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Abstract. Entity search has emerged as an important research topic over the past
years, but so far has only been addressed in a centralized setting. In this paper
we present an attempt to solve the task of ad-hoc entity retrieval in a coopera-
tive distributed environment. We propose a new collection ranking and selection
method for entity search, called AENN. The key underlying idea is that a lean,
name-based representation of entities can efficiently be stored at the central bro-
ker, which, therefore, does not have to rely on sampling. This representation can
then be utilized for collection ranking and selection in a way that the number
of collections selected and the number of results requested from each collection
is dynamically adjusted on a per-query basis. Using a collection of structured
datasets in RDF and a sample of real web search queries targeting entities, we
demonstrate that our approach outperforms state-of-the-art distributed document
retrieval methods in terms of both effectiveness and efficiency.

1 Introduction

The increasing popularity of the Web of Data (WoD) has lead to increasing amounts of
data exposed in knowledge bases, like DBPedia or Freebase. Typically, such knowledge
repositories contain data about entities (persons, locations, organizations, products, etc.)
and the relations between them (such as birthPlace, parentCompany). Entity queries ac-
count for a significant portion of web searches [10], therefore, utilizing these structured
data sources for retrieval is a fertile and growing area of research.

All existing work on entity search, however, assume that a centralized index, en-
compassing the contents of all individual data sources, is available. Instead of expend-
ing effort to crawl all Web of Data sources—some of which may not be crawleable at
all—distributed information retrieval (DIR) (or federated search) techniques directly
pass the query to the search interface of multiple, suitable collections that are usually
distributed across several locations [12]. For example, the query “entity retrieval” may
be passed to a related collection, such as a bibliographical database for research articles
dealing with information retrieval topics, while for the query “San Antonio” collections
containing information about the city, such as geonames or DBpedia, might be more
appropriate. There are also queries for which multiple databases can contain answers.

We focus on queries that target specific entities, mentioned by their name. While
this is a rather specific scenario, Pound et al. [10] estimate that over 40% of web search
queries are like this. Therefore, we study a significant problem with practical utility.
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We consider a cooperative distributed environment and focus on two sub-problems:
collection ranking and collection selection. In Section 3 we discuss state-of-the-art dis-
tributed document retrieval techniques that can be applied to the case of entities in a
straightforward manner. For collection ranking, we formulate two main families of ap-
proaches (lexicon-based and document-surrogate methods) in a unified language mod-
eling framework. This allows for a fair comparison between approaches. For collection
selection, we use top-K selection, where K is a fixed rank-based cutoff.

Next, in Section 4, we introduce our novel approach, AENN. The key underlying
idea is that instead of relying on sampling, the central broker maintains a complete dic-
tionary of entity names and identifiers. Based on this lean, name-based representation,
we generate not only a ranking of collections but also an expected ranked list of entities
(that is, an approximation of the final results). This can then aid us in the collection se-
lection step to dynamically adjust the number of collections selected, moreover, allows
for orientating the selection towards high precision, high recall, or a balanced setting.

As no standard test collection exists for our task, in Section 5 we introduce an
experimental testbed based on a collection of Linked Data, described as RDF triples,
and a set of queries sampled from an actual Web search engine log. We develop three
collections with different characteristics to allow for the generalization of findings.

Our experimental evaluation, reported in Section 6, demonstrates that AENN has
merit and provides a viable alternative. On collections where names are available for
entities—a reasonable precondition for our approach—AENN’s effectiveness (mea-
sured in terms of precision and recall) is comparable to that of an idealized central-
ized approach that has full knowledge of the contents of all collections, while achieving
gains in efficiency (i.e,. selecting fewer collections).

2 Related work

The present work lies in the intersection of entity retrieval and distributed information
retrieval. In this section we review related work on these two research areas.

Distributed information retrieval (DIR), also known as federated search, is ad-hoc
search in environments containing multiple, possibly many, text databases [4]. DIR tar-
gets cases when documents cannot be copied into a single centralized database for the
purpose of indexing and searching, and is concerned with retrieving documents scat-
tered throughout different databases.1 Based on where the indexes are kept, different
architectures can be considered. Most of these, just like our work, assume a central
broker that orchestrates the communication with the collections and takes care of the
merging of results. Independent of the architecture used, distributed information re-
trieval involves three important sub-problems: (i) acquiring resource descriptions, that
is, representing the content of each collection in some suitable form, (ii) resource selec-
tion, i.e., selecting the collections most relevant to the query (based on the representa-
tion built in phase (i)), and, finally, (iii) result merging, i.e., combining the results from
all selected collections into a single ranked list. Our focus throughout this paper is on
(i) and (ii); we discuss relevant DIR literature in relation to our approach in Section 3.
For an excellent survey on federated search we refer the reader to [12].

1 In this paper, we use databases, collections, and resources interchangeably.
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Entity retrieval or entity-oriented search is now supported by a range of commercial
providers. It has been shown that over 40% of queries in web search target entities [10].
Major web search engines try to cater for such requests by using structured data to
generate enhanced result snippets [8]. A plethora of vertical search engines exist to
deal with specific entity types: people, companies, services, locations, and so on. Entity
search has been gaining increasing attention in the research community too, as recog-
nized by various world-wide evaluation campaigns. The TREC Question Answering
track focused on entities with factoid questions and list questions (asking for entities
that meet certain constraints) [16]. The TREC 2005–2008 Enterprise track [1] featured
an expert finding task: given a topic, return a ranked list of experts on the topic. The
TREC Entity search track ran from 2009 to 2011 [2], with the goal of finding entity-
related information on the web, and introduced the related entity finding (REF) task:
return a ranked list of entities (of a specified type) that engage in a given relationship
with a given source entity. Between 2007 and 2009, INEX too featured an Entity Rank-
ing track [6]. There, entities are represented by their Wikipedia page, and queries ask
for typed entities (that is, entities that belong to certain Wikipedia categories) and may
come with examples. Most recently, the Semantic Search Challenge (SemSearch) ran a
campaign in 2010 [9] and 2011 [3] to evaluate the ad-hoc entity search task over struc-
tured data. Our experimental setup is based on the SemSearch data set, queries, and
relevance judgments, as we explain in Section 5.

3 Baseline Methods
We start by presenting a high-level overview of the distributed approach we use for our
entity retrieval task. We assume a cooperative environment, in which the retrieval pro-
cess is coordinated by a central broker. Figure 1 shows the typical architecture of such
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Fig. 1. Schematic overview of a typical broker-based dis-
tributed information retrieval system.

a system. When the broker re-
ceives an incoming query (Q)
from the user (1), it ranks collec-
tions based on how likely each
would contain results relevant to
this query. This is done by com-
paring the query against sum-
maries of the collections (of-
ten referred to as representation
sets [12]), kept locally at the
broker. Next (2), the broker se-
lects a few of the top ranked
collections and requests them
to generate results for the input
query. In the final step (3), af-
ter all selected collections returned their answers, the broker merges the results and
presents them, as a single result set, to the user. These three steps are depicted as num-
bers in circles in Figure 1.

In this paper, we focus on the first two steps of this pipeline, as these are the com-
ponents where our contributions take place. Results merging is a research topic on its
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own; to stay focused (and also due to space considerations) we do not perform that step.
We note, however, that—assuming a reasonable results merging mechanism—improved
collection selection leads to better overall results on the end-to-end task too.

Before proceeding further, it is important to point out that in this section we consider
an idealized scenario with a “perfect” central broker. This means that the broker has full
knowledge about the contents of each collection. We are aware that this is an unrealistic
assumption in practice, but do this for a twofold reason. One, our main research interest
is in comparing the effectiveness of collection ranking and selection methods; when do-
ing so, we wish to rule out all other influencing factors, such as the quality of sampling
(a technique, typically used for building collection summaries [12, 13]). Two, we want
to compare our proposed solution, to be presented in Section 4, against this idealized
setting; as we shall show later, our novel approach can deliver competitive performance
without making such unrealistic assumptions.

3.1 Collection Ranking
In the collection ranking phase (Step 1 in Figure 1), we need to score collections based
on their likelihood of containing entities relevant to the input query. We present two
main families of approaches for this task. Lexicon-based methods treat and score each
collection as if it was a single, large document [5, 14]. Document-surrogate meth-
ods, on the other hand, model and query individual documents (in our case: entities),
then aggregate (estimates) of their relevance scores to determine the collection’s rele-
vance [11, 13]. As pointed out earlier, we assume a “perfect” central broker; for lexicon-
based methods it means complete term statistics from all collections; for document-
surrogate methods it essentially amounts to a centralized index of all entities.

We formalize both strategies in a language modeling framework and rank collec-
tions (c) according to their probability of being relevant given a query (q), P (c|q).

Collection-centric collection ranking (CC). Following Si et al. [14], the collection
query-likelihood is estimated by taking a product of the collection prior, P (c), and
the individual term probabilities:

P (c|q) ∝ P (c) ·
∏
t∈q

P (t|θc). (1)

We set priors proportional to the collection size: P (c) ∝ |c|. A language model θc is
built for each collection, by collapsing all entities of c into a single large document and
then smoothing it with the global language model. Here, we use Dirichlet smoothing, as
we found it to perform better empirically than Jelinek-Mercer smoothing used in [14];
we set the smoothing parameter to the average collection length.

Entity-centric collection ranking (EC). Under this approach, entities are ranked by the
central broker, according to their probability of relevance, and the top relevant entities
contribute to the collection’s query-likelihood score:

P (c|q) ∝
∑

e∈c,r(e,q)<γ

P (e|q), (2)
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where P (e|q) is the query likelihood of the entity, computed using a standard language
modeling approach and Dirichlet smoothing (with the average entity representation
length used as the smoothing parameter). Further, r(e, q) denotes the rank position of
entity e (the top ranked result has rank 0, the second in line has 1, and so on). Finally, γ
is a rank threshold, set to 50 based on preliminary experiments; this value has also been
commonly used in the literature, see, e.g. [11, 15]. It is worth mentioning that although
collection priors are not explicitly included in Eq. 2, larger collections are implicitly
favored, as they are more likely to have more relevant results among the top γ.

3.2 Collection Selection
In the previous subsection we established mechanisms for ranking collections in order
of relevance to a query. Next, we need to identify a set of collections that are likely to
contain most relevant entities; this corresponds to Step 2 in Figure 1. The problem is
generally addressed by choosing a fixed cutoff ahead of time; for example, Si and Callan
[13] use 5 to 20. We refer to this method as top-K collection selection. (SUSHI [15]
offers an alternative selection strategy; we will briefly discuss it in Section 4.2.)

Formally, let r(c, q) be the rank of collection c for query q according to the collec-
tion ranking component (where the highest ranked collection has rank value 0). The set
of selected collections, Sc(q), is then defined as follows: Sc(q) = {c|r(c, q) < K},
where K is a fixed cutoff value.

4 The AENN Method for Federated Entity Search
In this section we introduce a novel approach to collection ranking and collection se-
lection for federated entity search. We focus on queries that target a particular entity,
mentioned by its name. A significant portion of queries in web search are formulated
that way [10]. Blanco et al. [3] explain this phenomena as follows: “users have learned
that search engine relevance decreases with longer queries and have grown accustomed
to reducing their query (at least initially) to the name of an entity” [3]. Therefore, the
problem we study is a significant one, with practical utility. While traditional collec-
tion ranking and selection techniques can immediately be applied, the question arises,
whether we can do better by tailoring representations and models to entities.

The central idea of our approach is aptly captured in the acronym AENN: “All that
an Entity Needs is a Name.” Instead of building traditional collection summaries based
on (full) textual representations of entities, as was done in the previous section, we only
use their names and maintain a complete dictionary of entity names and identifiers at
the central broker. This is a viable alternative as it requires only limited cooperation
from the distributed collections (i.e., we need to be able to request a list of entities, with
name and ID, they contain) and features minimal network traffic. Based on this lean,
name-based representation, we can generate not only a ranking of collections but also
an “expected” ranked list of entities (that is, a prediction of the final result list, that we
would see after the merging step). This expected ranking serves as a basis of an entity-
centric collection ranking, which, in turn, we utilize to aid us in the collection selection
step by dynamically adjusting the number of collections selected. It is important to
note that AENN is only used for collection ranking and selection; the next step in the
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processing pipeline (that we do not perform here) is to request the selected collections
to generate a ranked list of entities given the input query. The collections may use the
retrieval method of their choosing to perform this local ranking.

4.1 Collection Ranking
Our initial experiments with collection-centric (CC) and entity-centric (EC) collection
ranking strategies suggest the two different approaches work best with different queries.
Therefore, we expect to maximize performance, by taking a linear combination of the
two methods:

AENN(c, q) = (1− λ) · CC(c, q) + λ · EC(c, q), (3)

where CC(c, q) and EC(c, q) are normalized collection scores generated by the corre-
sponding models from Section 3.1. In the lack of training material, we combine the two
with equal weights, i.e., set λ = 0.5. Note that under the AENN approach the central
broker only contains the names of entities.

4.2 Collection Selection
A good collection selection method balances between effectiveness and efficiency. That
is, select as few servers as possible, to minimize communication costs and latency.
On the other hand, avoid being too restrictive, since only the selected collections can
contribute to the final result set. The central ranking of entities (ER) plays a vital role in
our collection selection mechanism; it may be viewed as a prediction of the final ranked
list of results that we expect to see at the end of the merging step. However, it is to
be decided how much confidence we wish to assign to this prediction. Next, we define
three different selection strategies; one favors precision, another prefers recall, and the
final one attempts to balance between the two.

Precision-oriented selection (AENN(p)) We put our trust in the entity-centric (EC)
collection ranking and believe that it would yield the highest precision. Subse-
quently, we only select collections that EC contains. Unlike the following two meth-
ods, this selection strategy may decide to “skip” certain collections that otherwise
have a high AENN score, but did not contribute any results to the top γ of the ER
ranking. This strategy shares similarities with SUSHI [15] in the sense that it only
selects collections that are expected to contribute results to the final merged list.

Recall-oriented selection (AENN(r)) The most conservative strategy falls back to the
collection-centric (CC) collection ranking, as that has a higher recall than EC. We
start at the top of the CC ranking and include collections for selection until we have
all from the EC ranking covered. Formally, this method selects the top ρ collections
from the AENN ranking, where

ρ = arg min
x
∀c ∈ EC : rCC(c, q) < x. (4)

Balanced selection (AENN(b)) This strategy attempts to balance between precision
and recall, by selecting the top collections based on the AENN ranking until all
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Fig. 2. Illustration of collection selection strategies. The squared letters A,..,F represent collec-
tions, the numbers next to them are the collection ranking scores.

collections from EC are covered. Formally, we select the top ρ from AENN such
that

ρ = arg min
x
∀c ∈ EC : rAENN (c, q) < x. (5)

Figure 2 illustrates the three strategies on a toy-sized example.

5 Experimental Setup
As no standard test collection exists for our task, in this section we introduce the exper-
imental testbed we have developed for evaluation purposes.

5.1 Distributed Environment
Our setup is based on the test suites of the 2010 and 2011 editions of the Semantic
Search (SemSearch) Challenge [3, 9]. The data collection used there is the Billion
Triple Challenge 2009 (BTC-2009) dataset. It comprises about 1.14 billion RDF state-
ments and describes entities from domains like dbpedia.org, livejournal.com, or geon-
ames.org.2 The task addressed at SemSearch is ad-hoc entity search: given a keyword
query, targeting a particular entity, provide a ranked list of relevant entities, identified by
their URIs. There are two topic sets, consisting of 92 and 50 keyword queries for years
2010 and 2011, respectively. The queries were sampled from web search engine logs.
Relevance judgments are provided on a 3-point scale (excellent, fair, and irrelevant) and
were collected using crowdsourcing.

To create a distributed environment, we have chosen the top 100 largest second-
level domains from BTC-2009, in terms of the number of entities they contain, and
indexed them as 100 separate collections. As with typical federated search testbeds,
the collections are disjoint and do not overlap [12]. The number of partitions we use
follows standard practice, see, e.g., [11, 17], and is considered sufficiently large. We
use all SemSearch queries (that is, from both 2010 and 2011) that contain at least one
relevant result from one of the top 100 domains; this amounts to a total of 136 queries.
We restricted the corresponding relevance judgments to our set of selected collections,
but apart from the filtering we use the SemSearch assessments unchanged. We will refer
to this test set throughout the paper as BTC.

2 http://vmlion25.deri.ie/

http://vmlion25.deri.ie/
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Fig. 3. Distribution of collection sizes in BTC-2009.

The distribution of collec-
tion sizes for the top 100 do-
mains, shown in Figure 3, re-
sembles a Zipfian distribution,
where the three largest domains
account for almost 30% of the
data set. While this is not at all
unexpected or unusual, a some-
what unique property of this test
set is that relevant entities do not
follow the same distribution, but are very highly biased towards the biggest collection,
DBpedia. In fact, 73% of all relevant results originate from DBpedia (note that this is
not due to our selection of top 100 collections, as DBpedia holds 59% of all known
relevant results, without any domain restrictions). To ensure that our findings are not
misguided because of this anomaly, we created two more test sets, representing dis-
tributed environments with different characteristics.

BTC\DBpedia is the same as the BTC test set, but the DBpedia collection is ex-
cluded. This set, therefore, contains 99 separate collections. Consequently, DBpedia re-
sults have also been removed. There are 20 queries for which all relevant results come
from DBpedia; these have been omitted from the query set, leaving 116 queries in to-
tal. Here, the distribution of relevant results is more evenly distributed—this collection
represents a typical linked data collection.

We also look at the DBpedia subset, on its own. Instead of using the version that is
part of BTC, we considered the full version. Specifically, we used its most recent dump
in version 3.7 and indexed all infobox predicates as well as labels and short abstracts of
its 8.8M entities. The reason for doing so is that the BTC collection is based on a Web
crawl, including some degree of noise. DBpedia, on the other hand, can be considered
a more “clean” and uniform collection. We randomly distributed the DBpedia data set
into 100 individual collections of equal size. The resulting collections are by no means
organized (like topically or temporally) which implies that the relevant documents are
also randomly distributed across all collections. Due to its random distribution, we ex-
pect it to be the most difficult setup in this context with respect to collection selection
(with all sub-collections being very similar to each other in terms of term statistics).

Table 1 presents descriptive statistics of the three test collections we developed.3

5.2 Entity Representation

We apply a rather straight-forward entity model: every unique subject found in the col-
lection is an entity. From all subject-predicate-object triples with the entity as subject,
we concatenate the object text values into a content field. An entity’s name is given by
the object values of a predefined list of predicates (e.g., foaf:name or rdfs:label).

3 The resources (queries, relevance judgments, and DBpedia splits) used in our experimental
evaluation are available at http://bit.ly/OzfYK2 and at the first author’s homepage.

http://bit.ly/OzfYK2
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Table 1. Overview of test collections.

BTC
BTC \DBpedia DBpedia

#Entities 68.8M 60.5M 8.8M
#Collections 100 99 100
#Queries 136 116 130
Avg. #rel. entities /query 14.9 4.8 10.1
Avg. #rel. collections /query 3.4 2.8 9.4

5.3 Ground Truth and Evaluation Metrics
To evaluate collection ranking, we use standard IR evaluation metrics: Mean Average
Precision (MAP), Mean Reciprocal Rank (MRR), and Normalized Discounted Cumu-
lative Gain (NDCG). We obtained ground truth from the original SemSearch relevance
assessments as follows. For the metrics that work with binary judgments, a domain is
considered relevant if it contains at least one entity that was judged relevant for the
query. When computing NDCG, we set the gain for each collection to the number of
relevant documents the collection contains.

For evaluating collection selection, we introduce two metrics, PK and RK , which
are rough analogues of the classical precision and recall measures and consider the
effectiveness of the collection selection method alone. We base our definitions on the
metrics proposed in [7], and use the variant by Thomas and Shokouhi [15] for RK . If
K collections are selected, PK is the fraction of collections that contain (any) relevant
entities, while RK is the ratio of (all) relevant entities held by these collections. Both
metrics range from 0 to 1, where higher values are desired. We also measure the average
number of collections selected; this serves as our metric of efficiency.

6 Experimental Evaluation
The main research question guiding us is as follows: How does the AENN method
compare to traditional document-based methods on the collection ranking and collec-
tion selection tasks? We present our evaluation results in the two subsequent sections.

6.1 Collection Ranking
Table 2 reports an overview of collection ranking results. The top two blocks show
our baseline methods (CC and EC). For reference, we also included retrieval results
for well-known representatives of the two families of methods: CORI [5] for a lexicon-
based approach, and ReDDE [13] and two variants of CRCS [11] for document-surrogate
methods. For these, we use default parameter settings as suggested in the corresponding
publications. All baseline methods are tested with two types of entity representations
at the central broker (second column): name-only (N) and content (C). The last block
presents our proposed method; recall that it always uses a name-only representation as
the central broker in the AENN case maintains only the names of entities.

The first important observation from Table 2 is that our language modeling based
baselines (CC and EC) outperform or are in par with existing methods from the litera-
ture. Second, as expected, the content-based representation provides better results than
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Table 2. Collection ranking results. Significance is tested using a two-tailed paired t-test at the
0.01 level. †/‡denotes significant differences to the CC/EC rows, respectively.

BTC BTC\DBpedia DBpedia
Method Rep. MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG
Lexicon-based methods
CC N .5542 .8085 .7755 .3451 .4701 .5122 .1731 .2901 .4357

C .5741 .8884 .8382 .3544 .4883 .5330 .1766 .2985 .4384
CORI N .3299 .4436 .5001 .2595 .3466 .4309 .1753 .2895 .4399

C .3254 .4459 .4753 .2808 .3940 .4666 .1627 .2656 .4232
Document-surrogate methods
EC N .5492 .8560 .8094 .3166 .4645 .4782 .3349 .5746 .5802

C .6746 .8856 .8533 .5455 .6750 .6871 .3462 .5725 .5839
ReDDE N .4877 .7825 .7510 .2521 .3596 .4361 .2165 .3600 .4704

C .6292 .8975 .8637 .3827 .4933 .5597 .2532 .4443 .5064
CRCS(l) N .5188 .8181 .7807 .2765 .4082 .4565 .2726 .4567 .5209

C .6732 .9093 .8801 .4275 .5326 .5938 .3056 .5043 .5473
CRCS(e) N .4742 .7025 .6830 .3089 .4629 .4677 .3429 .5945 .5860

C .6559 .8747 .8133 .5410 .6858 .6737 .3426 .5921 .5824
Our method
AENN N .6151†‡ .8774† .8392†‡ .3746†‡ .4756 .5264‡ .3343†‡ .5825† .5817†

K
PrecisionPrecisionPrecision Recall Avg collnum

AENN(p) AENN(r) AENN(b) AENN(p) AENN(r) AENN(b) AENN(p) AENN(r) AENN(b)
1
2
3
5
10
15
20
25
50
75
100

0.27586207 0.27586207 0.27586207 0.22658046 0.22658046 0.22658046 0.96551724 0.95689655 0.96551724
0.29741379 0.31034483 0.31034483 0.2819155 0.30214096 0.30214096 1.92241379 1.90517241 1.92241379
0.27155172 0.2887931 0.29166667 0.32215209 0.35570141 0.35596264 2.87068966 2.84482759 2.87068966
0.22672414 0.23706897 0.24051724 0.4003438 0.45113403 0.45113403 4.76724138 4.72413793 4.76724138
0.16462781 0.17931034 0.18218391 0.48409062 0.62912727 0.61188589 9.07758621 9.38793103 9.39655172
0.14312029 0.14380878 0.14907578 0.48921937 0.73895386 0.70303432 11.0862069 13.9396552 13.5172414
0.14268292 0.1204573 0.13007071 0.49599277 0.78885486 0.74150516 11.2586207 18.4568966 16.9568966
0.14268292 0.10296121 0.11918248 0.49599277 0.80897354 0.75587298 11.2586207 22.862069 19.612069
0.14268292 0.07370535 0.107091 0.49599277 0.87053387 0.79553499 11.2586207 38.7068966 26.5258621
0.14268292 0.06989559 0.10612403 0.49599277 0.87321586 0.80080319 11.2586207 43.5689655 28.0517241
0.14268292 0.06975048 0.10610103 0.49599277 0.87321586 0.80080319 11.2586207 43.887931 28.1206897
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Fig. 4. Comparison of AENN collection selection strategies on the BTC\DBpedia collection.

the name-only one. Apart from a few exceptions, this holds for all methods and collec-
tions, however, the difference is rather small for the DBPedia collection; this is because
a name is available there for each entity. Third, our AENN method successfully com-
bines the two collection ranking strategies. It outperforms all name-only representations
for the BTC and BTC\DBPedia collections by 12% and 18% in terms of MAP, respec-
tively. On the DBpedia collection the results are virtually the same as that of the EC run.
The differences in MAP are significant for all collections. In sum, the overall perfor-
mance of the AENN method makes it a viable alternative to other approaches that use
a full content-based representation. Moreover, it has additional benefits for collection
selection, as we shall see next.

6.2 Collection Selection

First, we compare the three AENN collection selection strategies we devised against
each other. In the interest of space, we only show the plots for BTC\DBpedia in Fig-
ure 4; the observed very similar behavior on the other two sets. We find that the three
methods indeed work as they were originally intended: AENN(p) results in the highest
precision and on average it never selects more than 11 collections. AENN(r), on the
other hand, can select up to 44 collections; this leads to a high recall, especially for
high K values. AENN(b) seems to be able to find the golden middle between the two;



11

K
PrecisionPrecisionPrecision Recall Avg collnum

CC-N EC-C AENN(b) CC-N EC-C AENN(b) CC-N EC-C AENN(b)
1
2
3
5
10
15
20
25
50
75
100

0.10769231 0.46153846 0.43846154 0.08461538 0.38974359 0.38461538 1.0 1.0 0.96923077
0.13461538 0.40384615 0.38846154 0.11269231 0.36487179 0.35858974 2.0 2.0 1.93846154
0.13589744 0.37179487 0.36153846 0.12258242 0.37064103 0.35769231 3.0 3.0 2.9
0.12923077 0.30769231 0.31538462 0.13590659 0.35035409 0.35330586 5.0 5.0 4.82307692
0.12846154 0.27307692 0.26076923 0.19321155 0.42501635 0.38692995 10.0 10.0 9.63076923
0.12153846 0.23282051 0.22974359 0.23596464 0.4473198 0.4335995 15.0 15.0 14.4384615
0.11807692 0.21269231 0.20846154 0.27466538 0.49243589 0.48028452 20.0 20.0 19.2461538
0.11323077 0.19230769 0.18707692 0.33281075 0.55209601 0.51993931 25.0 25.0 24.0538462
0.10969231 0.13846154 0.13710308 0.60857534 0.74685001 0.67475686 50.0 50.0 45.2615385
0.10276923 0.10974359 0.1239664 0.82428261 0.87209312 0.75887064 75.0 75.0 59.7230769
0.09423077 0.09423077 0.11794596 1.0 1.0 0.80558862 100.0 100.0 69.9
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Fig. 5. Comparison of baseline and the AENN(b) collection selection strategies on DBpedia.

it performs well both in terms of precision and recall, while it keeps the number of
selected collections reasonably low (28 at most).

Next, we compare the AENN against two baselines, both using top-K selection with
a fixed K value: (1) collection-centric using a name-only representation (CC-N), and
(2) entity-centric using a content-based representation (EC-C). The latter serves as an
upper limit that could be achieved if the broker had a local copy of the full contents of
all collections. Figure 5 reports the results, this time on the DBpedia collection. (As we
have space to cover only one collection in detail, we chose to include the one that we
consider as the most difficult setting.) We find that the balanced variant of the AENN
method comes very close to the “oracle” run of EC-C, both on precision and on recall. It
can also reduce the average number of selected collections, but only for high K values.
This is due to the random distribution of relevant documents, a special characteristic
of this setup. On the other two collections the number of selected collections is further
reduced. Precision and recall on BTC are very close to the ones shown in Figure 5.
Finally, on BTC\DBpedia, where names are missing for many entities, AENN(b) is
closer to CC-N than to EC-C, but it always outperforms the former, nevertheless.

7 Conclusions

In this paper, we investigated the feasibility of a federated search architecture for en-
tity retrieval and studied two sub-problems in detail: collection ranking and collection
selection. We made an argument that for queries that target a particular entity, which is
very frequent in Web search, traditional document-based distributed retrieval techniques
might not be the best choice. We proposed a novel method, AENN, that builds on the
observation that for such queries the central broker could maintain a complete dictio-
nary of entity names, instead of sampling full representations from each collection. This
lean representation can then be utilized for collection selection and can also be used to
gear results towards high precision or high recall. Further, we created three test col-
lections from Linked Data and performed an experimental evaluation using these. Our
method has shown great promise as it performed just as good as the idealized setting
for some collections, in terms of precision and recall, while selecting fewer collections.

As for future work, we believe there is further milage to be gained by improving the
name-based ranking of the central broker. We also wish to cover other aspects of dis-
tributed entity search that we could not deal with in this paper due to space limitations.
In particular, efficiency aspects and various practical considerations (e.g., caching).
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