Temporal Query Operators in XML Databases

Kjetil N@rvag-

Department of Computer and Information Science
Norwegian University of Science and Technology
7491 Trondheim, Norway
Kjetil.Norvag@idi.ntnu.no

ABSTRACT

The contents of an XML database or an XML/Web data
warehouse is seldom static. New documents are created,
documents are deleted, and more important: documents are
updated. In many cases, we want to be able to search in his-
torical versions, retrieve documents valid at a certain time,
query changes to documents, etc. This can be supported by
extending the system with temporal database features. In
this paper we describe the new query operators needed in
order to support an XML query language which supports
temporal operations.

Keywords

XML, temporal databases, query processing

1. INTRODUCTION

The amount of data available in XML is rapidly increas-
ing. One of the advantages of XML is that a document
itself contains information that is normally associated with
a schema. This makes it possible to do more precise queries,
compared to what has been previously possible with un-
structured data. Queries against the XML data can either
be directly to the database storing the XML data (for ex-
ample an object-relational database system), or to an XML
data warehouse, created from XML data collected from the
Web (for example Xyleme [14]).

The contents of a database or data warehouse is seldom
static. New documents are created, documents are deleted,
and more important: documents are updated. In many
cases, we want to be able to search in historical (old) ver-
sions, retrieve documents that was valid at a certain time,
query changes to documents, etc. (Note that although this
has some similarities to general document versioning main-
tenance, the aspect of time makes possibilities as well as ap-

*This work was done while the author was an ERCIM fellow
at the VERSO group at INRIA, France.

Permissionto male digital or hard copiesof all or part of this work for
personalor classroonuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

SAC 2002,Madrid, Spain
© 2002 ACM 1-58113-445-2/02/03...85.00

propriate solutions different.) The “easiest” way to realize
this is to store all versions of all documents in the database,
and use a middleware layer to convert temporal query lan-
guage statements into conventional statements, executed by
an underlying database system (also called a stratum ap-
proach [8]). Although this approach makes the introduction
of temporal support easier, it can be difficult to achieve good
performance: temporal query processing is in general costly,
and the cost of storing the complete document versions can
be too high. For this purpose, a temporal XML database
system is necessary.

In order to realize an efficient temporal XML database sys-
tem, several issues have to be solved. The most impor-
tant issues are 1) efficient storage of versioned XML doc-
uments, 2) efficient indexing of temporal XML documents
and 3) temporal XML query processing. As for the first
two issues, some related work has already been done (see
Section 2). In this paper, we concentrate on the issue of
temporal XML query processing. We give a brief outline
of what can be expected to be found in a temporal XML
query language, and introduce the query operators neces-
sary to execute such queries.

The organization of the rest of this paper is as follows. In
Section 2 we give an overview of related work. In Section 3
we study time and identity in the context of temporal XML
queries. In Section 4 we described the assumed data model.
In Section 5 we give examples of temporal XML queries.
In Section 6 we give an overview of the algebra operators
and illustrate their use in some example queries. Finally,
in Section 7, we conclude the paper and outline issues for
further research.

2. RELATED WORK

A model for representing changes in semistructured data
(DOEM) and a language for querying changes (Chorel) was
presented by Chawathe et al. in [2, 3]. Chorel queries were
translated to Lorel (a language for querying semistructured
data), and can therefore be viewed as a stratum approach.
The work by Chawathe et al. has later been extended by
Oliboni et al. [11].

Storage of versioned documents are studied by Marian et
al. [9] and Chien et al. [4, 5, 12]. Chien et al. also consider

access to previous versions, but only snapshots retrievals.

An approach that is orthogonal, but related to the work pre-



sented in this paper, is to introduce valid time features into
XML documents, as presented by Grandi and Mandreoli [6,
7).

An extended version of this paper is available as [10].

3. TEMPORAL XML QUERIES

Two important issues that pose some additional difficulties
in the context of XML, and in particular in the context of
XML documents retrieved from the Web (in the case of an
XML data warehouse), are time and identity. These issues
will now be discussed in more detail.

3.1 Timein XML databases

In temporal databases we have different aspects of time,
where the two most common aspects are transaction time
and valid time. In our context, we have two cases which
from a query point of view are similar to transaction time:

e Local storage of documents (e.g., in a database system
storing XML documents), where we have full informa-
tion on time of creation/storage of an XML document.
In this case, time is exactly transaction-time equiva-
lent.

o XML warehouse or other non-synchronized storage of
copies of XML documents. Although similar to trans-
action time, this is not exactly the same. Important
differences are:

— In this case we in general do not know the time of
creation/storage of an XML document, only the
time when the document was retrieved from the
Web (”crawled”).

— The documents in the warehouse are not retrieved
at the same point in time, the result is an in-
consistent view of the documents. For example,
a document can have references to a document
not yet retrieved, or a document that has already
been deleted.

— There might have been updates between the ver-
sions we have retrieved, i.e., we do not necessarily
have all the versions of a particular document.

A third case, which has similarities to valid time, is doc-
ument time. Many documents include a timestamp in the
document itself. This can for example be the time the doc-
ument was written, or when it was posted. Examples are
news notices from the news agencies. The documents can
also be indexed and queried based on this document time.
Although it could be difficult to extract this time from a
document automatically, we can expect many documents to
include this metadata in a “standardized” way, based on
RDF. One example is XMLNews-Meta (based in part on
RDF), which if used can provide meta-information such as
publication time and expire time.

In this paper, we concentrate on a transaction-time sup-
port. It should be noted that the techniques presented here
are equally applicable to a valid-time context, but that ad-
ditional operators should be introduced in that case, for ex-
ample coalescing.

3.2 ldentity of elementsin versioned XML

documents

XML documents have a quasi-persistent® identifier, the URL.
However, in general the elements of a document do not have
any identity of their own that persist from one version of
a document to the next. This implies that many queries
can be difficult to express, as well as expensive to execute.
Two simple examples are 1) a query for the create time
of elements, and 2) a query asking for the previous ver-
sion of a certain element. Thus, although elements seen
from “the outside” do not have persistent identifiers, we be-
lieve that the storage system should support this feature,
in order to make it a part of the data model for the query
language. Ome particular system that provides this func-
tionality is Xyleme [9]. The persistent identifiers, in Xyleme
called XIDs, identify an element in a particular document
in a time independent manner, and will not be reused when
an element is deleted. For convenience we will in this paper
also use the acronym EID (Element ID), which is the con-
catenation of document ID and XID. Thus, an EID identifies
uniquely a particular element in a particular document.

In a temporal XML database there will in general be more
than one version of each element (different versions of an
element have the same EID). In order to uniquely identify
a particular version of an element, the timestamp can be
used together with the EID. We denote the identifier of a
particular version of an element TEID (temporal EID), i.e.,
the concatenation of EID and timestamp.

4. ASSUMED DATA MODEL

A document in the database is viewed as a forest of trees.
One of the advantages of this approach is that queries on
versions of a document (or several documents) is similar to
the query on a general set of XML documents which can
also be view as a forest of trees, or the forest of trees result-
ing from pre-filtering (i.e., returning subtrees of documents,
possibly more than one tree for each document).

‘We assume that:

e Every element has a timestamp.

e Every update of an element also implies update of the
element it is contained in. Note that even if this logi-
cally has to be applied recursively up to the document
to the root, it does not have to be implemented in this
way.

Note that the distinction between document timestamp and
element timestamp is not significant for snapshot queries,
only for change-oriented queries. An example of document
versions can be seen in Figure 1. The document versions
are versions of a restaurant guide database, as described
in [3]. The restaurant guide will also be used in the examples
below.

Note that in the physical storage model, it is unlikely that
all versions of all documents are stored as complete versions.

! Quasi-persistent based on the observation that documents
on the Web frequently are moved.



www.guide.com www.guide.com www.guide.com
01.01.01 15.01.01 31.01.01
restaurant restaurant restaurant restaurant
01.01.01 01.01.01 15.01.01 31.01.01
name price name price name price name price
01.01.01 01.01.01 01.01.01 01.01.01 15.01.01 15.01.01 01.01.01 31.01.01
"Napoli"  "15" "Napoli*  "15" "Akropolis" "13" "Napoli"*  "18"
01.01.01 01.01.01 01.01.01 01.01.01 15.01.01 15.01.01 01.01.01 31.01.01

Figure 1: The restaurant list at guide.com as retrieved on January 1st, January 15th, and January 31st. The

timestamps on each element is the time of update of the element or one of its children.

Instead, previous versions are stored as, e.g., delta versions.
In order to reconstruct these previous versions, we might
have to retrieve and process the complete last versions as
well as a number of delta documents.

5. EXAMPLESOF TEMPORAL XML
QUERIES

The main purpose of this section is not to create a new query
language, but to describe what kind of queries can be ex-
pected in a temporal XML database. The query language is
based on a mix of Lorel, the Xyleme query language?® [1], and
elements of XPath and XQuery [13] (note that the query op-
erators and associated algorithms are independent of which
query language is actually used). For example, a query re-
turning all restaurants with price less than $10 could be
written as:

SELECT R
FROM doc("http://guide.com/")/restaurant R
WHERE R/price < 10

It is assumed that the results of an “outer query” is deliv-
ered as default in a document with enclosing tags named
<results>. Each result from the from the SELECT expres-
sion is delivered in one element with tags named <result>.
In most of the following example queries, complete paths are
used (i.e., not containing an // operator). However, when
querying semistructured data like XML, many queries can
be expected to contain the // operator.

In order to retrieve documents valid at a particular time
(snapshot query), a timestamp is given for the path in the
FROM clause, filtering out only those element versions valid
at the particular time:

SELECT R
FROM doc("http://guide.com/")/restaurant[26/01/2001]1 R

For more complex queries, or when we want more than one
version to be selected, we use the keyword EVERY instead

?Note that even if Xyleme has support for historical ver-
sions/deltas, there is no special support for these in the
query language.

of timestamp. For example, in order to retrieve the price
history of the restaurant named Napoli:

SELECT TIME(R), R/price
FROM doc("http://guide.com/")/restaurant [EVERY] R
WHERE R/name="Napoli"

where TIME (R) returns the timestamp of the element R. Fur-
ther predicates on time can be included in the SELECT
clause, including delete and create time of elements. In
order to query time relative to another time, for example
[NOW] (which denotes the “current time”) or a certain time
DD/MM/YYYY, expressions like NOW - 14 DAYS or
26/01/2001 - 2 WEEKS can be used.

6. ALGEBRA OPERATORS

Here we consider operators that will be needed in tempo-
ral XML query processing, and describe them in terms of
input, output, and operation. In addition to the operators
described here, we also assume the availability of traditional
operators, for example projection and join, but we will not
discuss them any further.

Two of the operators are extensions of the PatternScan op-
erator described in [1]. The PatternScan operator takes
as input a forest of trees (which can be a set of EIDs),
which are XML documents or filtered elements (subtrees)
from XML document, and a pattern tree which each tree
shall be matched against. The pattern tree includes infor-
mation on projection as well as isParentOf and isAscen-
dantOf relationships. Informally, we can define the operator
as PatternScan(F', pattern) where F is a forest of trees
and pattern is the pattern tree. For more details on the
PatternScan operator we refer to [1].

6.1 Overview of the operators

The temporal query operators to be added are as follows:

e TPatternScan(F', pattern, T)

This is a temporal snapshot PatternScan operator.
TPatternScan is similar to the PatternScan operator



in [1], except that it operates on the snapshot of doc-
uments valid at time T'. The output of the operator is
a set of TEIDs (see Section 3.2).

TPatternScanAll(C', pattern)

TPatternScanAll returns all matches for pattern for
all versions of the documents in a collection C. The
output of the operator is a set of TEIDs.

DocHistory(document, Ts, Tkg)

Returns all the versions of a certain document valid in
the interval [T's, Te>, where [T's, Tr> is short for the
time interval from Ts to Tk, including T's but not Tx
(open-ended upper bound). The output of the oper-
ator is a set of TEIDs, where the TEIDs are roots of
documents.

ElementHistory(EID, Ts, Tk)

Returns all versions of an element valid in the interval
[T's, Tg>. The output of the operator is a set of TEIDs
(with the EID in the TEID equal to the EID in the
input parameters).

CreTime (TEID)

Returns the create time of an element. This is useful
for retrieving elements created before or after a par-
ticular time, e.g., as in:

SELECT R

FROM ...

WHERE CREATE_TIME(R)>=11/01/2001

Note that EIDs are unique, so that when an element
is deleted the EID will not be reused for a new ele-
ment. Thus, we do not strictly need timestamps in
the element identification for the CreTime and Del-
Time operators. However, as shown in the extended
version of this paper [10], the availability of timestamp
can improve performance. The timestamps will in gen-
eral be available in any case, so that no extra cost is
involved by assuming its availability.

DelTime (TEID)

DelTime returns the delete time of an element.

PreviousTS (TEID)
NextTS (TEID)
CurrentTS (EID)

Returns the timestamp of the previous/next/current
version of a given element version (note that times-
tamp is not needed for the current version, as this is
given implicitly). The timestamp, together with the
EID (i.e., the TEID), can be used for retrieving the
version itself. These operators can be used in con-
structions like:

SELECT DISTINCT CURRENT(R)/name

FROM ...

WHERE ...

which retrieves the current versions of elements (pos-
sibly generated from a temporal snapshot), and as in
SELECT PREVIQUS(R)

FROM ...

WHERE ...

which retrieve the previous versions of elements.

e Reconstruct (TEID)

Reconstructs the tree rooted at EID in TEID for a par-
ticular version. The timestamp Ts in the TEID can,
e.g., be the result of NextTS/PreviousTS/CurrentTS
operations. If previous versions of documents are stored
as deltas this can imply accessing and processing a
potentially large number of deltas in addition to one
complete version (the exception is the current version
which will normally be stored as a complete version).
If previous versions of documents are stored as com-
plete documents, only the actual version itself needs
to be read.

e Diff (E1, E2)

In some cases we want to query for the changes be-
tween different versions of elements. These changes
can conveniently be returned (and eventually post-
processed by the application or in a separate query) as
edit scripts. Edit scripts describe changes between
two versions, similar to for example the information in
RCS files. In our context, the edit scripts are XML
trees themselves. Note that as long as an edit script is
represented in XML this operator does not break clo-
sure properties of queries. E1 and E2 can be versions
of the same element, but can also represent different
documents or subtrees of elements. Diff is useful in
constructions like:

SELECT DIFF(R1,R2)
FROM ...
WHERE ...

It is possible to support string equality and string contain
queries with different operators and access structures. How-
ever, as described in [10], the access methods for contain-
ment queries already exist, so that there is little to gain
from providing additional access methods for string equal-
ity. Therefore we expect that there are no separate opera-
tors and access structures for equality queries, and that the
general containment operators/access methods are used, fol-
lowed by equality testing.

6.2 Examplequeries

In order to illustrate the use of the operators, we now give
three example queries based on the restaurant database ex-
ample, together with the corresponding query operators.

Q1: List all restaurants in the list as of 26/01/2001:

SELECT R
FROM doc("http://guide.com/")/restaurant[26/01/2001] R

This is a snapshot query, listing the name in all versions
of restaurant elements valid at time 26/01/2001 (that is,
versions created before or on 26/01/2001 that is not further
updated or deleted).

Operators: TPatternScan, followed by Reconstruct.

Q2: Retrieve the number of restaurants at 26/01/2001:



SELECT SUM(R)
FROM doc("http://guide.com/")/restaurant[26/01/2001]1 R

Operators: TPatternScan followed by the traditional aggre-
gate operator Sum. Note that reconstruction of the docu-
ments is not needed. This is important, and shows that in
many cases the storage of only deltas of previous document
versions does not create performance problems.

Q3: List the price history of the restaurant “Napoli”:

SELECT TIME(R), R/price
FROM doc("http://guide.com/")/restaurant [EVERY] R
WHERE R/name="Napoli"

The use of EVERY instead of a particular timestamp retrieves
all versions of restaurant. Note that the predicate in the
WHERE clause acts on all versions, not only the current
version of the elements. As a result, the price history of all
restaurants through the history with the name Napoli will
be listed.

Operator: TPatternScanAll.

7. SUMMARY

We have in this paper described how temporal queries can
be executed in an XML database system. We have described
issues related to time and identity in this context, and de-
scribed an appropriate data model as the basis of a temporal
XML query language. Temporal support in an XML query
language implies that new operators are needed in the query
processing, and we have identified operators that will be
useful in order to support typical queries in temporal XML
databases. In order to achieve the desired performance in
such databases, efficient execution of query operators are
needed. For a more detailed discussion on these issues, we
refer to [10], which also describes algorithms for execution
of the operators presented in this paper.

Future work includes developing techniques for further re-
ducing the cost of executing the query operators. The main
goal in this context would be to develop techniques that
can reduce the number of delta versions that have to be
retrieved. Two important strategies for achieving this goal
is to develop new types of indexes and algebraic rewriting
techniques.

Acknowledgments

I would like to thank Serge Abiteboul for suggesting this
topic of research, and Vincent Aguilera and Benjamin Nguyen
for useful discussions and constructive comments.

8. REFERENCES
[1] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, and
F. Wattez. Querying XML documents in Xyleme.
Technical Report 182, Verso/INRIA, 2000.

[2] S. S. Chawathe, S. Abiteboul, and J. Widom.
Representing and querying changes in semistructured
data. In Proceedings of the Fourteenth International
Conference on Data Engineering. IEEE Computer
Society, 1998.

[3] S. S. Chawathe, S. Abiteboul, and J. Widom.
Managing historical semistructured data. TAPOS,
5(3), 1999.

[4] S.-Y. Chien, V. J. Tsotras, and C. Zaniolo. A
comparative study of version management schemes for
XML documents (short version published at WebDB
2000). Technical Report TR-51, TimeCenter, 2000.

[5] S.-Y. Chien, V. J. Tsotras, and C. Zaniolo. Version
management of XML documents: Copy-based versus
edit-based schemes. In Proceedings of the 11th
International Workshop on Research Issues on Data
Engineering: Document management for data
intensive business and scientific applications
(RIDE-DM’2001), 2001.

[6] F. Grandi and F. Mandreoli. The valid web: it’s time
to go. Technical Report TR-46, TimeCenter, 1999.

[7] F. Grandi and F. Mandreoli. The valid web: An
XML/XSL infrastructure for temporal management of
web documents. In Proceedings of Advances in

Information Systems, First International Conference,
ADVIS 2000, 2000.

[8] C. S. Jensen and R. T. Snodgrass. Temporal data
management. IEEE Transactions on Knowledge and
Data Engineering, 11(1), 1999.

[9] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet.
Change-centric management of versions in an XML
warehouse. In Proceedings of VLDB 2001, 2001.

[10] K. Ngrvag. Algorithms for temporal query operators
in XML databases. Technical Report IDI X /2001,
Norwegian University of Science and Technology,
2001. Available from
http://www.idi.ntnu.no/grupper/DB-grp/.

[11] B. Oliboni, E. Quintarelli, and L. Tanca. Temporal
aspects of semistructured data. In Proceeding of
TIME-01, 2001.

[12] C. Z. Shu-Yao Chien, Vassilis J. Tsotras. Efficient
management of multiversion documents by object
referencing. In Proceedings of VLDB 2001, 2001.

[13] World-Wide Web Consortium. XQuery: A query
language for XML, February 2001 (most recent
version available at http://www.w3.org/TR/xquery/).

[14] L. Xyleme. A dynamic warehouse for XML data of the
web. IEEE Data Engineering Bulletin,, 24(2), 2001.



