
Site-Autonomous Distributed Semantic Caching

Norvald H. Ryeng, Jon Olav Hauglid, Kjetil Nørvåg
Department of Computer and Information Science

Norwegian University of Science and Technology, Trondheim, Norway
{ryeng,joh,noervaag}@idi.ntnu.no

ABSTRACT
Semantic caching augments cached data with a semantic descrip-
tion of the data. These semantic descriptions can be used to im-
prove execution time for similar queries by retrieving some data
from cache and issuing a remainder query for the rest. This is
an improvement over traditional page caching, since caches are no
longer limited to only base tables but are extended to contain inter-
mediate results. In large-scale distributed database systems, using
a central server with complete knowledge of the system will be a
serious bottleneck and single point of failure. In this paper, we
propose a distributed semantic caching method where sites make
autonomous caching decisions based on locally available informa-
tion, thereby reducing the need for centralized control. We imple-
ment the method in the DASCOSA-DB distributed database system
prototype and use this implementation to do experiments that show
the applicability and efficiency of our approach. Our evaluation
shows that execution times for queries with similar subqueries are
significantly reduced and that overhead caused by cache manage-
ment is marginal.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Experimentation, Performance

Keywords
Distributed querying, semantic caching

1. INTRODUCTION
Large, distributed systems often use site autonomy as a way to

reduce communication costs, allowing sites to make their own de-
cisions and rely more on locally available information and less on
information that must be fetched from their neighbors. In addition,
if we can allow some of the housekeeping information to be slightly
outdated without affecting the query results, further decoupling of
sites is possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21–25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

Caching is one aspect of a query processing system that lends it-
self to autonomous decisions. Each site can cache the data it needs
to speed up its own processing, without coordinating with other
sites first. In distributed database systems, there is a choice of either
shipping data to the sites where queries are processed or shipping
queries to the sites where data are stored. Caching is possible and
useful in both types of systems, but the nature of these systems pro-
vide different caching opportunities and call for different caching
solutions. In this paper, we adapt the idea of semantic caching,
taken from data shipping systems, and present a new method for
semantic caching for a large query shipping system.

The main idea of semantic caching is to tag the cached data
items with semantic information, typically predicates used in se-
lect queries. By looking at the tags, subsequent queries can iden-
tify cached items that can replace parts of the query. The data that
is not in cache is fetched by a remainder query, and together the
remainder query and the cached query provides the answer to the
original query.

One of the challenges that are introduced when semantic caching
is moved into a system of autonomous sites is that no single site has
full knowledge of the query workload. When queries can enter the
system from any site, and each site processes only a small part of
each query before the result is shipped off to the next site, no single
site has the complete picture of the query workload. This limits the
metrics available for caching algorithms, but as we demonstrate, it
is still possible to make globally sound caching decisions.

By building semantic caches of intermediate results on the sites
where these results are produced, subsequent similar queries can
benefit from retrieving some of their data from cache and issu-
ing remainder queries to perform the rest of the operations. Our
method builds a globally accessible, distributed cache based on
autonomous sites. Whereas in traditional semantic caching each
site has its own local cache that is not shared with other sites, our
method gives sites access also to the cache entries elsewhere in the
network.

With semantic caching comes the possibility of making caching
decisions based on more than access statistics. Richer caching al-
gorithms can be defined that inspect the semantics and decide to
cache data that is not the most frequently used, but that will give a
higher performance gain when used. Even if the join of two tables
is a less frequent subquery than the tables themselves, more time
may be saved if the result of the join is cached than if the tables
are cached. By making sites autonomous, we also open up for the
possibility of using different caching algorithms on different sites.

The contributions of this paper is as follows: We present a new
method for semantic caching of intermediate results in a distributed
database system, using autonomy to increase scalability. We demon-
strate how this caching method reduces query execution time with

Symbol Description
S Site
T Table T
Ti Fragment i of table T
n Algebra node
N Algebra tree
Nn Subtree rooted at n
c Cache entry
C List of cache entries
C One site’s cache
ts Timestamp
query(c) Query representation of cache entry

Table 1: Symbols.

almost no overhead. We also demonstrate that the more advanced
cache replacement policies that are possible with a semantic cache
give considerable improvements over traditional LRU. Experimen-
tal evaluation of the costs and benefits of our semantic caching
method is done by implementing it in the DASCOSA-DB [9] dis-
tributed database prototype.

The rest of this paper is organized as follows. We start with a
review of related work in Section 2. Section 3 describes the system
setting. Our caching method is described in detail in Section 4.
Section 5 describes our experiments and results, and we conclude
the paper and outline future work in Section 6.

2. RELATED WORK
Semantic caching [7] and predicate-based caching [13] augment

cached data with a semantic description of the data. The bene-
fits of semantic caching include low overhead and reduced network
traffic [11, 18]. Cache tables [1, 3, 16] are somewhat similar to
semantic caching, but only caches tables, not intermediate or final
results of queries. Semantic caching has also been applied to de-
ductive databases [4] and web querying systems [6, 15]. Common
to all these systems are that they are built for a single query entry
point to the system.

There are several approaches to filling caches. Cache invest-
ment [14] aims to optimize for the future by deliberately executing
suboptimal queries to generate cache entries that have a higher hit
rate. Caching of time-consuming operations has also been studied
for single values that are duplicated in a result [10]. Identification
of candidates for caching and insertion as cache nodes at different
levels in the algebra tree [8] is often done during query planning.

Cache entries may exist with similar, but not exactly the same,
data to what has been requested. Such cache entries may be trans-
formed to match the request [2]. This increases the cache hit rate
for workloads with many similar queries. View materialization [5,
17] is a kind of explicit caching requiring manual intervention.

Our approach is similar to that of PeerOLAP [12] in that sites
operate under a large degree of autonomy and make local caching
decisions. However, while PeerOLAP uses broadcast messages to
locate caches, our approach retrieves information on existing cache
entries from a distributed catalog service. This way we avoid flood-
ing the network on each query.

3. PRELIMINARIES
In this section we describe the system and query model used in

the rest of this paper. The symbols used in the paper are found in
Table 1. We have implemented our caching method in the DASCOSA-
DB distributed database system prototype. Our caching method is

S0 S1

S2

S3

T U

V

I
Initiator site

Initiator node

C
o

m
p

le
xity a

nd
 cost

R
e

u
sa

bility
Figure 1: Example query from unmodified DASCOSA-DB.

general and does not put many limitations on the underlying sys-
tem, but some details of the implementation are dependent on de-
tails of the underlying system.

3.1 System Model
The system consists of a number of sites, each site Si being a

single computer node or a parallel system acting as a single entity
seen from other sites. All sites can store relational tables, and these
may be horizontally fragmented. Fragment i of table T is denoted
Ti.

The sites in the system are autonomous, and the only require-
ment is that they have a common protocol for execution of queries
and metadata management. This means that some sites may choose
not to cache, and those that do cache may choose different cache
replacement policies. This makes it possible to include sites under
different administrative domains, allowing interoperability while at
the same time allowing each administrative domain to remain au-
tonomous.

Metadata management, including information on where data is
stored, is performed through a common catalog service. This cata-
log service is itself assumed to be fault tolerant. It can be realized
in a number of ways. For example, in DASCOSA-DB, the cata-
log service is realized by a distributed hash table where all sites
participate. The organization of the catalog is not important to our
caching method, but our implementation relies on some implemen-
tation details of the catalog service.

3.2 Query Model
We assume queries are written in some language that can be

transformed into relational algebra operators, for example SQL.
These algebra operators constitute an algebra tree for the query,
and each subtree of the query tree is a subquery. Throughout this
paper we will use the terms subtree and subquery interchangeably.

Queries may arrive from any site of the system. The site that
introduces a query to the system, called the initiator site for that
query, becomes the coordinator for that query. When a query is
entered at one site, this site becomes the initiator site for that query.
The initiator site decomposes the query into an algebra tree, e.g., as
the one shown in Figure 1. The example query accesses the three
tables T , U and V located at sites, S0, S1 and S2, respectively.
Query processing is distributed between these three sites and the
initiator site for the query, S3. When the query planner has assigned
each algebra node Ni to a site, Si, the query is shipped to these sites
using Algorithm 1.

When query processing starts, each node of the algebra tree pro-

Algorithm 1 Stepwise transmission of algebra tree.
At site Si, after receiving Ni:

ni ← root(Ni)
for all nc ∈ children(ni) do

Nc ← subtree(nc)
Sc ← getAssignedSite(nc)
Send(Nc, Sc)

end for

duces an intermediate result that is shipped to the parent (or down-
stream) node. Our distributed semantic caching method caches
these intermediate results, such as the result of T ∗ U , and reuses
them in subsequent queries. This can save significant amounts of
processing. The cumulative cost and complexity of the interme-
diate results increases towards the root, but reusability decreases.
Caching the result of nodes close to the root of the tree means we
save more work when we get a cache hit, but cache hits are more
frequent for intermediate results closer to the leaves.

4. DISTRIBUTED SEMANTIC CACHING
In order to implement semantic caching, we modify the localiza-

tion, dissemination and processing steps of DASCOSA-DB, and
add a fourth: cache registration. These modifications and exten-
sions are described in the following sections.

4.1 Query Localization
After query decomposition, the query is represented as a tree

N of algebra operator nodes. This is given as input to the query
localization step.

The initiator site has to do catalog lookups for all tables refer-
enced by N . This is done by requesting from the catalog service
a list of table fragments Ti and the sites STi on which they are
located. In DASCOSA-DB, the request for information about one
table is handled by one site of the distributed catalog service. That
site knows of all fragments of that table. We extend the informa-
tion stored at the catalog site to also include an index of some, but
not necessarily all (see Section 4.4), cache entries of intermediate
results involving that table.

We also extend the catalog lookup request by piggybacking a
representation of N onto the request messages, as shown in Fig-
ure 2. The catalog service site responds with its normal result
of table fragments and their locations and adds an additional list
C = {c1, c2, c3, . . .} of cache entries it knows of. The extended
reply message is shown in Figure 3. Each entry c = 〈Nc, Sc, tsc〉
describes the cached query Nc, the site Sc that stores the cache en-
try and the timestamp tsc of the entry. All entries in C are relevant
cache entries, by which we mean entries that can be used to answer
the query.

After receiving all lookup replies, we have accumulated informa-
tion on all relevant cache entries for N . The optimizer may decide
to rewrite the query to use some cache entries that do not exactly
match a subtree of the current plan. Due to space constraints, we re-
fer to [7] and [11] for more details on how queries are transformed
to take advantage of semantic caches.

After caches have been found and the query plan has been adapted,
the next step is to assign each node n of N to a site. Leaf nodes
are table accesses and are assigned to the sites that store the cor-
responding table fragments. Normally, DASCOSA-DB assigns an
operator node to the same site as one of its operands. We extend
this algorithm to exploit cached data. By looking at the subquery
Nn rooted at n and the list of cache entries, if ∃ c : Nc= Nn, n

Table name

Fragment number

Query

Original fields

Added fields

Figure 2: Extended lookup message.

Table name

Fragment

Cached query

Original fields

Added fields

Attribute

Attribute Type

Primary key

Size

Type

Type

Site

Site

Timest.

Fragment Size Site Timest.

Timest.

Cached query Site Timest.

Figure 3: Extended lookup reply message.

is assigned to Sc. If there are more than one cache entry for Nn,
the localizer chooses one. Nodes that are not found in cache are
assigned to sites using the normal query localization algorithm.

The initiator site does not actually decide whether to use a cache
entry. It only assigns algebra nodes to sites where the catalog ser-
vice says there are matching cache entries. Sites are autonomous
in caching decisions, so a site that was intended by the initiator to
deliver data from cache may have replaced the cache entry when
the query arrives, making it necessary to process the query in full.

When all nodes of the query have been assigned to a site, the
initiator site starts shipping out the query to the rest of the sites
participating in resolving it.

4.2 Query Dissemination
The query N is shipped stepwise to the participating sites, us-

ing a modified version of Algorithm 1. The initiator site assigns
root(N) to itself, and then for all n ∈ children(root(N)) sends
out Nn to Sn, which again send out the subtrees of the nodes they
receive, etc. This continues until the leaf nodes, i.e., table access
nodes, are received by the sites that store the corresponding tables.
The timestamps tsTi of all table fragments referenced by nodes in
a subtree are piggybacked onto that subtree as it is sent out.

If no cache entries exist, the query shipping behaves exactly as
in the unmodified Algorithm 1, but sites that have cached previ-
ous results must check their caches to see if the query matches any
entries.

When a site receives a query, it checks the table fragment times-
tamps tsNTi

from the query against entries c ∈ C in the local cache

Figure 4: Query dissemination with table fragment times-
tamps.

to see if any of its cache entries should be invalidated. If ∃Ti, c :
tsNTi

> tscTi
, c is outdated and should be removed. This is done for

all cache entries that involve these table fragments, not only those
relevant to the current query.

After removing outdated cache entries, the site checks if ∃ c ∈
C : query(c)=Nn. If such a cache entry is found, the site has to
request current timestamps ts∗Ti

of all the table fragments that are
referenced by Nn. This is done to guarantee that the cache entry is
up-to-date. The locations of the fragments are found by looking at
the received query, which contains table scan operators assigned to
the corresponding sites.

The cache entry timestamp consists of a set of table fragment
timestamps tscTi

such that ∀Ti : ts
N
Ti
≤ tscTi

≤ ts∗Ti
. If ∀Ti : ts

c
Ti
=

ts∗Ti
, the site holds back the whole subtree rooted at the cached

algebra node and stops query dissemination of that branch. The
algebra node is replaced by a special node that delivers the result
from cache. If ∃Ti : ts

∗
Ti
> tscTi

, the cache entry is outdated and is
removed before query dissemination continues as if the cache entry
had never existed, assigning the root node to be processed locally
and sending the subtrees rooted at the children of this node to the
sites to which they have been assigned by the initiator site.

Figure 4 shows how the query is distributed to the participating
sites. In the example, the query with timestamps is sent out up-
stream from the initiator site, split at each algebra node. A cache
entry for T ∗ U is found on site S0 and a special request is made
to the sites storing relevant table fragments (in this example, the
tables consist of only one fragment each) to retrieve the current
timestamps. Table T is stored on site S0, so the timestamp request
is processed locally. Site S1 receives the request from site S0 and
replies with the current timestamp of table U .

Our caching method supports variations of this timestamp pol-
icy. Different isolation levels may allow caches that are older than
the current table fragment timestamps, leading to more cache hits.
Timestamp policies should be the same on all sites, since the sys-
tem as a whole cannot guarantee stronger isolation levels than the
weakest timestamp policy allows.

Dissemination stops when all branches of the query tree have
been terminated by a leaf node delivered to the site to which it has
been assigned or by a deliver-from-cache operator. As soon as a
leaf node is delivered, or a deliver-from-cache node created, the
node enters the processing step and starts producing data.

4.3 Query Processing and Caching
In the dissemination step, it was discovered whether any relevant

Figure 5: Result and timestamp propagation.

cache entries existed and were up-to-date, in which case dissemina-
tion of that subtree stopped and the root of the subtree was replaced
by a special node serving data from cache. Cache entries are locked
in cache as long as they serve an ongoing query.

The special deliver-from-cache operators simply deliver the cached
result, including the cached timestamps, which by now are guaran-
teed to be up-to-date. Since the timestamps of the table fragments
needed to produce the cached result are stored with the cache en-
try, they can easily be retrieved and sent with the result, providing
timestamps for caching of downstream nodes.

If data is not served from cache, there might be an opportunity
for caching. To allow downstream caches, table fragment times-
tamps are propagated along with the results of operators, as shown
in Figure 5. At each interior node n in the query tree, the re-
sult of the operation is tagged with a combined timestamp tsn =
∪n′∈children(n)tsn′ of the timestamps of all operands.

The result of algebra nodes are candidates for caching at the site
where they are processed, and the timestamps that comes with the
result are used to timestamp cache entries that are created. The
decision to cache the result or not is made when a node starts exe-
cuting, and is based on the cache replacement policy.

In general, the cache replacement policy defines an ordering of
cache entries. In block based caching, where cache entries are al-
ways of the same size, only the first entry to be replaced has to
be identified. When caching intermediate results of differing sizes,
multiple cache entries may have to be removed to fit one larger en-
try in cache. The ordering must also include queries, so that candi-
dates for caching can be compared against any existing cache entry.
In Algorithm 2 we define the general cache replacement algorithm
using such an ordering. Given a successor relation �p defined by
the cache replacement policy and the cache C, we use the ordered
set Cp = (C,�p), where head(Cp) is the least element of Cp.

Each site decides autonomously which results to cache and may
apply different cache replacement policies and have different cache
sizes. Since cache entries are compared against queries that have
not yet been processed, some values must be estimated, e.g., the
size of the intermediate result of Nn. The successor relation �p

that defines the ordering of cache entries may rely on a number of
metrics, either measured or estimated.

4.3.1 Available Metrics
Each site has only a restricted view of the system, knowing only

the algebra nodes passing through it and the subtrees rooted at
these. It also knows the contents of its own cache and the usage
statistics of that cache. We divide the available metrics into three

Algorithm 2 Decide to cache the result of Nn (true) or not (false).
At site S, when deciding whether or not to cache the result of
Nn:

free ← free cache space
Creplaced ← ∅
Cremaining ← Cp
while free < size(Nn) do

c← head(Cremaining)
if Nn �p c then

free ← free + size(c)
Creplaced ← Creplaced ∪ {c}
Cremaining ← Cremaining \ {c}

else
return false

end if
end while
Cp ← Cremaining

return true

measurement categories: size, cost and query pattern.
The size of the result is necessary to decide if there is room for

the result in the cache. However, before the query has been pro-
cessed and the size can actually be measured, we must rely on es-
timates based on the available statistics. Table statistics that are
available from the global catalog and included in N can be used to
find the size of table fragments and estimate the size of the results
of downstream operators.

The cost of resolving a query can be estimated knowing operand
size and operator implementation details. The cost of reproducing a
result from scratch is the cumulative cost of the algebra subtree, so
the estimated cost of reproducing the result can be found by adding
up the estimated cost of all nodes in the subtree.

A simpler cost estimate is the node’s position in the algebra tree.
The leaf nodes are table access nodes. Intermediate nodes have a
higher cost, and the cost of reproducing the result increases towards
the root. Instead of computing the cumulative cost, we can simply
use the height of the subtree rooted at that node.

The simplest query pattern metric is to use least recently used
(LRU) ordering of cache entries, allowing recently used cache en-
tries to stay in the cache while less recently used entries are re-
placed.

4.3.2 Cache Replacement Policies
Based on the metrics defined above, we can implement several

cache replacement policies.

LRU.
The simplest cache replacement policy is to always replace the

least recently used cache entry. This policy is simple, but is not
able to use the semantic information that the caching method makes
available. Therefore, it is unable to separate between query results
that require a lot of computational effort to reproduce and results
that are easily recreated from scratch.

LRU + cost.
An improvement is to use the cost measure in addition to usage

to decide which cache entry should be replaced next. The semantic
information allows us to estimate the cost of each step in the query
and to use cumulative cost to either favor queries of high or low
complexity. The cost measure is given more weight than LRU, but
as a cache entry ages also complex results may be replaced. We

call these policies LC policies.
The LC+ policy favors results of queries of high complexity,

making sure that results that would take longer to reproduce are
kept in cache longer than results of queries that have a lower com-
putational complexity. The complex queries are not the most fre-
quently reused, but more time is saved for each cache hit.

Our LC− policy does the opposite. It adds a penalty to the com-
plex queries. This means that the results of queries of lower com-
plexity, which are expected to be more reusable and produce more
cache hits, stays longer in cache. The choice between LC+ and
LC− is a weighing of savings per cache hit versus number of hits.

LRU + height.
The cost estimate is a quite complex estimate to make. As de-

scribed earlier, the height of the query tree may be a simple alter-
native to the full cost estimate. Like cost estimates, height can be
used to favor either complex or simple queries, so we divide the
LH policies into LH+, which favors results of complex queries,
and LH−, which favors versatile results.

4.4 Cache Registration
As soon as the last tuple is inserted into a cache entry, it is made

available for use. However, it is not registered in the catalog until
the site sends an update message to the catalog service.

The sites regularly update the catalog with information about lo-
cal table fragments, and we extend these updates with information
about cache entries. For each entry in the local cache, a site sends a
representation of the algebra subtree and timestamps for each table
fragment accessed by the subtree.

There are generally more than one table involved in a query. In
DASCOSA-DB, the catalog of fragments of one table is stored on
one catalog service site. To avoid having to register the cache en-
tries on the catalog service sites for all tables involved in the query,
we use a hashing function to select one site to which the query is
sent. For each query, the hashing function is used to select the cat-
alog site for one of the involved tables.

Since the cache entry for the result of an algebra tree is always
registered at the catalog site storing information on one of the ta-
bles referenced by the algebra tree, our method guarantees that by
sending the query with the lookup request for all tables, all cache
entries are found. Due to the hashing function, the catalog of cache
entries is distributed among catalog sites.

4.4.1 Cache Currency and Invalidation
The catalog stores a lower bound on the timestamps of all table

fragments. When a catalog site receives an update message for a
cache entry c, it can compare the timestamps tscTi

∈ tsc of the
cache entry with the timestamps of table fragments tsKTi

from its
part K of the global catalog. If ∃Ti : ts

c
Ti
< tsKTi

, table fragment
Ti has been updated after the cache entry was created and this is
registered in the catalog. The cache entry will not be registered,
and the caching site is informed of the new timestamp.

Similarly, if ∃Ti : ts
c
Ti
> tsKTi

, table fragment Ti has been up-
dated since last catalog update, and tsKTi

is updated. In this way,
the cache entry updates are actually improving the catalog service
freshness.

4.5 Transactional Support
Implementation of semantic caching does not change transac-

tional support or locking policies in DASCOSA-DB. All locks for a
query are acquired by the initiator site before query dissemination,
and our semantic caching method does not change that behavior.
The initiator site will acquire locks for all table fragments that are

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Cache size (MB)

LRU
LC+
LC-
LH+
LH-

(a)

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Cache size (MB)

LRU
LC+
LC-
LH+
LH-

(b)

Figure 6: (a) Relative execution time of high-bandwidth system with uniform workload. (b) Relative execution time of low-bandwidth
system with uniform workload.

needed, including those that form the basis for cache entries used
by the query, thereby guaranteeing full transactional isolation.

5. EXPERIMENTAL EVALUATION
To evaluate the caching method, we have implemented it in the

DASCOSA-DB distributed database system prototype. The caching
method has been tried with the caching policies described in Sec-
tion 4.3.2 and different query workloads. We used the DASCOSA-
DB’s existing cost functions for cost estimation.

The experiments were done on a TPC-H [19] dataset using scal-
ing factor SF = 0.1, partitioned horizontally based on primary
key and distributed over five sites, each running an instance of
DASCOSA-DB. One more site with no table fragments was used
for issuing queries. We generated query workloads consisting of
200 queries from the TPC-H benchmark queries, varying all sub-
stitution parameters of the benchmark. The substitution parameters
were drawn either from a uniform distribution or from a skewed
distribution where 80% of the values are drawn from 20% of the
domain.

We measured the execution time and cache hits of repeated ex-
ecutions of our query workload. These measurements are only
meaningful on a relative scale, so execution time was measured
relative to a baseline execution without caching. During this ex-
ecution, caching code was completely disabled. Cache hits were
measured relative to the number of queries in the workload.

5.1 Varying Network Bandwidth
In this experiment, the network bandwidth was varied to produce

two different settings: a high-bandwidth setting with 100 Mbit/s
links connecting the sites, and a low-bandwidth setting with 1 Mbit/s
links. The substitution parameters of the queries were drawn ran-
domly from the parameter domains, using a uniform distribution.

Figure 6(a) shows the average execution time relative to the exe-
cution time measured when caching was disabled, i.e., without any
caching code running. The values shown for 0 MB cache thus show
the overhead of the caching method, i.e., the extra cost associated
with the caching method without any of its benefits. As is seen
from the figure, the overhead is negligible.

Further, the graph shows that with the largest cache size, LRU
saves 36% of the execution time, while LC+ saves 40%. LH+ and
LH− vary very little from LRU, while LC−, favoring results of
queries of low complexity, performs worst. This indicates that the
savings gained from caching results of complex queries outweighs

the possibilities for frequently used results of low complexity.
Comparing Figures 6(a) and 6(b), we see that the distance be-

tween LC+ and LRU is greater in the low-bandwidth setting. This
is in line with our expectations of LC+, deciding to cache results of
more complex queries, allowing for greater savings once they are
used. When bandwidth is reduced, LC+ stands out while the rest
of the policies perform poorer.

5.2 Varying Parameter Distribution
In this experiment, query parameters were either drawn from a

uniform distribution or from a skewed distribution where 80% of
the values were drawn from 20% of the parameter domain. Net-
work bandwidth was kept low (1 Mbit/s).

The skewed distribution was chosen to be a more realistic work-
load, where some values are more frequent than others. This would
be the case in many real life systems. We believe the choice of
80/20 is a conservative one, which means slightly pessimistic re-
sults.

Figure 7(a) shows that LRU achieves a reduction in execution
time of 55%, i.e., 11 percentage points more than with uniform
parameter distribution, and LC+ saves 56%. While LRU and LC+

do not differ very much for large cache sizes, LC+ achieves these
savings also for much smaller cache sizes.

The comparison of cache hit rates in Figure 7(b) sheds some light
on what is going on. LC+ manages to keep the right entries in
cache also for smaller cache sizes, while LRU needs large cache
sizes to achieve this. We also note that a larger cache does not
necessarily mean better hit rates, since cache entries are of differ-
ent sizes. Large entries may displace multiple smaller entries, thus
reducing the number of hits.

There is clearly an increased hit rate for the skewed workload,
which is the reason for the improvement in execution time over the
uniform workload.

6. CONCLUSION AND FUTURE WORK
In this paper, we have developed a new method for semantic

caching in a distributed database system with autonomous sites,
where caching policies and decisions can vary from site to site and
workload statistics are sparse. By making sites autonomous, we al-
low the system to scale without excessive network traffic. We have
shown how the result of subqueries can be cached and reused by
subsequent, similar queries to speed up query processing.

We have implemented the semantic cache in the DASCOSA-DB

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Cache size (MB)

Uniform LRU
Uniform LC+
Skewed LRU
Skewed LC+

(a)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 10 20 30 40 50 60

C
ac

he
 h

it
ra

te

Cache size (MB)

Uniform LRU
Uniform LC+
Skewed LRU
Skewed LC+

(b)

Figure 7: (a) Relative execution time of low-bandwidth system with both workloads. (b) Cache hit rates for low-bandwidth system
with both workloads.

prototype as a proof of concept and platform for our experiments.
The experiments have shown that we get considerable improve-
ments in execution time when enabling semantic caching. The
overhead of our caching method is also very low.

The cache hit rate is not the only factor influencing the perfor-
mance. The cost of recomputing the cached data is also impor-
tant. The savings made possible by caching the result of a complex
query are sometimes higher than the savings from caching the re-
sults of less time-consuming queries with a higher hit rate. The
information necessary to make such decisions is made available by
semantic caching.

Our results indicate several ways to further improve query pro-
cessing by semantic caching. The next step is to further enable
the query optimizer to take advantage of cached intermediate re-
sults, including rewriting queries in otherwise suboptimal ways to
increase cache hit numbers and rewrite queries to increase reusabil-
ity of intermediate results. A semantic cache also allows for more
advanced cache replacement policies, and further work should be
done to find policies that care not only for the number of cache hits,
but also the potential computational cost savings of a cache entry.

7. REFERENCES
[1] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan,

H. Pirahesh, and B. Reinwald. Cache tables: Paving the way
for an adaptive database cache. In Proceedings of VLDB,
2003.

[2] H. Andrade, T. M. Kurç, A. Sussman, and J. H. Saltz. Active
semantic caching to optimize multidimensional data analysis
in parallel and distributed environments. Parallel Computing,
33(7-8):497–520, 2007.

[3] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and
B. Reinwald. Adaptive database caching with DBCache.
IEEE Data Engineering. Bulletin, 27(2):11–18, 2004.

[4] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based
approach to semantic query optimization. ACM Trans.
Database Syst., 15(2):162–207, 1990.

[5] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
Proceedings of ICDE, 1995.

[6] B. Chidlovskii, C. Roncancio, and M.-L. Schneider.
Semantic cache mechanism for heterogeneous Web
querying. Computer Networks, 31(11–16):1347–1360, 1999.

[7] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and

M. Tan. Semantic data caching and replacement. In
Proceedings of VLDB, 1996.

[8] L. M. Haas, D. Kossmann, and I. Ursu. Loading a cache with
query results. In Proceedings of VLDB, 1999.

[9] J. O. Hauglid, K. Nørvåg, and N. H. Ryeng. Efficient and
robust database support for data-intensive applications in
dynamic environments. In Proceedings of ICDE, 2009.

[10] J. M. Hellerstein and J. F. Naughton. Query execution
techniques for caching expensive methods. In Proceedings of
SIGMOD, 1996.

[11] B. T. Jónsson, M. Arinbjarnar, B. Þórsson, M. J. Franklin,
and D. Srivastava. Performance and overhead of semantic
cache management. ACM Transactions on Internet
Technology, 6(3):302–331, 2006.

[12] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan.
An adaptive peer-to-peer network for distributed caching of
OLAP results. In Proceedings of SIGMOD, 2002.

[13] A. M. Keller and J. Basu. A predicate-based caching scheme
for client-server database architectures. VLDB Journal,
5(1):35–47, 1996.

[14] D. Kossmann, M. J. Franklin, G. Drasch, and W. Ag. Cache
investment: integrating query optimization and distributed
data placement. ACM Transactions on Database Systems,
25(4):517–558, 2000.

[15] D. Lee and W. W. Chu. Semantic caching via query matching
for web sources. In Proceedings of CIKM, 1999.

[16] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,
B. G. Lindsay, and J. F. Naughton. Middle-tier database
caching for e-business. In Proceedings of SIGMOD, 2002.

[17] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham.
Materialized view selection and maintenance using
multi-query optimization. SIGMOD Record, 30(2):307–318,
2001.

[18] Q. Ren and M. H. Dunham. Using semantic caching to
manage location dependent data in mobile computing. In
Proceedings of MobiCom, 2000.

[19] Transaction Processing Performance Council. TPC
benchmark H (decision support) standard specification
revision 2.11.0, 2010.

