
Aggregate and Grouping Functions in

Object�Oriented Databases

Kjetil N�rv�ag and Kjell Bratbergsengen
Norwegian University of Science and Technology

Department of Computer Science
N����� Trondheim� Norway

fnoervaag�kjellbg	idt
ntnu
no

Abstract

E�cient evaluation of aggregate functions in object�oriented databases �OODB� can have
considerable impact on performance in many application areas� like geographic information
systems and statistical and scienti�c databases� The problem with current systems is ine��
cient execution of aggregate functions with large data volumes� and lack of �exibility	 it is not
possible to extend the systems with new aggregate and grouping functions� In this paper� we
extend the concept of aggregate functions from relational databases� We introduce the concept
of grouping functions� which could enhance �exibility and performance considerably� We show
how this could be implemented into an OODB� We also describe how support for special kinds
of aggregate queries and data structures can help in designing future high�performance systems�

Keywords and phrases� aggregate functions� object�oriented databases� database program�
ming languages� query processing

� Introduction

Object�oriented database systems �OODB� are attractive alternatives to traditional relational
database systems� This is especially true for applications where the modeling power of relational
databases is insu�cient� and the language mismatch makes integration between the application
programs and the database system di�cult�

OODB have been an immature technology� and have only recently been put into �real work��
But	 in some application areas relational databases still beat them in performance� Common for
many of these application areas are heavy use of aggregate functions� together with grouping� A
typical aggregation query partitions a collection of objects� and evaluates one or more functions
on the objects of a group� Typical examples are sum or average of an attribute in each object in
a group� The result is a new collection of objects� one for each group� Although in most database
systems these are not the most commonly executed operations� queries with aggregate functions
possibly scan large parts of the database� making them very time consuming�

Traditionally� business applications have have been the most heavy users of aggregate functions�
In the last years� new application areas have emerged� Areas of particular interest are geographic
information systems� data mining� data warehousing� and statistical and scienti
c databases��
These databases contain highly structured data� very suitable for the object�oriented data model�
Operations on �and analysis of� data in these systems make heavy use of mathematical and sta�
tistical operators� and in some applications� complex grouping� To be able to do e�cient queries�
these operators should be a part of the query system�

As of today� most OODB provide support for execution of basic aggregate functions� but often
with low performance when applied to large data volumes� Also� the systems lack the desired
�exibility	 it should be possible to extend the systems with new aggregate and grouping functions�

�It should be noted that the examples described here are not necessarily independent� if you have a data warehouse�
it is very likely you want to do analysis on it� by the use of data mining techniques�



In this paper� we extend the concept of aggregate functions from relational databases� and we
introduce the concept of grouping functions� The use of grouping functions can enhance �exibility
and performance considerably� We show how this could be implemented into an OODB� Finally�
we describe how support for special kinds of aggregate queries and data structures can help in
designing future high�performance systems�

� Aggregate Functions in OODB Research

Much research has been done in aggregate function evaluation in relational databases� but evalua�
tion of aggregate functions in OODB is still an immature area of research� The main reasons are
probably	

�� The importance of e�cient evaluation of aggregate functions in OODB has not been recog�
nized� Application areas suitable for OODB� like those discussed in the previous section�
should justify the importance�


� The advantages of storing and processing data in databases instead of �les has not been rec�
ognized in all applications areas where it is appropriate ���� The focus in scienti
c computing
has been on doing computations with 
les as inputs� Especially with complex 
le formats
as� e�g�� the HDF 
le format�� computations and maintenance is not trivial� It is also worth
noting that important projects� as e�g� EOSDIS�� are drifting from 
les to database storage
of data�

�� It is often thought that the algorithms developed for relational databases are good enough for
OODB as well� if the aggregation is done on primitive attributes� If� on the other hand�
the aggregation is done on methods� the problem is thought to be equivalent in complexity
to a general read�only query� One should keep in mind that the evaluation of aggregate
functions form a restricted subclass of read�only queries� which gives room for considerable
improvement�

Although the e�ort put into research on aggregate functions in OODB has been low� one
should keep in mind that much has been published about topics related to aggregation� The most
important work is� of course� research done on aggregate function evaluation in relational databases�
The fundamentals are the same� and many results valid for relational databases applies to OODB
as well� Valuable sources for aggregate function evaluation are Bitton et�al� ���� Bratbergsengen
��� and Shatdal et�al� ����� Only recently has the grouping functions been the focus for query
optimization �
�� �� ����

� Aggregate and Grouping Functions

Aggregation is basically partitioning a set of objects into groups� and evaluate one or several
aggregate functions over the objects in the groups� The result is one set of values �from the
aggregate functions� for each group�

Aggregate Functions In our notation� we will write aggregate functions as A�PA�� For each
function A� a set of parameters is given from the set PA� which are one or more attributes from the
objects that the aggregate function is applied to�

All system with query languages already support some aggregate functions� like sum and aver�
age� but with new application areas� with very di�erent needs� it is important to have the possibility

�HDF is a �le format for storing and transmitting scienti�c data sets� and a library interface for working with
the data ����

�Earth Observing System Data Information System



of adding new functions� Examples are statistical functions in statistical and scienti
c databases�
spatial functions as area and perimeter in GIS�spatial databases� and special time�related functions
in temporal databases�

It is useful to think of aggregate functions as state transition functions� which in e�g� POST�
GRES �
�� is done explicit by the use of the CREATE AGGREGATE construction� The di�erence
between an aggregate function and an ordinary function is that an initial state has to exist� With
the concept of objects available� we can de
ne an aggregate function as an object class� here called
aggregate function objects� A new aggregate function object� with its de
ned initial state� is created
for each group during execution� An aggregate function class should contain	

�� A constructor that de
nes an initial state�


� An iterator method to be called for each object aggregated to the group�

�� A method returning the �nal result of the aggregation for the group�

�� With two of the actual parallel aggregation algorithms� more than one aggregate object can
exist for each group �we will come back to this in section ����� As a part of these algorithms�
it must be possible to merge these preliminary group objects into one� To be able to do this�
with general aggregate functions� it is necessary to have merge methods de
ned� as well�

Grouping Functions Which group an object belongs to� is determined by the result of one or
more grouping function G�PG�� Each function G has parameters from the parameter set PG� PG

consists of one or more attributes from the objects which aggregation is applied to� together with
�optional� parameters to the grouping function� The latter ones are independent of the values of
the objects� they are constant values during the aggregation� Grouping functions have no states�
they are just mapping functions from a possible multi�dimensional space with continuous�valued
attributes to a space with discrete�valued attributes� returning a group identifying result�

In current database systems� there is really no such thing as grouping functions� Which group an
object should belong to� is determined by a concatenation of the value of one or more attributes� In
the context of grouping functions� we can say that this is the identity grouping function� I�p� � p�
where output equals input� In the future� it should be possible to de
ne grouping functions in the
same way as aggregate functions�

In applications where several combinations of attributes should map into the same group�
grouping functions are necessary to avoid a costly preprocessing of data� Example applications
are spatial and temporal databases� If we want coordinates within an area to belong to the same
group� we can have a grouping function that do this mapping� Another example is temporal
grouping� where all data in a 
xed interval of time should map to the same group� The described
grouping functions can also be extended to grouping where one object can participate in more than
one group� This can be useful for several application areas� e�g� some business data warehousing
applications�

One important aspect of grouping functions that returns a group identi
er� is that this kind of
grouping lend itself easy to hash�based algorithms� This is important to get high performance�

� Query Processing Operator

It is useful to explain �and implement� aggregation and other operations as language�independent
operators� This is also the way it is done in systems as Gamma ��� and Volcano ���� A stream of
objects �ows through a tree of operators� An �object� can be either a materialized object� or the
object identi
er� In OODBs it should be is possible to operate on methods� in the same way as on
attributes� When we in the rest of the paper talk about attributes� these could be either values�
or method invocations�



position

name

Position

positionName

salary

N 1
age

department

Employees

tax()

numOfDependents

Figure �	 Example database

The aggregate operator� can be written as	

AGGREGATE�I�A��P
A

�
�� � � � �An�P

A

n��G��P
G

�
�� � � � �Gm�P

G

m��R�

where	

� I is the input stream� This can be a stream from another operator� e�g� SELECT�

� A de
nes a set of aggregate functions� For each function� a set of parameters is given from
the set PA

i
�

� G is the set of grouping functions� The grouping functions are applied to all objects in
the input stream� and the set of results determines for each object which group it belongs
to	 G � �m

i��
Gi� The concatenation of partial results from the grouping functions should

probably be mapped to a group identi
er� This makes hash�based aggregation algorithms
easier to employ�

� R is the output stream� The aggregate functions A are applied on every set of objects belonging
to the same group� thus giving one result object for each group� Each object contains G and
the result of A applied on the set� Thus� the schema is Rs�G� A�� � � � �An��

� Aggregation in Query and Application Languages

Relational databases usually have support for aggregate functions in their query language �SQL��
although e�ciency di�er� Most object�oriented databases have �or will soon have� support for
aggregate functions with grouping in their query language� but lacks support in their application
languages� requiring the user to explicitly call the query language from the application language�
giving an impedance mismatch� In the ODMG��� Object Query Language ��� the operations are
supported by a group�by�expression similar to SQL�

To illustrate notation and languages� we will use the employee database in Figure � as an
example� This database has two classes	 The class Employee� with attributes name� department�
age and numOfDependents� and the class Position with attributes positionName and salary� In
addition� we have a relationship between the lasses as depicted by the 
gure� The method named
tax�� in the Employee class� returns the tax as a function of numOfDependents and the salary in
the Position object� We call the extent �collection of all Employee objects� Employees� Suppose
we wanted a list of the average age of people in the di�erent departments in our example database�
With the notation from Section �� and the result put into Result� this can be written	

AGGREGATE�Employees�avg�age��I�department��Result�

�This operator is based on the aggregate operator described by Bratbergsengen in ����



Query Language In the ODMG��� Object Query language �Release ��
�� this can be done with
the following query	

select department� avg age� avg�select age from partition�
from Employees e

group by dep� e�department

Application Language It is important to have the aggregate operator as a part of the applica�
tion language to avoid the impedance mismatch� As of today� the user is usually required to write
the code himself or get the result through a call to the query processor� In that case� the query
is formulated as a string interpreted at run�time� This is the case of the current version of the
ODMG C�� binding ���� If we embed the previous query into a C���program� with the result
of the query is returned in resultSet� we could write this as	

Set�Ref�DepAvgAge�� resultSet�
oql�resultSet� �select department� avg age� avg�select age from partition�n

from Employees en
group by dep� e�department���

Use of Methods in Queries In an OODB� it is also possible to do queries on methods� where
methods should be possible to use just the same way as attributes� If we wanted a a list of the
average amount of tax paid by the people in the di�erent departments� it should be possible to do
this as	

select department� avg tax� avg�select tax�� from partition�
from Employees e

group by dep� e�department

� Execution of Aggregation Queries

In the relational data model� all tuples streaming to an aggregate operator contain atomic at�
tributes� which can be processed immediately� and without accessing other tuples� This is not
the case in the object�oriented data model� If the attributes are just values� this corresponds to
retrieval of tuple attributes� but evaluation of methods is more di�cult� The methods might in�
volve computations� and possibly access to other objects� To make the aggregation part �cleaner��
we separate the evaluation of methods and the aggregation by introducing a materialize operator�
This operator outputs a restricted materialization of the objects	 the required methods� and no
other� are evaluated� and the results are output to the aggregate operator� In this way� the ag�
gregate operator can apply the aggregation stream without computations and without accessing
other objects� The result is that we can use a aggregate operator similar to the relational one�

��� The Materialize Operator

The straightforward strategy is to naively fetch an object� evaluate the methods� output the result�
and continue with the next object in the stream� As long as the methods does not access other
objects� this strategy works well� But if methods accesses other objects �which is similar to a
functional join�� this might be ine�cient	 if an object is accessed from more than one object in the
aggregate stream� it might have been thrown out from the bu�er�cache between the accesses� The
object has to be re�read from disk� which is ine�cient� Therefore� we want to control these accesses�
This can be done by employing available techniques for functional join� Several algorithms and
techniques are described by Shekita et�al� in ���� ��� ���� and Lieuwen et� al� in ���� ����



Aggr.Func.Object

Aggr.Func.Object

. .
 .

Aggregate
Object

Grouping Function Res.

�a	

Result Collection

. . .

. .
 .

Aggr.Func.Result

Aggr.Func.Result

Grouping Function Res.

. .
 .

Aggr.Func.Result

Aggr.Func.Result

Grouping Function Res.

�b	

Figure 
	 Aggregate object and objects in result collection

��� The Structure of Aggregate and Result Objects

During aggregation� a new aggregate object is created for each group �see Figure 
a�� The aggregate
objects will belong to a class with the following attributes	

�� An attribute identifying the group �the result of the grouping functions applied on an object��


� One attribute for each Ai in the list of aggregate functions� These attributes are object
instances of aggregate function classes�

The result of the aggregation is a collection with one element for each group �see Figure 
b��
These objects contains the 
nal results of the aggregate functions� The result objects will belong
to a class with the following attributes	

�� An attribute identifying the group �


� One attribute for each Ai in the list of aggregate functions� These are the 
nal results of the
aggregate functions�

��� The Aggregate Operator

The function of the aggregate operator is to apply the aggregate function�s� on the objects it
receives� and group according to the grouping function�s�� In the relational data model� all tuples
streaming to an aggregate operator contain atomic attributes� With the use of the materialize
operator� aggregation in OODB can be done with the traditional algorithms used in relational
databases�

The nested�loop aggregation algorithm is the basic approach� but becomes ine�cient when the
size of the aggregate objects �number of aggregate objects�size of each aggregate object� is much
larger than primary memory� In that case� one should either

� pre�sort the objects in the object stream based on the grouping identi
er� or

� partition the objects in the input stream based on the grouping identi
er



before aggregation� If the input stream is not sorted initially� which is common in an OODB��
it is better to use a partition�aggregate algorithm� With un�sorted input� partition�aggregate will
always perform better than sort�aggregate �
��

��� Parallel Aggregation

In general� it is di�cult to parallelize navigational queries in OODB ����� Set processing� on the
other hand� lends itself to parallelizing� With parallel machines� distribution of work between
nodes can improve performance� Several algorithms for distributed aggregation exist� with the
following in common use	

� Parallel aggregation with local aggregation�central coordinator

� Parallel aggregation by redistribution

� Redistribution with local aggregation

With parallel aggregation in OODB� we get a problem that does not exist in relational databases	
how to evaluate methods in objects accessed from objects to be aggregated� There are several ways
to evaluate these methods� we have here the query vs� data shipping problem� This has much in
common with distributed �functional� join� but the the use of complex methods complicates the
situation�

Local Aggregation	Central Coordinator This algorithm is only useful for scalar aggregates�
e�g�� with no grouping� All nodes do local aggregation on the part of the data allocated to that
node� The local aggregation can be done with one of the three algorithms described above� The
resulting aggregate objects are sent to a coordinator node� which uses the preliminary aggregate
objects it receives to create the 
nal aggregate objects� With user de
ned aggregate functions� it
is necessary to have available methods to merge the partial preliminary objects �see section ���

Redistribution In the 
rst phase� objects are relocated to nodes according to a hashing function
applied on the result of the grouping methods� Objects belonging to a group is� in that way�
guaranteed to end up at the same node� In the second phase� aggregation is performed at each
node with one of the three 
rst algorithms�

Redistribution with Local Aggregation In the parallel aggregation by redistribution algo�
rithm� more data than necessary is moved� With large groups �many objects in each group�� we
can gain much by doing local aggregation before redistribution ���� This is the way aggregation
with grouping is done in e�g� Gamma ���� In the 
rst phase� all nodes do local aggregation on data
residing on the node� just as in the local aggregation�central coordinator algorithm� In the second
phase� the result is distributed according to a hashing function applied on the value of the result
of the grouping methods� The global result is obtained by merging the preliminary objects �cf�
section �� as done in parallel aggregation by redistribution�

Several implementations have shown that with high�bandwidth communication between nodes�
the local aggregation is not necessarily bene
cial� Whether to do local aggregation or not depends
on data selectivity and communication bandwidth� As suggested by ����� sampling of data should
be used to decide if local aggregation should be done before redistribution�

�Sort
aggregate is the algorithm used in most existing commercial relational systems ���� One reason for this�
is that quite often� traditional applications want a sorted result from the aggregation �ORDER BY in SQL	� In a
typical OODB application� this will probably not be the case�



� High�Performance Aggregation

The performance of evaluation of aggregate functions can be improved in several ways� We have
already treated parallel aggregation� in addition it is useful to study optimization for special kinds
of aggregate queries� special access patterns� and special data structures	

Multi
Level Aggregation Sometimes� aggregation is nested� multi�level aggregation� That is�
aggregation done on a group of aggregate groups� This can be exploited to increase performance�

Aggregation on Multi
Dimensional Data Structures Although current databases only
support aggregation on collections as sets or bags� the aggregation can be done on other multi�
dimensional structures� This is useful for spatial and temporal databases�

In OODB� it is possible for the user to specify aggregate functions� While this works well on
set�like structures� it is likely to give bad performance on other structures� The best alternative
might be to provide new aggregate operators that work on non�set�like structures�

Temporal Aggregates Conventional aggregate algorithms are not e�cient when applied to
temporal databases� Algorithms for computing temporal aggregates are presented by Kline and
Snodgrass in ��
�� As far as we know� no one has published work on parallel algorithms for temporal
aggregation� or algorithms for temporal aggregation in OODBs� Temporal databases can be viewed
as a subclass of multidimensional databases� and algorithms similar to aggregation on spatial data
structures can be employed�

Combining Bulk Loading and Aggregation Bulk loading is loading a large external dataset
during a single sitting ����� If it is known at load time what kind of aggregate functions that
will be employed later on the data set� it is possible to do aggregation while loading� Combining
bulk loading algorithms with aggregation will probably be bene
cial� especially in databases where
summary data can be exploited �e�g� in statistical and scienti
c databases�� As a starting point�
the bulk loading algorithms developed by J� Wiener �

� can be used� But� no good algorithms
for parallel loading has yet been developed� This problem has to be solved� as a single�threaded
algorithm will be a potential performance bottleneck�

Precomputed Results In many of the proposed application areas for aggregate evaluation�
much of the data will be static� It is possible to take advantage of this by either having precomputed
the query for part of the database� and�or use stored results from earlier queries� These techniques
are quite similar to techniques used for view maintenance�materialized views in data warehousing
�
�� �� ����

Another approach is to have the system maintain an index to the data with statistical summary
data�� By using a structure which makes it easy to exploit the summary data �a tree is used in
the tree based access method proposed by Srivastava and Lum �
���� performance can be greatly
enhanced if the data are heavily used�

Resumable Aggregation In large databases� queries involving aggregation can be a very time
consuming� It is desirable that a crash during aggregation does not mean that all the work is
wasted� Several approaches to avoid this can be used� Examples are aggregation checkpointing
and storing partial results� The partial results is similar to materialized views� but for resumable
aggregation they are completely machine generated�

�Statistical summary data is partial results needed for some operations� An example is a sum of some elements�



	 Conclusions

E�cient evaluation of aggregate functions in object�oriented databases �OODB� can have consid�
erable impact on performance in many application areas� Still� current systems are not able to
compete in performance with traditional relation database systems� In this paper� we have justi
ed
the need to concentrate on research in this area� and also showed why so little previous research
exists�

In this paper we have extended the concept of aggregate functions from relational databases�
and introduced the concept of grouping functions� Grouping functions are not currently o�ered by
any system� but in this paper we have shown how this could be integrated into the aggregation
process� By o�ering aggregation and grouping as depicted in this paper� the systems will be able
to provide the desired �exibility needed in future high�performance database applications� We
believe� that the way to high performance aggregation in future database systems lies in	

� More e�cient algorithms� Aggregation on methods has much in common with functional
join� and often functional join is part of the process too� It will be bene
cial to use resources
on this� and in particular on parallel and distributed functional join�

� Maintaining and employing precomputed results� When applicable� this is probably the
strategy that can give most in increased performance� The implementation cost need not be
too high� These precomputed results has to be automatically created when necessary by the
system�

� Developing new algorithms for applications with multi�dimensional data structures� These
algorithms will also be useful for evaluating temporal aggregates�

� More research in grouping functions� Grouping functions� with mapping to a discrete domain�
lend itself easy to hash�based aggregation algorithms�

References

��� D� Bitton� H� Boral� D� J� DeWitt� and W� K� Wilkinson� Parallel Algorithms for the Execution
of Relational Database Operations� ACM Transactions on Database Systems� ����� �����

�
� K� Bratbergsengen� Hashing Methods and Relational Algebra Operations� In Proceedings of
the 	
th International Conference on VLDB� �����

��� K� Bratbergsengen� Relational Algebra Operations� In PRISMA Project Workshop� Nordwijk�
The Netherlands� �����

��� R� Cattell� editor� The Object Database Standard� ODMG��
� Release 	��� Morgan Kaufmann�
�����

��� D� J� DeWitt� DBMS � Roadkill on the Information Superhighway� Invited talk at VLDB����
�����

��� D� J� DeWitt� S� Ghandeharizadeh� D� Schneider� A� Bricker� H��I� Hsiao� and R� Rasmussen�
The gamma database machine project� IEEE Transactions on Knowledge and Data Engineer�
ing� 
���� �����

��� G� Graefe� Query Evaluation Techniques for Large Databases� ACM Computing Surveys�

��
�� �����

��� G� Graefe� Volcano � An Extensible and Parallel Query Evaluation System� IEEE Transac�
tions on Knowledge and Data Engineering� ����� �����



��� A� Gupta� V� Harinarayan� and D� Quass� Generalized Projections	 A Powerful Approach To
Aggregation� Technical report� Stanford� �����

���� A� Gupta� V� Harinarayan� and D� Quass� Aggregate�Query Processing in Data Warehousing
Environments� In Proceedings of the �	st International Conference on Very Large Data Bases�
�����

���� K��C� Kim� Parallelism in Object�Oriented Query Processing� In IEEE Sixth International
Conference on Data Engineering� �����

��
� N� Kline and R� T� Snodgrass� Computing Temporal Aggregates� In Proceedings of IEEE
		th Int�l Conference on Data Engineering� March� 	���� �����

���� D� Lieuwen� D� DeWitt� and M� Mehta� Pointer�based Join Techniques for Object�Oriented
Databases� Technical Report CS�TR��
������ University of Wisconsin�Madison� ���
�

���� D� Lieuwen� D� DeWitt� and M� Mehta� Parallel Pointer�based Join Techniques for Object�
Oriented Databases� In Proc� �nd International Conference on Parallel and Distributed In�
formation Systems� �����

���� D� Maier and D� M� Hansen� Bambi Meets Godzilla	 Object Databases for Scienti
c Com�
puting� In Seventh International Working Conference on Scienti�c and Statistical Database
Management� IEEE Computer Society Press� �����

���� A� Shatdal and J� F� Naughton� Adaptive Parallel Aggregation Algorithms� In Proceedings of
the 	��� ACM SIGMOD� pages �������� ACM Press� �����

���� E� Shekita� High�Performance Implementation Techniques for Next�Generation Database Sys�
tems� PhD thesis� University of Wisconsin�Madison� �����

���� E� J� Shekita and M� J� Carey� Performance Enhancement Through Replication in an Object�
Oriented DBMS� In Proceedings of the 	��� ACM SIGMOD� �����

���� E� J� Shekita and M� J� Carey� A Performance Evaluation of Pointer�Based Joins� Technical
Report ���� University of Wisconsin�Madison� �����

�
�� J� Srivastava and V� Y� Lum� A Tree Based Access Method �TBSAM� for Fast Processing of
Aggregate Queries� In IEEE Fourth International Conference on Data Engineering� �����

�
�� J� Widom� Research Problems in DataWarehousing� In Proceedings of the �th Int�l Conference
on Information and Knowledge Management �CIKM�� November 	���� �����

�

� J� L� Wiener� Algorithms for Loading Object Databases� PhD thesis� University of Wisconsin�
Madison� �����

�
�� W� Yan and P���A� Larson� Eager Aggregation and Lazy Aggregation� In Proceedings of the
�	st International Conference on Very Large Data Bases� �����

�
�� A� Yu and J� Chen� The POSTGRES�� User Manual� �����


