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ABSTRACT
In this paper, we address the problem of discovering a ranked set
of k distinct main objects combined with additional (accessory) ob-
jects that best fit the given preferences. This problem is challenging
because it considers object combinations of variable size, where
objects are combined only if the combination produces a higher
score, and thus becomes more preferable to a user. In this way,
users can explore overviews of combinations that are more suited to
their preferences than single objects, without the need to explicitly
specify which objects should be combined. We model this prob-
lem as a rank-join problem where each combination is represented
by a set of tuples from different relations and we call the respec-
tive query eXploratory Top-k Join query. Existing approaches fall
short to tackle this problem because they impose a fixed size of
combinations, they do not distinguish on combinations based on
the main objects or they do not take into account user preferences.
We introduce a more efficient bounding scheme that can be used
on an adaptation of the rank-join algorithm, which exploits some
key properties of our problem and allows earlier termination of
query processing. Our experimental evaluation demonstrates the
efficiency of the proposed bounding technique.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Experimentation, Performance

Keywords
Top-k queries, rank-join queries, exploratory queries

1. INTRODUCTION
Top-k queries [4] are often used to help users select the k best

objects according to their preferences from a large set of objects. A
product is typically represented by a d-dimensional point p where
each dimension describes a specific feature. Usually, preferences
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Model weight cam.res storage memory price ext.mem. type
gram. Mpixel GB EUR

S5 145 16 16 688 1
I5S 112 8 32 848 0
I5C 132 8 16 614 0
S4 153 8 16 441 1
G2 143 13 32 454 0

Mobiles

model Capacity Price mem. type
A 64 86 1
B 64 71 1
C 32 37 1

Memory

Figure 1: Sample Database

are expressed through a weighting vector w of d dimensions, each
corresponding to an attribute of the product, while the value of the
dimension indicates the importance of the specific attribute to the
user. The ranking of the objects is based on a scoring function
fw(p), and one of the most common ones is the weighted sum
fw(p) =

∑d
i w[i]p[i].

For instance, considering the database of Figure 1, if
w = {0.3, 0.1, 0.4, 0.2} is a preference vector of user wishing to
buy a mobile phone who is particularly interested in storage space,
then the iPhone 5S and the LG G2 are the top-2 results returned
to the user. However S4, and S5 can be combined with a memory
card and provide the user with a product which is more suited to her
needs than a single phone. Taking into account the available combi-
nations the top-2 results are now the combinations between S5 and
the memory cards A and B. Although both options are more suited
to the user than a single phone, they are quite similar and provide
little overview of the available products of her interest (phones). A
more convenient approach would be to present to the user only the
best combination for each phone and thus providing at the same
time combinations that suit the user’s needs while maintaining the
maximum overview of the products the user is interested in.

To this end, we propose the eXploratory Top-k Join (XTJk) query.
An XTJk takes as input a a set of relations where there is a main
relation and the rest additional relations are joined to the main re-
lation forming a "star"-like structure. Among all possible combi-
nations, only the best for each product are considered and the top-k
of them are returned to the user.

Current state-of-the-art techniques [2, 3, 7] for computing com-
binations based on preference vectors fall short to address this kind
of queries as they assume that each result should contain objects
from all relations participating in the join. On the contrary, our re-



quirement is that an object should be added to a combination only
if it is beneficial for the combination. Moreover, current techniques
do not exploit the form of the result-set and the structure of the join,
fact that leads to suboptimal performance.

To summarize, the contributions of this paper are: a) we intro-
duce the eXploratory Top-k Join (XTJk) query, a novel query type
which creates combinations of variable size between main and ad-
ditional objects and returns the top-k combinations with discrete
main objects, b) we introduce an efficient bounding scheme for
our algorithm, and c) we perform an experimental evaluation that
demonstrates the efficiency of our approach.

2. RELATED WORK
Top-k queries have been well-studied in the last years to enable

ranked retrieval of objects based on user preferences. For a thor-
ough overview we refer to [4]. Regarding rank-join queries, Ilyas
et al. proposed the HRJN algorithm [3] while Schnaitter et al. [7]
proposed the a-FRPA algorithm which improves the performance
of HRJN* in low dimensionality by using an improved bounding
technique. However for more than 4 dimensions the performance
advantage is minimal.

Our work is also related to package recommendation [5, 6, 8].
Xie et al. [8] study the problem of creating the best package out
of a set of items given a specific budget. However, it is assumed
that all objects can be joined with one another and the problem
they address is to create the most attracting package of objects for
a user.

Our main differences from the aforementioned approaches are
that we focus on maximizing the preference score of the main ob-
jects rather than creating combinations which satisfy a certain con-
straint. In addition, we do not assume a static combination size but
we consider it to be dynamic. We examine the specific case of joins
where all additional objects are combined with a main object. This
case of “star”-join has specific characteristics which allow us to
improve the performance of calculation of such joins. Finally, we
do not assume that all combinations are possible but we evaluate
the join conditions at the same time. None of the aforementioned
approaches examine all these conditions simultaneously.

3. PROBLEM DEFINITION
In this section we formally define the XTJk query and all nec-

essary structures used both for the problem definition and the de-
scription of the respective algorithms.

3.1 Object Combinations
Let D be a database of objects and EM be a relation in D which

is connected to a set of relations E = {E1, . . . , En} of D. We
assume that EM has a set of d real valued attributes AEM =
{a1, . . . , ad} and each relation Ei contains a subset AEi ⊆ AEM

of the attributes of the main relation. Each object in a relation
E ∈ E

⋃
{EM} is represented as a d-dimensional point p ∈ Rd

where p[i] ∈ R if ai ∈ AE and p[i] = 0 if ai 6∈ AE . We re-
fer to EM as main relation and to relations Ei ∈ E as additional
relations. The objects of the relations are referred to as main and
additional objects respectively.

Using the main and the additional objects we can form combina-
tions where each combination contains exactly one main object and
at most one object from each additional relation. We say that an ob-
ject of the main entity relation o ∈ EM and an object p ∈ Ei of an
additional relation Ei are combinable if there is a join of the form
o ./ p ∈ EM ./ Ei. Given a relation EM we denote as C(EM )

the set of all possible combinations that can be formed using EM

as main relation.
As an example, using the database of Figure 1, C(Mobiles) con-

sists of all combinations with a mobile a main object and {S5},
{I5S} and {S5, A} are valid combinations while {I5S,A} and
{S5, A,B} are not.

3.2 Combination Ranking
We consider a user query to be a d-dimensional preference vector

w targeted to relation EM and each dimension w[i] of the query
to represent the importance of the respective attribute to the user.
Without loss of generality we assume that

∑d
i=1 w[i] = 1 and if

a user is not interested in a specific attribute ai of the main objects
then w[i] = 0.

Given a vector w, a top-k query returns the k best objects in
EM according to the scoring function fw(o) =

∑d
j=1 w[j]o[j].

We refer to the top-k objects as the TOPk(w) set of EM . Sim-
ilarly, the score of any object p in an additional relation is equal
to fw(p) =

∑d
j=1 w[j]p[j]. The score of a combination c comes

now naturally as fw(c) =
∑d

j=1 w[j]
∑

p∈c(p[j]).
A combination for which it holds that no other tuple can be added

and improve its score is called total combination. A total combi-
nation does not necessarily contain objects from every additional
relation. It is possible that a main product is not combinable with
a category of additional products (e.g. I5S is not combinable with
memory cards) or the score of an additional object is negative and
the addition of such an object to a combination would make the
score of the combination worse.

Each object of the main relation can participate in many com-
binations but for each main object we are interested only in the
combination with the best score which we call the candidate com-
bination. For each object there is only one candidate combination.
We denote the set of all candidate combinations as B(EM ). Ob-
viously B(EM ) ⊆ C(EM ). It is worth noting that a candidate
combination is always total. If it were not total then the addition
of an additional object would create a better combination which
would contradict our claim that the candidate combination is the
best possible combination for a specific main object.

We can now extend the top-k query in order to take into account
not only single objects but also combinations. We therefore intro-
duce the eXploratory Top-k Join (XTJk) query which returns the
top-k candidate combinations. In other words, an XTJk query lists
the k main objects with the best combinations and thus each main
object can appear maximum once in the query’s result-set.

DEFINITION 1. XTJk query. Given a main relation EM , a set
of additional relations E , a preference vector w and an integer
k, the result set XTJk(w) of an eXploratory Top-k Join query is
a set of candidate combinations such that XTJk(w) ⊆ B(EM ),
|XTJk(w)| = k, ∀c1 ∈ XTJk(w), c2 ∈ B(EM ) − XTJk(w) it
holds that fw(c1) ≥ fw(c2).

Returning to our example, the result-set of the XTJ2(w) query
for w = (0.3, 0.1, 0.4, 0.2) is the set {{S5, B}, {S4, B}}. We
should note that the combination {S5, A} has a better score than
{S4, B} but the result-set can contain only each main product only
once and thus S5 can be included only once in the result-set.

4. THE HRJN ALGORITHM
A straightforward approach in order to process XTJk queries is

to adapt an existing rank-join algorithm, namely HRJN [3]. We
modified HRJN in a way that all possible combinations are com-
puted and not only the ones that include all relations. We employ



the modified HRJN algorithm as a baseline to compare the perfor-
mance of our algorithms.

Bounding scheme. A rank-join [3] algorithm typically accesses
inputs in ranked order based on the query at hand. Such an algo-
rithm estimates the upper bound of the score that any unseen tuple
can produce and terminates when the k-th best join result found is
better than the upper bound. For the additional relations we include
the best tuples only if their score is positive and they can increase
the total score of the combination. We must include however the
score of the best tuple of the main relation since its presence in the
results is necessary. The bounding scheme of HRJN is formally
described in Equations 1-3.

UBEM = fw(HEM [last]) +
∑
E∈E

u(fw(HE [1])) (1)

UBEi = fw(EM [1]) + fw(Ei[last]) +
∑
E∈E
E 6=Ei

u(fw(E[1])) (2)

UBHRJN = max
E∈E

⋃
{EM}

(UBE) (3)

The notation HE denotes the set of accessed objects of relation
E and by HE [1],HE [last] we denote the first and last accessed
tuples. The function u(x) returns x if x > 0 and 0 if x ≤ 0. It
can be proved that the adapted version of HRJN provides a correct
solution to the Exploratory top-k join problem.

5. EXPLORATORY RANK-JOIN (XRJN)
In this section, we propose the exploratory rank-join algorithm

(XRJN), which employs an improved bound. Before we continue
it is necessary to introduce the notion of the combination schema.
Intuitively, a combination schema is a set of entity relations that
can produce combinations.

DEFINITION 2. Combination schema. Given a main relation
EM and a set of additional relations E a combination schema CS
is a set of relations such that CS ⊆ E

⋃
{EM} and EM ∈ CS.

Given a combination we denote the combination schema that the
combination belongs to as CS(c).

Bounding scheme. At a random state of the algorithm, let us
denote with HE the objects of a relationE that have been accessed
so far, and with B̂(EM ) the set of all combinations that have been
created so far. Recall that only one combination per main object
is created and that an additional object is added to a combination
only if this produces a better score for the combination. There are
two bounds we should consider, denoted as UBEM and UBcomb

respectively, and our bound (UBXRJN ) is their maximum:

UBXRJN = max(UBEM ,UBcomb) (4)

The first (UBEM ) is to determine the upper bound of any unseen
object of the main relation EM . In the best case, the next object of
the main relation to be accessed will be combined with the best
objects of the additional relations except for those that have a nega-
tive score. Apparently, the upper bound for any unseen object of the
main relation relation is the same with the upper bound calculated
by the baseline and its value is calculated by Equation 1.

The second (UBcomb) is the upper bound for any unseen object
of the additional relations. Let p be the next object of an addi-
tional relation Ei to be accessed. We distinguish two cases: The
object is possibly combinable either with a main object o ∈ EM

that has been accessed and therefore o ∈ HEM or with an object
that has not yet been accessed and therefore o ∈ EM −HEM . If

o ∈ EM−HEM then the upper bound will include theHEM [last]
and HE i[last] and therefore it will always be worse than UBEM .
Consequently, we can safely ignore this alternative. The next al-
ternative is that p is combinable with one or more main objects
that already participate in a combination. We should remind here
that a single object o ∈ EM is also a valid combination. The
upper bound of this case is determined by the score of the most
promising combination. The most promising combination is the
non-total combination cmp which has the largest score if we add
all the last accessed objects for all relations that are not included in
the combination schema CS(c). We should note that this bound is
the same for all additional relations. Therefore we call it UBcomb

because it depends on the current combinations and the last ob-
jects accessed. The most promising combination and the respective
bound UBcomb are formally defined in Equations 5 and 6.

cmp = argmax
c∈B̂(EM )
c not total

fw(c) +
∑
E∈E

E 6∈CS(c)

u(fw(HE [last]))


(5)

UBcomb = fw(cmp) +
∑
E∈E

E 6∈CS(cmp)

u(fw(HE [last])) (6)

6. EXPERIMENTAL EVALUATION
In this section, we present the results of the experimental evalua-

tion. All algorithms were implemented in Java and the experiments
run on an AMD Opteron 4130 Processor (2.00GHz), with 32GB of
RAM and 2TB of disk. The relations were sorted for each query,
stored to the disk and accessed sequentially.

Datasets and metrics. For the data set D, all data values for
all relations and dimensions were generated independently using
a uniform distribution generator. Each additional relation has a
random subset of attributes of the main relation and contains at
least two attributes but no more than d − 1 where d is the number
of attributes of the main relation. The combinations of attributes
of each additional relation is unique. Each additional relation has
also a joining attribute which does not participate in the ranking of
each object while the main relation has |E| joining attributes, one
for each additional relation. The values for the joining attributes
are decided based on the selectivity value σ. In order to achieve a
variation on the joining selectivity, for each additional relation the
joining attribute takes values in the space [0, (σ × r)−1) where r
is a random number in the space [1, 3]. Finally the size of each
additional relation is equal to the size of the main relation and all
attributes were normalized in the interval [0, 10000].

The metrics under which we evaluated the implemented algo-
rithms were: a) execution time required by each algorithm, and
b) total tuples accessed (depth).

Experimental procedure. We run a series of experiments vary-
ing the parameters of: a) the number of additional relations (|E|)
in the interval [3-7], b) dimensionality (d) in the interval [4-8], c)
number of returned results (k) in the interval [5-100], and d) selec-
tivity (σ) [0.001-0.05].

The default setup for the experiments was: |E| = 5, |EM | =
100K, k = 10, σ = 0.001, while the number of preference queries
for each setting was equal to |W | = 100. Both the dataset and the
preferences set followed the uniform distribution.

Varying |E|. As shown in Figures 2-5 the improved XRJN bound
is from 2 to 3 times more efficient than HRJN bound. In more
detail, Figure 2(b) suggests that XRJN accesses nearly an order
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Figure 2: Varying # of additional relations
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Figure 3: Varying number of results

of magnitude less tuples than HRJN while Figure 2(a) indicates
that XRJN needs 2-3 times less processing time. The difference in
processing time is not as large as the difference in accessed tuples
because the XRJN bound requires considering all created combina-
tions while HRJN considers only 2(|E

⋃
{EM}|) tuples. It is worth

mentioning that as the number of additional relations increases, the
number of accessed tuples raises not only because more relations
have to be accessed but also because the upper bound drops slower.
As more additional relations are processed, the access cost of the
increased number of tuples for HRJN dominates the processing cost
of the XRJN bound.

Varying k. Figure 3 illustrates the performance of HRJN and
XRJN when varying k. As k raises the upper bound needs to drop
more and the lower the bound is, the harder it becomes for the
HRJN bound to drop. On the other hand, XRJN, by taking into
account the formed combinations and the accessed tuples, manages
to reduce the upper bound faster.

Varying dimensionality. Similar conclusions can be drawn from
Figure 4. As the preference vectors include more dimensions, the
significance of each dimension drops, causing the HRJN bound to
drop slowly as simultaneous decrease of all dimensions is needed.
XRJN diminishes the problem of high-scored tuples by calculat-
ing the upper bound based on the already formed combinations and
therefore terminates faster.

Varying join selectivity. The join selectivity is of particular
interest as it affects the performance of XRJN significantly. As
shown in Figure 5, when join selectivity rises, total combinations
are formed much faster and therefore they lead the XRJN bound to
decrease. HRJN is less affected by the join selectivity as it does not
consider the formed combinations during the bound calculations.
The critical role of the formed combinations becomes clear as for
selectivity values close to σ = 0.01, the difference in performance
increases significantly and reaches nearly two orders of magnitude
with respect to both time and tuples accessed.

7. CONCLUSION
In this paper, we addressed the problem of discovering a set of

k combinations between main and additional objects of k with dis-
tinct main objects. Our approach tries to balance between finding
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Figure 4: Varying dimensionality
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the most suitable combination of objects for the user while pro-
viding to her a wide overview of the available objects. We define
the eXploratory Top-k Join query and we present a new bound-
ing technique for efficiently calculating the result. Our experimen-
tal evaluation demonstrates that our bounding technique provides a
better estimation of the upper bound in comparison to the rank-join
bounding technique and therefore it allows the joining algorithm to
terminate faster. In our future work, we intend to design scalable al-
gorithms for processing exploratory top-k joins in MapReduce [1].
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