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ABSTRACT
Lately the advances in centralized database management
systems show a trend towards supporting rank-aware query
operators, like top-k, that enable users to retrieve only the
most interesting data objects. A challenging problem is to
support rank-aware queries in highly distributed environ-
ments. In this paper, we present a novel approach, called
SPEERTO, for top-k query processing in large-scale peer-to-
peer networks, where the dataset is horizontally distributed
over the peers. Towards this goal, we explore the applicabil-
ity of the skyline operator for efficiently routing top-k queries
in a large super-peer network. Relying on a thresholding
scheme, SPEERTO returns the exact results progressively
to the user, while the number of queried super-peers and
transferred data is minimized. Finally, we propose different
variations of SPEERTO that allow balancing between trans-
ferred data volume and response time. Through simulations
we demonstrate the feasibility of our approach.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Algorithms, Experimentation, Performance

Keywords
Top-k queries, skyline operator, peer-to-peer systems

1. INTRODUCTION
Recently there has been an increased interest in database

management systems to incorporate and support more flex-
ible query operators, like top-k, that help in avoiding huge

∗This research project is co-financed by E.U.-European So-
cial Fund (75%) and the Greek Ministry of Development-
GSRT (25%).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

and overwhelming result sets. Top-k queries retrieve the
objects that best match the user requirements by employing
user-specified scoring functions that result in an ordered set
of objects containing the best k objects only [8, 14].

A number of applications can significantly benefit from
support for top-k query processing, for example multime-
dia retrieval (including images) [9, 12], digital libraries [15,
16], web search [18], and e-commerce [17]. Consider for ex-
ample online booking systems, e.g, travel and accommoda-
tion, where the user is only interested in the best offers (air-
tickets, hotels) according to a set of dynamic, user-specified
criteria.

Due to applications and systems such as sensor networks,
data streams, and peer-to-peer (P2P) systems, data genera-
tion and storage is becoming increasingly distributed. Thus
an emerging challenge is to support top-k query processing
over a highly distributed network of collaborative computers
(i.e. servers or peers). In this paper we focus on top-k query
processing in P2P systems, which is a context that can also
easily be generalized to other distributed systems. There is
only limited previous work on supporting top-k queries in
P2P systems, and those approaches either assume vertical
data partitioning to peers [18], rely on caching techniques [4,
22], or deliver approximate query result sets [13]. In con-
trast to these approaches, our work assumes horizontal data
partitioning among peers and supports a large class of scor-
ing functions. Each user may define his/her own arbitrary
preferences for each query, therefore the queries are not nec-
essarily re-occurring, which renders caching techniques in-
appropriate. The challenge is to provide efficient algorithms
for processing top-k queries, i.e. queries that return only the
exact best k results to the user.

In this paper we present SPEERTO1, a framework that
supports top-k query processing over horizontally partitioned
data stored on peers organized in a super-peer network.
Users are allowed to specify a monotone function for each
query that aggregates a certain number of the objects char-
acteristics into a single score that defines a total ordering,
and therefore enables the retrieval of top-k results. Our ap-
proach is based on novel use of the skyline operator [5] for an-
swering top-k queries. For a maximum value of K, denoting
an upper bound on the number of results requested by any
top-k query (k ≤ K), each peer computes its K-skyband [20]
as a pre-processing step. Each super-peer maintains and

1Skyline-based Peer-to-Peer Top-k Query Processing.
SPEERTO is inspired by a Greek word (spirto) that means
fire match, but also used to characterize a very intelligent
person.



aggregates the K-skyband sets of its peers to answer any
incoming top-k query. By exchanging skyline sets (which
are a subset of the K-skyband sets) at super-peer level,
SPEERTO always provides the exact and complete result set
in a progressive way, while queries are deliberately routed
to those super-peers that actually contribute to the top-k
(k ≤ K) result.

To summarize, SPEERTO utilizes a threshold-based super-
peer selection mechanism based on the skyline points of each
super-peer. Although the skyline operator [5] has received
recently considerable attention, the usage of the skyline op-
erator for answering top-k queries has yet not been explored.
We study the correctness of our approach and its effective-
ness in terms of number of queried super-peers and trans-
ferred objects. The main contributions of our work are:

• An exploration of the applicability of the skyline op-
erator for efficiently answering top-k queries for a wide
class of scoring functions, indicating user-specified pref-
erences, in large P2P networks.

• A presentation of SPEERTO, a novel framework which
efficiently supports progressive processing of top-k
queries using the skyline and K-skyband sets, employ-
ing a thresholding scheme in order to facilitate pruning
of objects that cannot belong to the result set. More-
over, the correctness and optimality in terms of queried
super-peers and transferred data are demonstrated.

• A detailed study of different variations of SPEERTO
in order to balance between different performance met-
rics, like response time and volume of exchanged data.

• An extensive experimental evaluation showing that our
approach performs efficiently and provides a viable so-
lution. We also evaluate SPEERTO for top-k queries
with k > K where we achieve high recall values.

The rest of this paper is organized as follows: Section 2
reviews the related work, and in Section 3 we provide the
preliminaries for presenting SPEERTO. In Section 4, we de-
scribe how to construct the skyline-based routing mecha-
nism for top-k query processing over a super-peer architec-
ture. Thereafter, in Section 5 our threshold-based top-k
algorithm is presented, while in Section 6 we discuss ex-
tensions of SPEERTO. The experimental evaluation is pre-
sented in Section 7, and finally we conclude in Section 8.

2. RELATED WORK
Several papers have dealt with the issue of top-k query

processing in centralized database management systems [8,
14]. Previous work in distributed environments [9, 12, 17]
has focused on vertically distributed data over multiple
sources, where each source provides a ranking over some
attributes. Most approaches, such as recently [2], try to im-
prove some limitations of the Threshold Algorithm [11]. A
common underlying assumption of these papers is that data
is vertically distributed to nodes, in contrast to our case
where we assume horizontal distribution of data. Marian
et al. [17] study top-k query evaluation over web-accessible
databases, including random accesses to score lists, instead
of sorted accesses only, as in [11]. Following the same con-
cept, there exists some previous work for top-k queries in
P2P over vertically distributed data. In [6], Cao and Wang

propose an algorithm called ”Three-Phase Uniform Thresh-
old” (TPUT) that aims to prune unnecessary data objects
and it is guaranteed to terminate in three round-trips. Later,
TPUT was improved by KLEE [18]. KLEE has two variants,
one that requires three phases and another that only needs
two round-trips. KLEE also provides mechanisms for trad-
ing performance with result quality, thus supporting approx-
imate top-k retrieval. However, processing top-k queries in
the context of horizontally distributed data and P2P sys-
tems has not been adequately addressed yet.

For horizontally distributed data among peers, P2P top-k
query processing has been studied in only a few works so
far. Balke et al. [4] try to minimize the data object traf-
fic induced by top-k processing. However, this approach
requires that each query is processed by all super-peers, un-
less the exact same query reoccurs, which is unlikely as there
is an infinite number of potential queries posed by different
users. A similar approach for unstructured P2P systems is
presented in [1], where the main technique is a variant of
flooding, followed by a merging score-list step at interme-
diate peers. In [22], the authors rely on result caching to
prune network paths and answer queries without contacting
all peers. Their approach relies on caching techniques, there-
fore the performance is dependent on the query distribution.
Even more important, they assume acyclic networks, which
is restrictive for dynamic peer-to-peer networks. Hose et
al. [13] construct routing filters in the form of histograms,
in order to prune query paths and return approximate re-
sults. These filters are built on each peer progressively, as
the peer communicates with other peers, using a query feed-
back approach. However this approach delivers approximate
answers and the performance drops with increasing dimen-
sionality since multi-dimensional histograms should be used.

In the area of P2P information retrieval, there exists some
work that takes into account top-k queries. However this
work is not entirely within the context of our work, as their
main focus is on document retrieval and on defining an ap-
propriate scoring function. For example, in [15, 16], Lu and
Callan focus on search in a digital library context, using
hierarchical P2P networks and propose result merging algo-
rithms based on sampled documents from neighboring peers.

Finally, the skyline operator [5] has recently received con-
siderable attention, but its usage for answering top-k queries
has not been explored yet. In [21] the authors improve the
performance of ranked join indices based on the concept
of dominating sets. In [19] a method for continuous top-
k queries over streams is presented that monitors the top-k
objects by using the K-skyband on a two dimensional trans-
formed score-time space.

3. PRELIMINARIES
In this section, we present the problem statement, the

basics regarding top-k queries, and a short overview of the
P2P system where the proposed approach is deployed. An
overview of the symbols used can be found in Table 1.

3.1 Problem Statement
Given a data collection O of n objects oi (1 ≤ i ≤ n),

we assume d features sj(oi) (1 ≤ j ≤ d) that describe an
object oi ∈ O. We assume that the features sj are numeri-
cal scoring functions with non-negative values that evaluate
certain features of database objects. For example, sj can be
extracted characteristics, aggregations of attribute values,



Symbols Description

d Data dimensionality
n Dataset cardinality
K The maximum number of k

Np Number of peers
Nsp Number of super-peers
DEGp Degree of simple peer
DEGsp Degree of super-peer

SKYi Skyline set of the ith super-peer

KSKYi K-skyband set of the ith super-peer

Table 1: Overview of symbols

or scoring functions for low-level features [3]. Furthermore,
without loss of generality, we assume that smaller score val-
ues are preferable.

The feature space is defined by the d scoring functions
sj , therefore it is a d-dimensional space. An object oi ∈ O
can be represented as a point p in the feature space: p =
{p[1], ..., p[d]}, where p[j] = sj(oi) is a value on dimension
dj . Figure 1 depicts a 2-dimensional example. In the rest
of this paper we use the terms object and data point inter-
changeably.

In our approach we assume an aggregation function f that
is increasingly monotone, i.e. if p[i] ≤ p′[i] for every i, then
f(p) = f(p[1], ..., p[d]) ≤ f(p′[1], ..., p′[d]) = f(p′). The re-
striction of monotonicity is a common property [8, 11] and it
conveys the meaning that whenever the score of all dimen-
sions of the point p is at least as good as another point p′,
then we expect that the overall score of p is as least good
as p′. The result of a top-k query is the ranked list of the k
objects with lowest score values.

A special case of monotone functions is the weighted sum
function, also called linear. Each feature sj(oi) has an as-
sociated query-dependent weight wj indicating sj ’s relative
importance for the query. The aggregated score for object
oi is defined as a weighted sum of the individual scores:
score(oi) =

∑d
j=1 wj ×sj(oi), where wj ≥ 0 (1 ≤ j ≤ d) and

∃j such that wj > 0. As some weights can be set equal to
zero, our approach also supports top-k queries with respect
to only to a subset of the available features. The weights
indicate the user’s preferences and influence the ordering of
the data objects and therefore the top-k result set. Consider
for example the dataset depicted in Figure 1. By assigning
a high weight to feature s2, point p is the top-1 object, while
if a low weight is used, point q becomes the top-1 object.

Our approach is applicable for any increasingly monotone
aggregate function, but in our examples we use the weighted
sum function, which is one of the most common scoring func-
tions for top-k retrieval. In our setting a top-k query qk(f)
takes two parameters: a user specified monotone function
f and the number of requested objects k. In the special
case of the weighted sum, the user specifies the weighting
of each feature, i.e. how important this feature is based on
his preferences. Therefore the query can be expressed as
qk(w), where w is a d-dimensional vector w = {w1, ...wd}.
Notice that both the scoring function and the parameter k
may differ for each query and we are interested in retrieving
the k objects with the best (minimum) values of the scoring
function.

Feature Space

s1

s2

p

q

p[2]

p[1] q[1]

q[2]
Data Objects oi

Figure 1: Feature space

3.2 System Overview
The overall aim is to provide a routing mechanism for

answering top-k queries in P2P networks, assuming a super-
peer architecture. More formally, we assume an unstruc-
tured P2P network of Np peers. Some peers have special
roles, due to their enhanced features, such as availability,
stability, storage capability and bandwidth capacity. These
peers are called super-peers SPi (1 ≤ i ≤ Nsp), and they
constitute only a small fraction of the peers in the network,
i.e. Nsp << Np. Peers that join the network directly con-
nect to one of the super-peers. Each super-peer maintains
links to simple peers, based on the value of its degree pa-
rameter DEGp. In addition, a super-peer is initially con-
nected to a limited set of at most DEGsp other super-peers
(DEGsp < DEGp). Later, at query time, each super-peer is
able to open direct connection to any other super-peer in the
network, using its IP address. However notice that the ap-
proach is also applicable, when no direct connection between
super-peers can be established, and the communication is
achieved by query forwarding through other super-peers.

Each peer Pi holds ni d-dimensional points, denoted as a
set Oi (1 ≤ i ≤ Np). Since we assume horizontal data distri-

bution, the size of the complete set of points is n =
∑Np

i=1 ni

and the dataset O is the union of all peers’ datasets Oi

(O = ∪Oi). Each peer maintains its own data objects, such
as images or documents, and only the feature values of few
selected objects, namely the K-skyband [20] points, are pub-
lished as representative points to the respective super-peer,
while the original data is stored at the peer. By maintaining
the K-skyband points, any super-peer is capable of answer-
ing any top-k (k ≤ K) query as far as only the data of
all peers connected to the super-peer are concerned. The
remaining challenge is to answer top-k queries over the en-
tire super-peer network, in a way that only super-peers that
contributed to the query are contacted. In the following, we
propose an approach that supports top-k queries over data
distributed in a super-peer network, utilizing routing indices
based on skylines [5]. Our technique guarantees accurate re-
sults, while minimizing the number of queried super-peers
and the amount of network traffic.

4. SKYLINE-BASED ROUTING
In this section, we first discuss the relation between top-

k and skyline queries (Section 4.1). Thereafter, in Section
4.2, we describe how to construct the skyline-based routing
mechanism for top-k query processing over a super-peer ar-
chitecture. Finally, in Section 4.3, we outline the effects of
churn and dynamic data on the routing mechanism.
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4.1 Top-k and Skyline Queries
Consider a linear top-k query defined by a vector w. As

discussed in [21] the magnitude of the query vector does
not influence the query result as long as the direction re-
mains the same. Therefore, we make the assumption that∑

1≤i≤d wi = 1. In a d-dimensional space we define as
query borderline the d − 1 dimensional hyper-plane, which
is vertical to vector w and contains the furthest data point,
which belongs to the top-k result set. If we consider the
2-dimensional example depicted in Figure 2 the point i is
the top-1 object for the query 0.5 ∗ x + 0.5 ∗ y. The line
0.5 ∗ x + 0.5 ∗ y = f(i) = 2.5 is considered as the border-
line for the top-1 query with w = [0.5, 0.5]. In the following
we define the skyline set and discuss its relation to top-k
queries.
Skyline Definition. Assuming a space D defined by d
dimensions {d1, d2, .., dd} and given a set of points O, a point
p ∈ O with p = {p[1], ..., p[d]} is said to dominate another
point q ∈ O, if on each dimension di ∈ D, p[i] ≤ q[i]; and
on at least one dimension dj ∈ D, p[j] < q[j]. The skyline is
a set of points SKY ⊆ O which are not dominated by any
other point. The points in SKY are called skyline points.

In the example of Figure 2, a, i and n are the skyline
points. Notice that i, which is the best match for the top-1
query with w = [0.5, 0.5], belongs to the skyline.
Observation. The top-1 object for any increasingly mono-
tone function belongs to the skyline set.
Proof: Consider a point q that does not belong to the sky-
line, but it is the top-1 for a query defined by an increasingly
monotone function f . Then there exists another point p that
dominates q, i.e. on each dimension di ∈ D, p[i] ≤ q[i]; and
on at least one dimension dj ∈ D, p[j] < q[j], and since f is
increasingly monotone this leads to a contradiction, because
q is the top-1, i.e. f(p) > f(q). Thus, the top-1 object for
any increasingly monotone function belongs to the skyline.�

Motivated by the fact that the top-1 always belongs to
the skyline for any monotone function, we use the skyline as
a pre-processing step to answer top-k queries. In order to
collect the points necessary to answer exact top-k queries, we
adopt the concept of K-skyband [20]. A K-skyband query
returns the set of points which are dominated by at most
K−1 other ones. Thus, the conventional skyline is a special
instance of the K-skyband, where K = 1. In Figure 2, the
K-skyband for K = 3 includes all points that lie in the
line-shadowed area. Notice that this area contains the top-3
points for any query.

4.2 Routing Mechanism Construction Phase
In SPEERTO the super-peers are responsible for answer-

ing arbitrary top-k queries over their peers’ data. This is
enabled by a pre-processing phase where super-peers gather
some carefully selected data from their peers. Thereafter, at
query processing time, a super-peer can execute the query
over its locally aggregated data and retrieve the fraction of
the top-k query result that corresponds to its peers.

As discussed before, the result of top-k queries for any
increasingly monotone function can be answered from the
K-skyband (where k ≤ K). The K-skyband is a set of
points, such that there exists no other point that can be-
long to the result of any top-k query for any increasingly
monotone function. In our approach each peer computes its
K-skyband during a construction phase. Each super-peer
gathers K-skyband sets from its simple peers and merges
the individual K-skyband sets by discarding points that are
dominated by more than K − 1 points. In this way a super-
peer is capable to answer any incoming top-k query over its
peers’ data. The choice of the algorithm used by the peer
for the K-skyband computation is indifferent to our frame-
work, as it does not influence its performance. It should
be stressed that even though the skyline operator is CPU-
intensive [7] and therefore more costly than a top-k query,
SPEERTO uses the skyline as a pre-processing step, i.e. its
construction is a one-time cost, and then any top-k query
with arbitrary k (k ≤ K) and scoring function can be pro-
cessed (see Section 5).

Given the K-skyband at each super-peer, there exist two
naive solutions to process global top-k queries. In the first,
each super-peer broadcasts its K-skyband to all other super-
peers, then each super-peer has enough data to answer any
top-k (k ≤ K) query locally. The advantage is that the
query is processed (at any super-peer) without contacting
remote super-peers. However, this approach is not feasible
in a highly distributed environment, because of the size of
the skyband and the cost of distributing it to all the super-
peers and keeping it updated.

The second naive approach is to flood each query to all
super-peers to find the correct top-k result. The advantage
of this approach is that the cost of distributing the skybands
is avoided. However, flooding is costly, and although appro-
priate for distributing metadata needed for creating routing
indices, it is too costly to employ for each individual query.

SPEERTO employs a more efficient approach than the
naive approaches described above, that combines the ad-
vantages of the aforementioned approaches, while alleviating
the disadvantages. SPEERTO broadcasts only some sum-
mary information of the K-skyband, namely the skyline set,
and utilizes a threshold-based super-peer selection mecha-
nism (see Section 5). Intuitively, the skyline is the border
of the K-skyband with respect to the axes. Notice that the
cardinality of the skyline is significantly smaller than the
cardinality of the K-skyband.

4.3 Routing Indices, Updates and Churn
Routing indices at super-peer level are built during the

construction phase, prior to query processing. A super-peer
first assembles the K-skyband of its peers, then computes a
new K-skyband over the assembled peer data, and finally it
computes its skyline. The skyline information is broadcast
to other super-peers and serves as routing index. Essentially,
in this way, each super-peer receives and maintains the sky-



line of other super-peers. Our approach for top-k queries in
a P2P system gives correct and complete results under the
assumption of a system with no churn and static data. In
this section, we discuss about churn and dynamic data.

Data updates only infrequently change the skyline, and
small changes in the skyline do not significantly change the
accuracy of the top-k query processing (see Section 7). There-
fore, it is not necessary to continuously maintain the skyline
updated at remote super-peers, and periodic updates suffice.
Obviously, high update rates can lead to time intervals where
the results may not be accurate temporarily. The mainte-
nance approach of remote skylines is based on broadcasting
the skyline updates, when either the skyline has significantly
changed or the validity time has expired. While skylines are
used to select super-peers during top-k processing, the K-
skyband on a super-peer is used to generate the actual re-
sults, and has to be more frequently updated. However, this
cost is still less significant because a peer is relatively close
to its super-peer in terms of network distance. In Section 6,
we discuss an extension of SPEERTO which is more robust
to updates.

Churn of super-peers is detected by lack of response during
query processing. When this occurs, the skyline entry of the
departed super-peer is removed at the querying super-peer.
When a super-peer joins the network, its skyline is broadcast
as described previously. Churn of simple peers is handled by
recomputing the super-peer K-skyband, when a simple peer
leaves or joins. In the case that the skyline of the super-peer
is modified, the skyline has to be updated at all super-peers,
in order to ensure accurate results.

5. P2P TOP-K QUERY PROCESSING
In this section, we introduce a threshold-based algorithm

(Section 5.1) that answers arbitrary top-k queries by query-
ing only the necessary super-peers. In the following, we also
show that our threshold-based algorithm is optimal in terms
of the number of contacted super-peers and the volume of
transferred data (Section 5.2).

5.1 Threshold-based Top-k Algorithm
Our distributed top-k algorithm assumes that there ex-

ists a construction phase, where each peer computes the K-
skyband of its local data. Then, each super-peer gathers the
K-skyband sets of all its associated peers. The K-skyband
information is merged at each super-peer, resulting in a new
K-skyband set, denoted as KSKYi, which is stored locally
at the super-peer. Finally, each super-peer broadcasts to
the other super-peers only some summary information of
the K-skyband, namely the skyline set, sufficient for every
super-peer to route any top-k query to those super-peers
that can contribute to the final result. Each super-peer SPi

assembles Nsp sets of skyline points SKYi, (1 ≤ i ≤ Nsp).
These points are called routing objects.

Actually, the super-peers store the feature values of the
objects that are stored on the peers. During query process-
ing the super-peer retrieves the entire data object from the
corresponding peer. Note that in contrast to routing objects
that only contain the IP address of their super-peer, data
objects may contain more information (and hence be much
larger) than the routing objects2. During query processing

2An example is a data object that is an image, the routing
object can in this case be just descriptive features.
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data objects that probably belong to the query result set
are also retrieved from peers indexed by other super-peers
and transferred through these super-peers to the querying
super-peer. For sake of simplicity, we refer to the points that
belong to the K-skyband of a super-peer also as data objects,
and ignore the fact that the actual data objects are trans-
ferred at query time from the peer to the super-peer. The
communication cost between super-peer and peer is consid-
ered as less significant than the query propagation through
the super-peer network because a peer is relatively close to
its super-peer in terms of network distance. In case that the
data objects do not contain more information than the fea-
ture values, there is no communication between super-peer
and peer during query processing.

In the following, we describe our threshold-based top-k
algorithm assuming that every super-peer SPi (1 ≤ i ≤
Nsp) stores the routing objects SKYi of all other super-peers
(1 ≤ i ≤ Nsp) and the merged K-skyband set (KSKYi) of
its associated peers only.

Let us first consider a two dimensional space as a showcase
scenario as illustrated in Figure 3. In the figure, we depict
the routing and data objects stored at super-peer SPA. In
more details, the skylines of two super-peers SPA and SPB

are shown along with the routing objects from the other
super-peers. For clarity reasons, we label only the routing
objects of the two super-peers SPA and SPB that are ac-
tually involved in the top-k query of the example. Routing
objects are depicted as black circles, while data objects are
marked with crosses. The data objects are the points that
belong to the KSKYA, i.e. the aggregated K-skyband set of
super-peer SPA. Therefore, Figure 3 depicts the information
that is available to super-peer SPA when query processing
starts. As described in more detail below, during query pro-
cessing more data objects are transferred to the querying
super-peer SPA through the neighboring super-peers.

In a two dimensional space, progressive processing a top-
k query given an arbitrary weighting is similar to sweeping
the query borderline, with specific slope defined by the query
weights, through space from the axes toward the data. The
first data point that the line meets is the top-1, the second
the top-2, etc. until it finds top-k data points. Actually,
each time the line meets a data point, this point can be
immediately returned to the user, as it is really the next top
object of the query (progressive property of our algorithm).
Note that some of the points that the borderline meets are
routing objects. In this case the routing object must be



Algorithm 1 Query processing on super-peer SPQ

1: Input: Query qk(f)
2: list = {∅}
3: list = SPQ.query∪SKYi(qk(f))
4: threshold = f(list[k])
5: c = 0
6: while (c < k) do
7: next obj = list.pop()
8: if next obj is a routing object then
9: SP = next obj.super-peer()

10: temp = SP .query(qk−c(f), threshold)
11: list.removeRoutObj(SP )
12: list.add(temp)
13: else
14: return next object to the user
15: c = c + 1
16: end if
17: threshold = f(list[k − c])
18: end while

replaced by some data points of the super-peer to which the
routing object belongs to. At each step the query borderline
is an indication of how far we have examined the data space
and it guarantees that there does not exist any other point
in the examined space that has not been retrieved yet. This
guarantees that there is no data point that has a smaller
scoring value than the retrieved points.

A threshold value is defined as the score of the k-th rout-
ing or data object encountered so far. In the 2-d space, this
defines a threshold line that gradually sweeps the space to-
wards the axes origin. The region defined between the query
and the threshold borderline is called active region and it
contains at least (k − c) objects, where c is the number of
data points that is already returned to the user. In each
step, the active region contains all objects that may appear
in the final result set. Notice that the querying super-peer
is not aware of all data points that fall in the active region,
therefore if a routing object is retrieved, the query must be
broadcast to the corresponding super-peer.

Continuing the example depicted in Figure 3, consider a
linear top-4 query with weights w = (0.5, 0.5). Let us further
assume that the query is posed at super-peer SPA. The
top-4 objects (i, a, h and z) based on the data and routing
objects stored on SPA are retrieved, and the score of the 4th
object (z), defines the threshold borderline. This guarantees
that the results of this top-k query are found in the active
region. Notice that some data points of SPB may fall in the
active region and therefore point z may not belong to the
top-4 result set. First, the routing object i is examined and
since it belongs to SPA the data object i is retrieved and
returned to the user. In the next step, point a is retrieved
and returned as the top-2 point. Afterwards, we retrieve
the routing object h that belongs to SPB . Therefore, super-
peer SPB is queried and assuming that no other data point
of SPB falls in the active region, points h and z are returned
to the user.

Algorithm 1 describes how P2P top-k query processing is
performed. The routing and data objects retrieved thus far
are kept in a sorted list based on the scoring value. This list
is initialized by the querying super-peer (SPQ) with the top-
k objects of the skyline results ∪SKYi. We use as threshold
the scoring value of the k-th object, as any other object with
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Figure 4: Example of top-k algorithm

higher score cannot belong to the final result set. In each
iteration the top object of the list is examined. Then a top-
k query is broadcast to the super-peer (SP ) responsible for
this object. After SP ’s data objects are retrieved by SPQ,
all routing objects of SP are removed from the sorted list
before inserting its data objects, since they are no longer
necessary to maintain. Then, the threshold is updated with
the scoring value of the k-th object in the list. In each sub-
sequent iteration, if a data object is retrieved, it is returned
to the user as the top-1, top-2, etc. result. Otherwise, if a
routing object is retrieved, a top-(k− c) query is send to the
corresponding super-peer along with the current threshold
value (c denotes the number of results returned thus far to
the user). The super-peer sends back k− c objects, or less if
there are not k − c objects with value below the threshold.
The algorithm terminates when k data objects have been
retrieved from the sorted list.

Example: Consider a small super-peer network consisting
of four super-peers SPA, ... SPD, and a querying super-peer
SPQ = SPA that has assembled the skylines (routing ob-
jects) of the other super-peers, as depicted in Figure 4. Let
us assume that SPA needs to answer a top-3 query with a
linear aggregate function that assigns equal weights to both
dimensions. On the right side of the figure, the skyband
information maintained on each super-peer is depicted in
tables. The grey-shadowed objects are the skyline objects
that are broadcast to other super-peers and they are also
depicted on the left part of the figure graphically. Accord-
ing to Algorithm 1, the sorted list is initialized with routing
objects: i(3,2), m(6,0.5) and h(4,3) and threshold is set to
3.5. The first object that is processed is object i(3,2) that
belongs to super-peer SPB . Thus SPA sends a top-3 query
to SPB, and retrieves its local (at SPB) top-3 results. These
data objects are i(3,2), (4,2.5) and then for the third ranked
object there are actually three objects with the same aggre-
gate score o(9,1), a(1,9) and (7,3). These three data objects
are not returned to SPA since they are discarded by the
threshold value. So, only two points are returned to SPA by
SPB and they are merged with the objects already existing
in the list. The threshold value is set to 3.25, as the new k-th
object (4,2.5) has a lower score value than the old threshold
value. Then i(3,2) is returned to the user as top-1. Therefore



the list becomes of size 2 and it contains: m(6,0.5), (4,2.5).
Next m is processed and as it belongs to SPC , SPA sends a
message to SPC requesting its top-2 objects. SPC returns
m(6,0.5), while f(2,6) is pruned by the threshold. There-
after, m is returned to the user and the list contains only
one object (4,2.5). This object is processed next, and since
it is a data object, it is returned to the user immediately as
the top-3. Finally, the algorithm terminates.

5.2 Correctness and Optimality
The usage of the threshold ensures that SPEERTO pro-

gressively returns accurate and exact answers for any top-k
(k ≤ K) query. Moreover, it reduces communication costs
by preventing unnecessary data objects from being trans-
ferred in the network during query processing. SPEERTO
also avoids querying super-peers that do not contribute to
the result set. In the following we assume that the query is
answered using a snapshot of the P2P network, i.e. static
network and contents, and we show the correctness of our
algorithm and the optimality in terms of queried super-peers
and transferred data.
Correctness of the algorithm: After k data objects have
been examined, an object that has not been seen cannot be
in the top-k result set. Observation 1 ensures that for every
super-peer SP and for any increasingly monotone function
the best match for SP is a routing object that exists on
SPQ. The objects are kept sorted by the scoring function
of the query, thus, if the next object is a data object o this
means that there is no super-peer for which its best match
has a better score than o. Otherwise, if the next object is
a routing object, the corresponding super-peer is queried.
Therefore, all super-peers that may contribute to the result
set are queried. Finally, the objects that are discarded due
to the threshold cannot belong to the result set since there
exist at least k objects with a better score. So, our algorithm
does not suffer by false negatives or positives.
Minimized number of queried super-peers: A super-
peer SP is queried only if a routing object o is the next
best match in the sorted list. Since all points with a smaller
scoring value have been examined previously, the routing
object o corresponds to the next best match. So, there is
at least one point of SP that contributes to the top-k result
set, namely o, and thus avoiding to query SP would lead to
a wrong result set.
Minimized transferred data during query process-
ing: Let o be an object that has a score smaller than the
threshold and can be discarded without violating the accu-
racy of our algorithm. Since the threshold is larger than the
score of o, there are less than k objects in the sorted list with
a smaller score. If all objects in the sorted list that have a
smaller score than object o are data objects, then o belongs
to the top-k result set. This leads to a contradiction, since
the accuracy of the algorithm is violated. Therefore any
object with smaller value than the threshold cannot be dis-
carded, and our algorithm transfers the minimum number
of data objects during query processing.

To summarize the benefit of the proposed threshold-based
algorithm is threefold: a) results can be returned progres-
sively to the user, b) communication costs are reduced, by
defining a threshold value, which prevents unnecessary data
objects to be transferred in the network during query pro-
cessing, and c) the number of contacted super-peers is min-
imized during query processing.

6. EXTENSIONS OF SPEERTO
In this section we study some extensions of the SPEERTO

framework. By relaxing SPEERTO’s optimality in terms of
number of queried super-peers and transferred objects, we
manage to a) decrease the response time and b) decrease
storage and – more importantly – maintenance costs due to
updates. In order to reduce the response time, we propose a
variant of SPEERTO that queries in parallel more than one
super-peer (Section 6.1). Thereafter, we propose an exten-
sion that restricts the cardinality of the skyline (Section 6.2)
aiming to reduce the construction and maintenance costs of
the SPEERTO framework.

6.1 Parallel Query Processing
In each iteration, Algorithm 1 examines the first object in

the sorted list and queries the corresponding super-peer. A
straightforward extension of this approach is to query more
than one super-peers in each iteration simultaneously, using
the current threshold. In the original algorithm, by query-
ing each super-peer and then adjusting (when possible) the
threshold, the query is sent to the next super-peer, only af-
ter the previous one has returned its results. In the parallel
variant, the querying part is non blocking, therefore the to-
tal response time is reduced. On the other hand we cannot
guarantee the optimality of the amount of transferred data,
since some super-peers are queried using a higher threshold,
than in the case of refining the threshold after each super-
peer was queried. Moreover, some super-peers that do not
contribute to the final result set may be queried, while they
could have been discarded by data objects retrieved by pre-
viously queried super-peers.

The remaining question is how many super-peers should
be queried in each iteration. The most simple way is to have
a fixed number, according to the querying super-peer’s SPQ

traffic/workload and maximum number of open connections
that can be established. However this approach adapts nei-
ther to the number of queried objects k, nor to the number
of objects that have already been retrieved. Therefore, it is
more effective to dynamically estimate the number of nec-
essary super-peers to be queried, in order to retrieve the
top-k objects. Each super-peer may employ its own heuris-
tic based on statistics. In the following, we present a simple
strategy that does not rely on any statistic or on previous
queries.

The parallel variant works in the following way. Initially,
one super-peer is queried using qk(f). All Nr retrieved ob-
jects have a score less than the current threshold t and higher
than the score of the first retrieved object o1, i.e. score(o1).
So we estimate the mean score from this super-peer as:

m = t−score(o1)
Nr

. The next object (o2) in the list is ex-
amined and if it is a routing object we estimate the number

of objects that will be retrieved: Nr2 = score(o2)−score(o1)
m

.
Then the next object is examined. If it is a data object,
the super-peers that are found so far, are queried. If it is
a routing object (o3), we estimate again the number of ob-

jects Nr3 = score(o3)−score(o2)
m

that will be retrieved. This
continues until either a data object is found, or so many rout-
ing objects have been examined that the estimated number
of objects (Nr2 + Nr3) is more than the (k − c) remain-
ing objects to be retrieved. After the super-peers found so
far are queried, each returns Nr2 and Nr3 objects respec-
tively and a new mean score is computed for each one, i.e.
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m2 = t−score(o2)
Nr2

and m3 = t−score(o3)
Nr3

. Then, we compute

a new threshold t′ and the new overall mean score m′ that
is used instead of m as: m′ = m+m2+m3

3
. The algorithm

continues until k data objects are returned to the user. It
should be stressed that our approach does not require global
statistics and it has no additional communication or main-
tenance cost.

6.2 Reducing the Skyline Cardinality
One of the major drawbacks of the skyline operator is the

high cardinality |SKY | of the result set [7], especially for
high-dimensional or anti-correlated datasets. In our frame-
work this would lead to high construction and maintenance
cost and storage requirements at super-peers. Moreover,
local query processing at each super-peer becomes more ex-
pensive for higher numbers of routing objects. Given an
upper limit U , in this section we study how to abstract
the skyline aSKY with at most U points (U < |SKY |).
This abstraction has the following properties: a) each point
p ∈ SKY is either dominated by or equal to at least one
point q ∈ aSKY b) |aSKY | ≤ U < |SKY |, and c) it only
slightly influences the routing power of the skyline, i.e. move
the query borderline as little as possible. Obviously, the ab-
straction is not unique.

The problem is to find an approximation of the skyline of
fixed size to distribute to all super-peers as a routing mecha-
nism. The resulting trade-off is between skyline size and the
accuracy of the approximation (leading to more contacted
super-peers and more transferred data). Consider for exam-
ple the dataset depicted on Figure 5, where the points q,
p, m, k are the skyline points. Given a upper limit U = 3
for the skyline abstraction, let us assume that we decide to
replace the points q, p with one point r. SPEERTO selects
the super-peers that are contacted during query processing
based on the skyline points. In order not to violate the accu-
racy of SPEERTO, the abstraction of SPEERTO must en-
sure that whenever a super-peer should be contacted based
on the skyline points, the super-peer will also be contacted
based on the abstraction. Let us assume that Figure 5 de-
picts the skyline points of one super-peer SPA, then for any
query the query borderline meets point r before points p
and q. On the other hand, if a skyline point of another
super-peer falls in the dashed area (triangle) then based on
the abstract skyline we contact super-peer SPA, while based
on the real skyline points we could avoid contacting SPA.
Therefore, the abstraction causes an increase in the number

Algorithm 2 Skyline abstraction on super-peer SPi

1: Input: SKYi

2: p = argmax∀t∈SKYi(
∑

1≤i≤d ln (t[i] + 1))
3: min dist = ∞
4: for ((∀t ∈ SKYi) and (p �= t)) do
5: dist = min1≤i≤d(|p[i] − t[i]|)
6: if (dist ≤ min dist) then
7: min dist = dist
8: q = t
9: end if

10: end for
11: for (1 ≤ i ≤ d) do
12: r[i] = min(p[i], q[i])
13: end for

of contacted super-peers. In general, the larger the shad-
owed area in Figure 5, the higher the probability of querying
more super-peers.

A benefit of the abstract skyline is that our approach be-
comes more robust to updates. SPEERTO can guarantee
accurate query answers in the case of updates, if the routing
objects of the respective skyline do not change. Otherwise,
the new routing objects have to be broadcast to all super-
peers. The abstract skyline is a lower bound of the skyline
and is less likely to change than the original skyline. In the
case of high churn rate and/or updates, the abstract skyline
may be appropriate, in order to reduce the maintenance cost
of routing indices and shorten the time intervals where we
cannot provide exact query results. A shortcoming of the
abstract skyline is that we can not use the threshold any
more, since we are no longer certain that at least k objects
exist in the query space.

We now present a heuristic for calculating the abstract
skyline. Intuitively, each time we pick pairs of skyline points
p, q that can be replaced by a new point r, until we have
at most U points. Algorithm 2 describes the procedure of
choosing two points and replacing them with one new point.
Inspired by SFS [10], we choose the skyline point p with the
largest entropy value E(p) =

∑
1≤i≤d ln (p[i] + 1), because

the smaller the entropy value the less likely p is to be dom-
inated by other points. This insinuates that a point with
lower entropy value has a stronger dominance power and
therefore is considered as more important. Thereafter, we
have to determine a suitable point q to merge with the se-
lected point. For each dimension di we find the skyline point
that has the smallest distance from p. We choose the point q
that has the smallest distance in any dimension. Then p and
q are replaced by point r, defined by the minimum values of p
and q on all dimensions. Thereafter, all skyline points dom-
inated by r are removed. Notice that r indeed dominates
other skyline points for higher than two-dimensional spaces.
This process iterates and terminates when U < |SKY |.

As an example, consider again the dataset depicted on
Figure 5. Let us assume that point p has the largest en-
tropy value and that point q is the nearest point based on
the distance for any dimension. Then according to Algo-
rithm 2 the two skyline points p and q are replaced with
point r. This replacement does not affect the correctness of
SPEERTO, since the query borderline for any query meets
point r before points p and q. Therefore, the query is routed
to the corresponding super-peer and the accurate top-k re-
sult set is retrieved.
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7. EXPERIMENTAL EVALUATION
We studied the performance of our framework using simu-

lations. The simulator was implemented in Java3 and it run
on 3.8GHz Athlon Dual Core AMD processors with 2GB
RAM. In order to test the algorithms with realistic network
sizes, we ran multiple instances of the peers on the same
machine and simulated the network interconnection.

The P2P network topology used in the experiments con-
sists of Nsp interconnected super-peers in a random graph
topology. In our experiments we vary the network size (Np)
from 2000 to 20000 peers. We used synthetic (uniform and
clustered) data collections. The dataset is horizontally par-
titioned evenly among peers. The uniform dataset includes
random points in a space [0, L]d. For the clustered dataset,
each super-peer picks cluster centroids randomly and all as-
sociated peers obtain points, the coordinates of which follow
a Gaussian distribution on each axis with variance 0.025,
and a mean equal to the corresponding coordinate of the
centroid. We conduct experiments varying the dimension-
ality (2-10) and the cardinality (1M-2.5M) of the dataset.
Each time we generate 20 queries with random weightings.

For all queries, we measure the average: (i) total response
time (including network delay), (ii) response time for the
k first results, (iii) number of contacted super-peers, (iv)
volume of transferred data, and (v) number of transferred
objects. Unless mentioned explicitly, we use the following
default values: d = 4, K = 50, 10 ≤ k ≤ 50, n = 106, Np =
2000, while Nsp = 10% × Np, and the dataset is uniform.
We also assume 50KB/sec as network transfer bandwidth
on connections between super-peers. The response time is
measured as the sum of processing time and network transfer
time required for the objects transferred in the network.

7.1 Performance of SPEERTO
We first examine the efficiency of SPEERTO on a network

of Np = 2000 peers, while we increase the dimensionality
from d = 2 to d = 10. We set K = 50 and thus we can an-
swer exactly any top-k query with k ≤ 50. We obtain similar
results for Np = 6000, omitted due to space constraints.

The cost of skyline exchange is considered for uniform and
clustered data. In Figure 6, the volume of transferred data
per super-peer is depicted for varying dimensionality d. For
the highest value d = 10, each super-peer induces on average
147MB of data in the network for the uniform dataset. The
clustered dataset induces a slightly higher volume.

3Our implementation uses the XXL library available at:
http://www.xxl-library.de

In Figure 7, the performance of SPEERTO is studied, in
terms of volume of transferred objects, overall response time,
and response time for the first k objects. First we examine
the performance on uniformly distributed data and increase
the dimensionality from d = 2 to 10, and we study top-10
to top-50 queries, assuming K = 50. In Figure 7(a), the
response time is presented for different values of k. The
plot illustrates the total response time taking into account
the network delay, which depends on the size of transmitted
data. We depict the results measured for uniform dataset
with varying dimensionality. As expected the response time
increases with the dimensionality. The increasing time with
d is due to the fact that a) the size of transferred objects
increases, and b) the processing time is higher, since the
K-skyband and the skyline size increases with d as well.
The cardinality of the K-skyband and the skyline influ-
ences the processing time of our threshold algorithm, which
is executed on the objects stored on the querying super-
peer. Thereafter we focus on the progressive property of
SPEERTO, shown in Figure 7(b). The chart shows the re-
sponse time for the first 10 results, for varying dimension-
ality. Notice that the first results are returned to the user
immediately.

Figure 7(c) shows the number of contacted super-peers
during top-k query processing. The number of contacted
super-peers increases slightly with the dimensionality.
Mainly the number of contacted super-peers depends on the
number of objects k that are retrieved. For example if k = 50
objects are retrieved, more than 40 out of 200 super-peers
are contacted. Since the dataset is uniformly distributed
among the peers and therefore also among the super-peers,
we can not avoid to contact all super-peers that contribute
to the query result set.

In the following charts we study the effectiveness of the
proposed threshold-based algorithm. The next two charts
(7(d) and 7(e)) show the gain of threshold usage in
SPEERTO. Figure 7(d) shows the improvement factor in
terms of number of transferred objects, when threshold is
used. The gain is very high, for example for d = 6 and top-
k=50, only 50 objects are transferred, while without the
threshold 1097 additional objects would have been trans-
ferred, i.e., the improvement factor is 21.9. Even though
the gain in terms of number of transferred objects seems
not to increase with the dimensionality, the benefit in terms
of volume is higher, since the volume of the objects increases
as the dimensionality increases. Figure 7(e) shows the per-
centage of super-peers that actually prune some objects that
would otherwise be returned to the querying super-peer. In
general, 90% of the queried super-peers manage to discard
some objects, instead of returning them to the querying
super-peer, due to the threshold.

In the next series of experiments we examine the pro-
posed method’s scaling features regarding data cardinality.
Figure 7(f) depicts the response time while varying the car-
dinality of the dataset from n = 1M to n = 2.5M. The
slightly increasing response time with cardinality n is mainly
due to higher processing times caused by the increase of the
K-skyband and the skyline size. The number of contacted
super-peers and transferred data are not influenced by the
cardinality of the dataset.

We also study the scalability of SPEERTO with respect
to the network size (Figure 7(g)). The network size Np does
not affect the overall response time, as the number of queried



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10  20  30  40  50

R
es

po
ns

e 
tim

e 
(m

se
c)

top-k

d=2
d=4
d=6
d=8

d=10

(a) Response time with d

 0

 500

 1000

 1500

 2000

 10 9 8 7 6 5 4 3 2 1

R
es

po
ns

e 
tim

e 
(m

se
c)

top-10

d=2
d=4
d=6
d=8

d=10

(b) Response time for first 10 objects

 0

 10

 20

 30

 40

 50

 10  20  30  40  50

N
um

be
r 

of
 c

on
ta

ct
ed

 S
P

s

top-k

d=2
d=4
d=6
d=8

d=10

(c) Number of contacted SPs

 0

 5

 10

 15

 20

 50 40 30 20 10

Im
pr

ov
em

en
t (

%
)

top-k

d=2
d=4
d=6
d=8

d=10

(d) Gain in number of transferred objects

 88

 90

 92

 94

 96

 98

 100

 50 40 30 20 10

P
er

ce
nt

ag
e 

of
 S

P
s 

w
ith

 G
ai

n

top-k

d=2
d=4
d=6
d=8

d=10

(e) Percentage of SPs with gain

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 50 40 30 20 10

R
es

po
ns

e 
tim

e 
(m

se
c)

top-k

n=1M
n=1.5M

n=2M
n=2.5M

(f) Scalability with cardinality

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 40 30 20 10

R
es

po
ns

e 
tim

e 
(m

se
c)

top-k

Np=2000
Np=10000
Np=20000

(g) Scalability with Np

 0

 10

 20

 30

 40

 50

 10  20  30  40  50

N
um

be
r 

of
 c

on
ta

ct
ed

 S
P

s

top-k

Np=2000
Np=10000
Np=20000

(h) Scalability with Np

 0

 100

 200

 300

 400

 500

 600

 10  20  30  40  50

R
es

po
ns

e 
tim

e 
(m

se
c)

top-k

d=2
d=4
d=6
d=8

d=10

(i) Clustered dataset

Figure 7: Performance of SPEERTO (Nsp = 200, Np = 2000, K = 50)

super-peers (Figure 7(h)) remains practically the same for
a given top-k query. In the next experiment, we study the
performance on clustered data. Figure 7(i) depicts the re-
sponse time for clustered data distribution while varying the
dimensionality of the dataset. The clustered dataset leads
to much smaller response time than the uniform distribu-
tion, because only a few super-peers are contacted during
query processing. Therefore, SPEERTO performs better for
the clustered dataset in terms of response time, contacted
super-peers, and transferred data objects.

7.2 Top-k Queries with k > K
In the next experiments we evaluate the effectiveness of

SPEERTO for top-k queries with k > K. We compare the
actual top-k results with the ones retrieved from the K-
skyband, by measuring the relative recall, i.e., the fraction of
the produced top-k results that are in the true top-k results.

In Figure 8(a), we show the recall achieved for uniform
distribution and cardinality 0.5M, while varying d from 2 to
4. The K parameter of the skyband is set to 10, which en-
sures us the exact results at least for any top-10 query. We

evaluate the performance of our approach for 10 ≤ k ≤ 200.
As expected recall decreases as k increases, but notice that
the errors in the top-k list occur in the lower positioned ob-
jects, which are less important to the user. The skyband size
is manageable and less than 1% of the dataset in any case.
For d = 2 the skyband contains less than 100 points, thus
recall decreases rapidly. For d = 4 the skyband size grows to
less than 3500 data objects, and recall decreases less rapidly.
Figure 8(a) shows that using the 10-skyband we can answer
top-100 queries with recall around 40% for d = 2, while for
d = 4 we can answer queries for higher k values with better
recall. Experiments on clustered datasets resulted in similar
recall values (Figure 8(b)). By varying the cardinality we
noticed that recall (Figure 8(c)) and the skyband size (Fig-
ure 8(d)) are hardly influenced, which makes our approach
feasible for large-scale systems.

In Figure 8(e) we vary K between 1 and 100 and evaluate
the recall on top-100 queries for different dimensionality val-
ues. For K = 1 (which is the skyline set) we achieve recall
of more than 90% for dimensionality 6 and 8, while the size
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Figure 8: Top-k queries with k > K
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Figure 9: Parallel extension

of the skyline (Figure 8(f)) is up to 3% of the dataset size
for d = 8. For d = 2 recall is low since the skyline consists of
only 13 points. Recall values increase with dimensionality
because the size of the K-skyband also increases.

7.3 SPEERTO Extensions
We also evaluate the merits of the SPEERTO extensions

proposed. In Figure 9, we provide a comparative chart of
the parallel version (PAR) of our algorithm compared to the
original one. The results show a reduction in response time
when the parallel variant is employed. The chart depicts the
improvement percentage of our parallel approach for uniform
datasets of different dimensionality. In average, the gain
in response time is more than 20%, while the number of
transferred objects is only marginally increased.

Finally, we evaluate the performance of the abstract sky-
line variant. In Figure 10(a), we depict the increase of the
number of transferred objects when the abstract skyline vari-

ant is used. In this experiment we use uniform datasets of
different dimensionality. The number of transferred objects
increases rapidly, since the threshold is not used. The ab-
stract skyline variant transfers up to 30% more data objects.
In Figures 10(b) and 10(c), the gain of the abstraction in the
case of data additions is depicted, for data dimensionality
d = 2 and d = 3. The x-axis depicts the percentage of points
added to the dataset, while the y-axis depicts the number of
super-peers that have to update their skyline set. For exam-
ple when d = 2 and 2% of the dataset is added, by keeping
the 50% of the skyline points, only 4% of the super-peers
need to update their skyline. In Figure 10(c), we notice
that for d = 3 the number of modified super-peers increases,
but again the gain of abstraction is significant.

8. CONCLUSIONS
In this paper we presented SPEERTO, a novel approach

for answering top-k queries in a P2P network. Relying on
a super-peer architecture, we proposed a threshold-based
algorithm which forwards the top-k query requests among
super-peers, in such a way that the amount of transferred
data is minimized. For a maximum value of K, SPEERTO
returns the correct answers for any top-k query (k ≤ K),
while supporting a large class of scoring functions. We pro-
posed a variant of SPEERTO that queries in parallel more
than one super-peers and an extension that restricts the car-
dinality of the skyline. We provided an extensive experimen-
tal evaluation showing that SPEERTO performs efficiently
and provides a viable solution when a large degree of distri-
bution is required. In addition, we studied experimentally
the recall of top-k queries with k > K and showed that we
provide almost accurate results even for small K values.
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Figure 10: Abstract skyline extension of SPEERTO
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