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Abstract. Due to the nature of textual data the application of association rule
mining in text corpora has attracted the focus of the research scientific commu-
nity for years. In this paper we demonstrate a system that can efficiently mine
association rules from text. The system annotates terms using several annotators,
and extracts text association rules between terms or categories of terms. An addi-
tional contribution of this work is the inclusion of novel unsupervised evaluation
measures for weighting and ranking the importance of the text rules. We demon-
strate the functionalities of our system with two text collections, a set of Wikileaks
documents, and one from TREC-7.

1 Introduction

Association Rule Mining (ARM) is a well-researched field of data mining. Rules can
help to uncover hidden or previously unknown associations. A rule in the form of
A => B, denotes an implication of element or item B by item A. Association rules
have successfully been used in a wide range of domains, e.g., market basket analysis,
law enforcement, biotechnology.

Lately, the benefits of applying ARM to text have appeared in query refinement and
applications in text search and has become an objective of vital interest to the area of
text mining and the practitioners of the field. Text Association Rule Mining (TARM)
faces new challenges with respect to the volume of the data and the number of distinct
items. Another major challenge is the interpretation of the rules as well as the evaluation
and ranking of these rules according to their importance.

In this paper we address those issues, and we present the text rule mining testbench
(TRUMIT). Our system implements all the stages of TARM, namely pre-processing, the
actual mining of rules, and thorough analysis and visualization of the generated rules.
We give a special focus on the pre-processing, and more precisely on the annotation
step. We integrate a range of different annotation types including simple tokenization
and matching, part-of-speech (POS) tagging, named entity recognition (NER), or more
advanced types of semantic annotation based on the WordNet3 and the OpenCalais4 cat-

3 http://wordnet.princeton.edu/
4 http://www.opencalais.com/
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Fig. 1. Overview of the system including its four processing stages

egories. The input text may be filtered according to the different annotation types. After
pre-processing, the system allows for Frequent Pattern Mining (FPM) via the Hadoop
Map Reduce framework before we extract the actual rules. Finally, we integrate exis-
tent, but also new, evaluation metrics for the extracted text rules. The system provides
an easy-to-use interface for inspecting the generated rules, which may also function as
a search interface for the respective collection.

2 Text Association Rule Mining

In its original form, association rule mining discovers regularities in data [1]. We con-
sider a set of transactions D = {d1, d2, ..., dn}, each transaction di ∈ D comprises a
set of items, i.e., di = {i1, i2, ..., im}. We also denote with I the set of all distinct items
ij that may occur in any transaction di ∈ D. Any subset Im ⊆ I is called an itemset.

In our context we denote a text document as Ti which belongs to a document col-
lection T ; we define as D the set of all text sentences. The set of all possible items
of a transaction is the set of distinct terms T . Additionally, we create a second level
of items, comprising all of the annotations A of all terms tj ∈ Ti. Examples of such
annotations may be Person, Date, or Company, which generates category rules of the
form Person => Company, or Company => Date. Extraction of such rules unfolds
the meaning of Bill Gates => Microsoft, or Google => 1998. We include annotations
provided by OpenCalais and we consult the WordNet thesaurus to annotate nouns with
their respective domain terms. However, the system’s architecture allows for easy inte-
gration of new annotation plug-ins. An example category rule, by including WordNet
domain terms, could be Animal => Company, which might denote the information that
Company conducts animal experiments in the life sciences domain.

With regards to related work, an approach for activity and emotion rule mining is
presented in [3]. The authors mine simplified rules from a large collection of blog en-
tries based on multiple minimum support. A tool to mine maximal association rules is
introduced in [2]. A limited set of named entities is used for association rule mining.
Experiments are performed on collections up to 10.000 documents. Another toolkit for
TARM is presented in [4]. The authors worked on ARM in temporal document collec-
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tions, and extended previous work by performing mining based on semantics, as well
as by studying appropriate evaluation techniques. The focus was on the temporal aspect
of the extracted rules. Scalability issues were not taken into account to a satisfactory
extent.

To the best of our knowledge there does not exist a tool that includes all of the main
TARM stages, shown in Fig. 1, which are included in our system. Existing tools are
either not focused on text, or lack a capable user interface, or they cannot offer generic
annotation integration, or are not competitive in terms of scalability. We aim to satisfy
all of these requirements.

3 TRUMIT: Text Rule Mining Testbench

TRUMIT comprises four distinct processing stages, shown in Fig. 1. All intermediate
results are stored on disk making it easier to work with large scale collections. In the
following we will describe the processing stages of TRUMIT.
Text annotation: This stage integrates a wide range of annotation plugins based on
Apache UIMA. Currently, the following annotator types are supported: language anno-
tator, open calais annotator, POS annotator, Stanford NER annotator, Wordnet domain
annotator5, maui keyword annotator6, lexical emotion annotator, and Wikipedia miner
annotator7. For reasons of simplicity in the figure we only demonstrate two of the used
annotators (WordNet and OpenCalais). The system architecture at this stage is general
enough to host any other annotator for the pre-processing step, through Apache UIMA.
Annotation filtering: At this second stage, we allow for flexible filtering of annotations
by the user. Filtering is possible according to certain POS tags, entities, keywords or any
other annotation technique used in the pre-processing step.
Frequent pattern mining and rule generation: The output of the filtering stage can
subsequently be used for frequent itemset generation. To this end, a Hadoop job for
the fp-growth implementation of the Apache Mahout8 library is started and, either com-
puted locally or sent to a map reduce cluster. In this way we can guarantee the com-
putation without being restricted to the hardware configuration of the client machine.
From the result of the map reduce job we generate rules and assign scores based on rule
interestingness or evaluation criteria that our system supports. Currently, the system
includes confidence, support, semantic relatedness, and similarity variance.
Rule evaluation: Once the text association rules are computed and scored, in this fi-
nal stage we provide an interactive way to the user of browsing and analysing them.
Through component, the rules can be sorted according to the evaluation criteria de-
scribed previously. We also provide means to easily search for documents matching
certain rules. We show an example of how category rules can be mapped to rules based
on text only in Fig. 3.

5 http://nlp.stanford.edu/software/CRF-NER.shtml
6 http://code.google.com/p/maui-indexer
7 http://wikipedia-miner.sourceforge.net/
8 http://mahout.apache.org
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Fig. 2. TRUMIT user interface

4 Demonstration

In this demo we will show the full workflow by the example of the cablegate collection
which is currently released by wikileaks. To this end we will illustrate how annotation
can be performed with a range of plugins. Further we show the integration of both
local rule generation and the map reduce framework for frequent pattern mining. We
will show the benefits of additional evaluation measures for text association rules by
example. Additionally, we will show analysis of rules which were computed offline for
the 500.000 document TREC7 ad-hoc collection. The demonstration shows that our
testbench offers a helpful tool integrating state-of-the-art libraries and technologies in
its back-end.
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