such that
f(mi, q) ≤ f(mi, p).

In the general case, query point q may or may not belong
to the dataset S. Without loss of generality we assume that
q /∈ S. For the sake of brevity, in the rest of this paper
we denote a query point q ∈ TOPk(wi), instead of ∃p ∈
TOPk(wi) such that f(mi, q) ≤ f(mi, p).

In Figure 2, we observe that m1 belongs to the reverse
top-2 result set (i.e., RTOP2(q)), since no data point has
a smaller score value based on w1. On the other hand, m2



does not belong to RTOP2(q) since it has a higher score
than p4 and p1.

In the following, we formulate the problem of monitoring
distance-based reverse top-k queries over mobile devices.

Problem 1. (Monitoring distance-based reverse top-k query):
Given a query object q, a positive number k, a set of objects
p ∈ S and a set of devices m ∈ M , maintain RTOPk(q)
while the devices move.

A major difference of the distance-based reverse top-k
query to the traditional reverse top-k query is that for two
identical weighting vectors w1 and w2 (w1 ≡ w2) belonging
to different devices m1 and m2 respectively, it is possible
that m1 ∈ RTOPk(q) while m2 /∈ RTOPk(q). The rea-
son is that the devices may be located at different positions,
thereby the dataset is different for each device, as depicted in
Figure 2. The dynamic nature of this problem, makes exist-
ing techniques inappropriate for processing distance-based
reverse top-k queries. The only applicable algorithm for
computing the distance-based reverse top-k query evaluates
a distance-based top-k query for each weighting vector wi of
each device mi (i ∈ [1, |M |]). Instead, we provide efficient
techniques for maintaining the reverse top-k result set up-
to-date when the devices move, assuming that the reverse
top-k result set of a past point of time is available.

4. MONITORING ALGORITHMS
A straightforward way to monitor the results of the distance-

based reverse top-k query RTOPk(q) for a given point of in-
terest q is to compute the top-k query based on wi for each
mobile device mi (i ∈ [1, |M |]) every time the location of mi

changes. Then, the distance-based reverse top-k result set
can be either augmented with mi (if q ∈ TOPk(wi)), or mi

can be removed from it (if q /∈ TOPk(wi)). We refer to this
plain algorithm as Naive. The most obvious disadvantage of
Naive is redundant processing of top-k queries, even when
the movement of the mobile device does not affect the set
RTOPk(q) of query point q. To avoid this shortcoming, we
introduce an algorithm that processes only the top-k queries
of those mobile devices that may affect the distance-based
reverse top-k result set of q.

4.1 The DRT Algorithm
Let m denote a mobile device located at a position where

the distance-based top-k result set TOPk(w) has been com-
puted. Furthermore, let m′ the device located at a new
position. We use RTOPk(q) and RTOP ′

k(q) to denote the
distance-based reverse top-k result set of q at the two lo-
cations respectively. The following lemma shows that there
exists an upper bound on the difference of the device-specific
score between the two locations.

Lemma 1. Given a distance-based reverse top-k query q
and a device m that moves to position m′, the upper bound
in the change of the device-specific score of q is ∆f = w[n] ·
d(m, m′).

Proof. The device-specific score of q at the new position
of m′ is f(m′, q) =

∑n−1
i=1 w[i] ·q[i]+w[n] ·d(m′, q). Based on

the triangular inequality, it holds that d(m, q)− d(m, m′) ≤
d(m′, q) ≤ d(m, q) + d(m, m′). Therefore, we derive that∑n−1

i=1 w[i] · p[i] + w[n] · (d(m, q) − d(m, m′)) ≤ f(m′, q) ≤
∑n−1

i=1 w[i] · p[i] + w[n] · (d(m, q) + d(m, m′)). This results

Algorithm 1 DRT.

1: Input: Query q, k, RTOPk(q)
2: Output: Updated RTOPk(q)
3: for (i ∈ [1, |M |]) do
4: if (mi ∈ RTOPk(q) and f(m′

i, q) > fk − 2 · wi[n] ·
d(mi, m

′
i)) then

5: compute TOPk(wi)
6: if (q /∈ TOPk(wi)) then
7: RTOPk(q)← RTOPk(q)− {mi}
8: end if
9: else

10: if (mi /∈ RTOPk(q) and f(m′
i, q) ≤ fk + 2 · wi[n] ·

d(mi, m
′
i)) then

11: compute TOPk(wi)
12: if (q ∈ TOPk(wi)) then
13: RTOPk(q)← RTOPk(q) ∪ {mi}
14: end if
15: end if
16: end if
17: end for
18: return RTOPk(q)

in f(m, q) − w[n] · d(m, m′) ≤ f(m′, q) ≤ f(m, q) + w[n] ·
d(m, m′). Hence, the change of the device-specific score is
at most ∆f = |f(m′, q)− f(m, q)| = w[n] · d(m, m′).

Let fk denote the score of the k-th point in m’s top-k re-
sult set. Based on Lemma 1, the change of the difference in
the scores of q and any other point p due to the movement
of m to m′ is at most 2 ·w[n] ·d(m, m′). Therefore, we derive
that if w belongs to RTOPk(q), then w will also belong to
RTOP ′

k(q), if f(m′, q) ≤ fk − 2 · w[n] · d(m, m′). On the
other hand, if w does not belong to RTOPk(q), then w can-
not belong to RTOP ′

k(q), if f(m′, q) > fk+2·w[n]·d(m, m′).
In any of the above cases, we avoid the computation of the
top-k query defined by w. These properties guide the de-
sign of Algorithm 1 for monitoring distance-based reverse
top-k queries, which is referred to as DRT (Distance-based
Reverse Top-k algorithm).

Algorithm 1 avoids redundant top-k evaluations in the
following two cases. In the first case (line 4), assume that
wi belongs to RTOPk(q) and the score f(mi, q) is much
better than the score fk of the k-th result. If the dis-
tance d(mi, q) of a device mi increases only slightly, i.e.,
d(mi, q) ≈ d(m′

i, q), then mi essentially remains at the same
area. Thus, the score f(m′

i, q) cannot deteriorate enough to
cause wi’s removal from RTOPk(q). DRT detects this sit-
uation and avoids the top-k computation. The second case
(line 10) involves devices mi whose wi does not belong to
RTOPk(q). When the distance d(mi, q) of a device mi to
q decreases only slightly, again this change may not be suf-
ficient to make q a top-k result for wi. DRT first checks
whether the movement is sufficient to alter the RTOPk(q)
set, thereby rendering the top-k computation unnecessary
when this is the case. In contrast, Naive will perform the
top-k computation in vain in both the aforementioned cases.

4.2 The DRT* Algorithm
Although DRT drastically improves the performance of

query processing compared to Naive, we aim to reduce the
number of required top-k computations even further.

Given query point q and a mobile device m, the main idea
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is to define a safe area around q (for each mobile device) with
the following interesting property: as long as the device m
is located in the safe area, q belongs to the top-k result of
m, or equivalently, w ∈ RTOPk(q). Put differently, we can
avoid any top-k computation for m with respect to q, as long
as m does not cross the boundary of the safe area. The safe
area denoted as S(q, R, m) is essentially the area defined by
a circle centered at q with radius R. Notice that the radius
R of the safe area S(q, R, m) depends only on w, and is
independent of the actual movement of m. Therefore it can
be computed once for each device m and remains valid as
long as the preference function w does not change.

In the following, we first define the concept of the priority
area, which leads to the definition of the safe area. The
priority area Pp(q, r, m) of q with respect to a device m and
a point of interest p (other than q) is essentially a region in
space, such that when m is located in the priority area, q
is higher ranked than p in m’s distance-based top-k query.
Similarly to the safe area, the priority area is defined as a
circle centered at q with radius r. Theorem 1 defines an
appropriate radius r, so that the aforementioned property
of the priority area holds.

Theorem 1. Assume a query point q, a device m, an-
other point of interest p and the priority area Pp(q, r, m)
with respect to p and m. If the radius r equals:

r = 1
2·w[n]

(w[n] · d(q, p) +
∑n−1

j=1 w[j] · (p[j]− q[j]))

then as long as d(m, q) ≤ r, q is ranked higher than p with
respect to m, i.e., f(m, q) ≤ f(m, p).

Proof. Assume that the device m is located in the pri-
ority area, i.e., d(m, q) ≤ r. Then, it holds that:

d(m, q) ≤ r
⇒ 2 ·w[n] · d(m, q) ≤ w[n] · d(q, p) +

∑n−1
j=1 w[j] · (p[j]− q[j])

⇒
∑n−1

j=1 w[j] · q[j] + w[n] · d(m, q) ≤
∑n−1

j=1 w[j] · p[j] + w[n] · d(q, p)− w[n] · d(m, q) (1)

Let m∗ denote the mobile device located on the line de-
fined by q and p and at distance r′ from q, i.e., d(m∗, q) =
d(m, q) = r′ (2), as depicted in Figure 3. In this position,
it holds that: d(q, p) = d(m∗, p) + d(m∗, q) ⇒ d(q, p) −
d(m∗, q) = d(m∗, p) (3). By combining inequality (1) with
equality (2) we derive that

∑n−1
j=1 w[j] ·q[j]+w[n] ·d(m, q) ≤

∑n−1
j=1 w[j] · p[j]+w[n] ·d(q, p)−w[n] ·d(m∗, q), which based

on equality (3) leads to
∑n−1

j=1 w[j] · q[j] + w[n] · d(m, q) ≤
∑n−1

j=1 w[j] · p[j] + w[n] · d(m∗, p) ⇒ f(m, q) ≤ f(m∗, p) (4).

Furthermore, it holds that f(m∗, p) ≤ f(m, p) (5), since
d(m, p)+d(m, q) ≥ d(q, p) = d(m∗, q)+d(m∗, p)⇒ d(m, p) ≥
d(m∗, p). From inequalities (4) and (5) we derive that as long
as m is located in the priority area: f(m, q) ≤ f(m, p).

Algorithm 2 DRT*.

1: Input: Query q, k, RTOPk(q)
2: Output: Updated RTOPk(q)
3: S(q, Ri, mi) is the safe area of q based on mi

4: for (i ∈ [1, |M |]) do
5: if (Ri ≥ 0) then
6: if (mi ∈ RTOPk(q)) then
7: if (d(m′

i, q) > Ri and (f(m′
i, q) > fk − 2 · wi[n] ·

d(mi, m
′
i))) then

8: compute TOPk(wi)
9: if (q /∈ TOPk(wi)) then

10: RTOPk(q)← RTOPk(q)− {mi}
11: end if
12: end if
13: else if (mi /∈ RTOPk(q)) then
14: if (d(m′

i, q) ≤ Ri) then
15: RTOPk(q)← RTOPk(q) ∪ {mi}
16: else
17: if (f(m′

i, q) ≤ fk + 2 · wi[n] · d(mi, m
′
i)) then

18: compute TOPk(wi)
19: if (q ∈ TOPk(wi)) then
20: RTOPk(q)← RTOPk(q) ∪ {mi}
21: end if
22: end if
23: end if
24: end if
25: end if
26: end for
27: return RTOPk(q)

Obviously, different objects pi define different priority ar-
eas Ppi(q, ri, m) for q and device m. The differentiating
factor of these priority areas is the radius ri which varies for
different pi. As we are interested in defining a global prior-
ity area P(q, r, m) for query point q and device m, and not
on an individual point basis, we introduce Lemma 2, which
defines a global priority area for reverse top-1 queries. Con-
ceptually, the individual priority areas Ppi(q, ri, m) define
the locations of m where it is certain that q is ranked higher
than pi, while the global priority area P(q, r, m) defines the
locations where it is certain that no point pi is ranked higher
than q.

Lemma 2. Given a set S of points of interest and the
individual priority areas Ppi(q, ri, m) ∀pi ∈ S, the global
priority area P(q, r, m) of query point q with respect to device

m defined by radius: r = min
|S|
i=1 ri delineates an area where

q is the top-1 object for device m.

Proof. By contradiction. Assume that q /∈ TOP1(w)
for device m and d(m, q) ≤ r. Then, there exists a point
of interest pj (pj 6= q), such that pj ∈ TOP1(w). We dis-
tinguish two cases: (a) rj ≥ d(m, q), then the definition of
Ppj (q, rj , m) states that q is ranked higher than pj , which
is a contradiction, since pj ∈ TOP1(w), or (b) rj < d(m, q),
which combined with d(m, q) ≤ r produces rj < r, which is

a contradiction to r = min
|S|
i=1 ri.
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Figure 4: Comparative performance vs. dimensionality n for uniform (UN) datasets.
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Figure 5: Comparative performance varying k for uniform (UN) datasets.

We are now ready to introduce our main theorem, which
defines a safe area S for reverse top-k queries with arbitrary
values of k (k ≥ 1). Similar to the global priority area, the
safe area defines the locations where it is certain that fewer
than k points pi are ranked higher than q.

Theorem 2. Given a set S of points of interest and the
priority area Ppi(q, ri, m) of query point q with respect to
device m ∀pi ∈ S, the radius of the safe area S(q, R, m) of q
with respect to m is defined as the k-th smallest radius rk of
the individual priority areas, and it holds that if d(m, q) ≤ R
then q ∈ TOPk(w).

Proof. By contradiction. Assume that q /∈ TOPk(w)
for device m and d(m, q) ≤ R. Then, there exist k points
of interest pj (pj 6= q), such that pj ∈ TOPk(w). We distin-
guish two cases: (a) ∃j : rj ≥ d(m, q), then the definition of
Ppj (q, rj , m) states that q is ranked higher than pj , which
is a contradiction, since pj ∈ TOPk(w) and q /∈ TOPk(w),
or (b) ∀j : rj < d(m, q), which combined with d(m, q) ≤ R
produces ∀j : rj < R, which is a contradiction because R is
equal to the k-th smallest radius rk.

Based on the concept of the safe area, we propose a novel
algorithm, called DRT*, that monitors efficiently the result
of the distance-based reverse top-k query. DRT* enhances
the functionality of DRT by exploiting the safe area of a
query point to achieve more savings in computational cost.

Algorithm 2 provides the necessary pseudocode. An in-
teresting situation arises when the radius Ri of a safe area
S(q, Ri, mi) of q with respect to mi is negative (line 5). In
this case, we can safely exclude device mi from further pro-
cessing, because q cannot appear in mi’s top-k result set.
In addition, the property of the safe area outlined in The-
orem 2 is exploited to avoid the computation of the top-k
result (lines 7,14). In line 7, if a device mi that belongs to
RTOPk(q) moves inside the safe area, then we know that mi

still belongs to RTOPk(q). In line 14, if a device mi that

does not belong to RTOPk(q) moves inside the safe area,
we can immediately report that wi now belongs to the up-
dated RTOPk(q). In both cases, the algorithm avoids the
evaluation of the respective top-k query.

5. EXPERIMENTAL STUDY

In our experimental evaluation, we implemented the pro-
posed query processing algorithms to study their perfor-
mance, and simulated the networking aspects. The simu-
lator was implemented in Java. We evaluated our two al-
gorithms DRT and DRT*, and also Naive for comparative
purposes. The distance-based top-k query is processed using
a modified branch-and-bound algorithm over an R-tree [8].
The R-tree employed for the underlying top-k processing
uses a buffer size of 100 blocks and the block size is 8KB.

5.1 Experimental Setup

The mobility scenario is modeled using multiple discrete
steps that represent the sequence of locations that devices
visit as time elapses. Given a mobile device, first its direction
is determined by selecting an angle uniformly at random.
Then, at each step, the device travels a distance that follows
a Gaussian distribution with default value of mean equal to
10% of the maximum value of the geographical coordinate,
and standard deviation equal to 10% of the mean value.
Notice that using smaller values of mean is less challenging,
since devices would travel smaller distances at each step,
and fewer mobile devices would be added or removed from
the result set at each step.

We conduct experiments varying several parameters as
well as data distributions to test the scalability of all al-
gorithms. For the weighting vectors W , two different data
distributions are examined, namely uniform (UN) and clus-
tered (CL). For the locations of the points of interest and
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Figure 6: Comparative performance vs. cardinality |S| for uniform (UN) datasets.
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Figure 7: Comparative performance vs. dimensionality n for clustered (CL) locations S and M .

the mobile devices we use uniform (UN) and clustered (CL)
distribution. In both cases, for the clustered generator we
generate a set of 5 Gaussian clusters with deviation equal
to 0.05, as described in [10]. When both datasets are CL,
the cluster centroids are common. We also vary the total
number of attributes n (dimensionality) from 2 to 5, and
the cardinality (S=5K-20K) of points of interest. We use
synthetic data collections, namely uniform (UN), correlated
(CO) and anti-correlated (AC), for studying the effect of
different distributions of the static attributes of points of
interest. For the uniform dataset, all attribute values are
generated independently using a uniform distribution. The
correlated and anti-correlated datasets are generated as de-
scribed in [1]. The query points follow the data distribution
of the points of interest (both in terms of location and static
attributes). Finally, we vary the value k from 10 to 50.

All experiments are repeated 20 times and the average val-
ues are depicted in all charts. Unless explicitly mentioned,
we use the default setup of: |S|=10K, |W |=10K, n=3, k=30,
and uniform distribution for S, W , the locations of mobile
devices and points of interest. Our metrics are aggregated
over the entire movement of devices include: a) the total
execution time, b) the number of I/Os, c) the number of
top-k evaluations. Notice that the number of top-k evalua-
tions is the main factor that influences the performance of
our algorithms and it is independent of the efficiency of the
particular implementation. In our experiments, we assume
that at some given point of time the reverse top-k set is
known and we monitor it for 1000 steps. In each step one
mobile device moves, since the movements of mobile devices
are independent and one movement does not influence the
result sets of other mobile devices.

5.2 Experimental Results

In Figure 4, we study the effect of varying the number n of
attributes (dimensionality) of points of interest. Recall that

n means n − 1 static attributes and 1 dynamic attribute.
The results show that DRT improves Naive by more than
one order of magnitude in all metrics. DRT* manages to
improve the performance of DRT even further, by exploit-
ing the concept of safe areas. Notice that the number of
top-k evaluations drops for increased dimensionality. This
is because a higher number of scoring attributes reduces (on
average) the effect of distance on the distance-based score,
leading to fewer modifications of the RTOPk set. Our al-
gorithms discard unnecessary top-k evaluations effectively,
therefore their performance improves in terms of top-k eval-
uations.

Then, in Figure 5, we gradually increase the value k of re-
verse top-k queries. It is noteworthy to mention that DRT*
is two orders of magnitude better than Naive. Especially
in the case of queries with small k, DRT* demonstrates its
efficiency. The performance of all algorithms deteriorates
with increasing k values, because more mobile devices be-
long to the RTOPk set, which in turn makes monitoring
more challenging.

The effect of increasing the cardinality of points of inter-
est is studied in Figure 6. Again, DRT* shows the best
performance, followed by DRT. Notice that the comparative
advantage of both algorithms over Naive is sustained, re-
gardless of number of points of interest, which demonstrates
the scalability of our algorithms.

An interesting result is obtained by testing clustered dis-
tributions of points of interest and mobile devices in Fig-
ure 7. As the dimensionality grows, our proposed algorithms
improve their performance. The reason is that our tech-
niques exploit the fact that devices are located nearby points
of interest, and avoid query processing in more occasions
than in the case of uniform distribution. In contrast, Naive
cannot benefit from the clustered distribution and evaluates
more top-k queries, resulting in higher processing cost for
increased dimensionality.

In addition, we tested increasing values of k in the same
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Figure 8: Comparative performance vs. dimensionality n for anti-correlated (AC) scoring attributes.
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Figure 9: Comparative performance vs. dimensionality n for correlated (CO) scoring attributes.

setup, and obtained similar results as in the case of uniform
distributions (Figure 5), only the performance gap between
DRT* and DRT was smaller. Furthermore, we examined
the case of clustered distribution of points of interest and
uniform distribution of mobile devices. In all metrics, DRT*
showed the best performance consistently. These charts are
omitted due to lack of space.

Figure 8 shows the results obtained when the anti-correlated
dataset is employed for the static attributes. This is a hard
setup for all algorithms, therefore the absolute values of the
metrics are higher. Interestingly, the cost of all algorithms in
terms of time and I/O increases with dimensionality, even
though our algorithms require fewer top-k evaluations for
higher values of dimensionality. The reason is that each
top-k evaluation is more costly than in the case of uniform
distribution, due to the anti-correlated dataset, and the cost
of each top-k evaluation increases rapidly with increasing
dimensionality. In all cases, DRT* demonstrates the best
performance.

We also tested the correlated dataset for static attributes
and the results are depicted in Figure 9. In this case, the
performance is rather stable with increased dimensionality,
and again our algorithms are significantly better than Naive.

6. CONCLUSIONS
In this paper, we proposed efficient algorithms for pro-

cessing distance-based reverse top-k queries over mobile de-
vices. To this end, we defined the distance-based reverse
top-k query and analyzed its properties. The technical chal-
lenge that we addressed is that the reverse top-k computa-
tion is performed over a combination of static and dynamic
attributes. We proposed two novel algorithms that avoid the
underlying distance-based top-k computation when possible,
resulting in significant performance gains. Our experimen-
tal evaluation demonstrates the efficiency of our algorithms
in all examined setups.
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