
Efficient Processing of Top-k Spatial

Keyword Queries

João B. Rocha-Junior⋆, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørv̊ag

Department of Computer and Information Science
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
{joao, orestis, simonj, noervaag}@idi.ntnu.no

Abstract. Given a spatial location and a set of keywords, a top-k spatial
keyword query returns the k best spatio-textual objects ranked accord-
ing to their proximity to the query location and relevance to the query
keywords. There are many applications handling huge amounts of geo-
tagged data, such as Twitter and Flickr, that can benefit from this query.
Unfortunately, the state-of-the-art approaches require non-negligible pro-
cessing cost that incurs in long response time. In this paper, we propose a
novel index to improve the performance of top-k spatial keyword queries
named Spatial Inverted Index (S2I). Our index maps each distinct term
to a set of objects containing the term. The objects are stored differently
according to the document frequency of the term and can be retrieved
efficiently in decreasing order of keyword relevance and spatial proximity.
Moreover, we present algorithms that exploit S2I to process top-k spatial
keyword queries efficiently. Finally, we show through extensive experi-
ments that our approach outperforms the state-of-the-art approaches in
terms of update and query cost.

1 Introduction

Given a location and a set of keywords, a top-k spatial keyword query returns a
ranked set of the k best spatio-textual objects taking into account both 1) the
spatial distance between the objects (spatio-textual objects) and the query lo-
cation, and 2) the relevance of the text describing the objects to the query
keywords. There are several applications that can benefit from top-k spatial
keyword queries such as finding the tweets sent from a given location (Twit-
ter) or finding images near by a given location whose annotation is similar to
the query keywords (Flickr). There are also other applications for GPS-enabled
mobile phones that can benefit from such queries.

For example, Fig. 1 shows a spatial area containing objects p (bars and pubs)
with their respective textual description. Consider a tourist in São Paulo with
a GPS mobile phone that wants to find a bar playing samba near her current
location q. The tourist poses a top-3 spatial keyword query on her mobile phone

⋆ On leave from the State University of Feira de Santana (UEFS).

2 João B. Rocha-Junior et al.

Fig. 1. Example of top-k spatial keyword query.

with the keywords bar and samba (the query location q is automatically sent by
the mobile phone). The top-1 result is p4 because its description is similar to the
query keywords, and it is close to the query location q. The top-2 result is p6
that is nearer to q than p7 and has a better textual relevance to the query key-
words than p7. Here, we are assuming for simplicity that documents with higher
numbers of occurrences of query keywords are more textually relevant. Later,
we will drop this assumption and present a more advanced model. Consequently,
the top-3 results are 〈p4, p6, p7〉.

Top-k spatial keyword queries are intuitive and constitute a useful tool for
many applications. However, processing top-k spatial keyword queries efficiently
is complex and requires a hybrid index combining information retrieval and
spatial indexes. The state-of-the-art approaches proposed by Cong et al. [4] and
Li et al. [11] employ a hybrid index that augments the nodes of an R-tree with
inverted indexes. The inverted index at each node refers to a pseudo-document
that represents all the objects under the node. Therefore, in order to verify if
a node is relevant for a set of query keywords, the current approaches access
the inverted index at each node to evaluate the similarity between the query
keywords and the pseudo-document associated with the node. This process incurs
in non-negligible processing cost that results in long response time.

In this paper, we propose a novel method for processing top-k spatial keyword
queries more efficiently. Instead of employing a single R-tree embedded with in-
verted indexes, we propose a new index named Spatial Inverted Index (S2I) that
maps each keyword (term) to a distinct aggregated R-tree (aR-tree) [14] that
stores the objects with the given term. In fact, we employ an aR-tree only when
the number of objects exceeds a given threshold. As long as the threshold is
not exceeded, the objects are stored in a file, one block per term. However, for
ease of presentation, let us assume that we employ an aR-tree for each term.
The aR-tree stores the latitude and longitude of the objects, and maintains an
aggregated value that represents the maximum term impact (normalized weight)
of the objects under the node. Consequently, it is possible to retrieve the best
objects ranked in terms of both spatial relevance and keyword relevance effi-

Efficient Processing of Top-k Spatial Keyword Queries 3

ciently and incrementally. For processing a top-k spatial keyword query with a
single keyword, only few nodes of a single aR-tree are accessed. For queries with
more than one keyword, we employ an efficient algorithm that aggregates the
partial-scores on keyword relevance of the objects to obtain the k best results
efficiently. In summary, the main contributions of this paper are:

– We present S2I, an index that maps each term in the vocabulary into a
distinct aR-tree or block that stores all objects with the given term.

– We propose efficient algorithms that exploit the S2I in order to process top-k
spatial keyword queries efficiently.

– Finally, we show through an extensive experimental evaluation that our ap-
proach outperforms the state-of-the-art algorithms in terms of update time,
I/O cost, and response time.

The rest of this paper is organized as follows. Sect. 2 gives an overview of
the related work. Sect. 3 poses the problem statement. In Sect. 4, we describe
S2I. In Sect. 5 and 6, we present the algorithms for processing top-k spatial
keyword queries. Finally, the experimental evaluation is presented in Sect. 7 and
the paper is conclude in Sect. 8.

2 Related Work

Initially, the research on spatial keyword queries focused on improving the per-
formance of spatial queries in search engines. Zhou et al. [17] did a relevant
work combining inverted indexes [18] and R-trees [2], and propose three ap-
proaches: 1) indexing the data in both R-trees and inverted indexes, 2) creating
an R-tree for each term, and 3) integrating keywords in the intermediary nodes
of an R-tree. They found out that the second approach achieved better perfor-
mance. However, they did not consider objects with a precise location (latitude
and longitude), and did not provide support for top-k spatial keyword queries.
Chen et al. [3] also had an information retrieval perspective on their work and
did not provide support for exact query location of objects. In their approach,
inverted indexes and R-trees are accessed separately in two different stages.

With the popularization of GPS-enabled devices, the research focused on
searching for objects in a specific location. Hariharan et al. [7] proposed aug-
menting the nodes of an R-tree with keywords extracted from the objects in the
sub-tree of the node. These keywords are then indexed in a structure similar to
an inverted index for fast retrieval. Their approach supports conjunctive query
in a given region of space. It is not clear, however, how their solution can be
extended to support top-k spatial keyword queries. Later, Ian de Felipe et al. [5]
proposed a data structure that integrates signature files and R-trees. The main
idea was indexing the spatial objects in an R-tree employing a signature on the
nodes to indicate the presence of a given keyword in the sub-tree of the node.
Consequently, at query processing time, the nodes that cannot contribute with
the query keywords can be pruned. The main problem of this approach is the
limitation to Boolean queries and to a small number of keywords per document.

4 João B. Rocha-Junior et al.

To the best of our knowledge, there are two previous approaches that support
top-k spatial keyword queries. They were developed concurrently by Cong et
al. [4] and Li et al. [11]. Both approaches augment the nodes of an R-tree with
a document vector that represents all documents in the sub-tree of the node.
For all terms present in the objects in the sub-tree of the node, the vector stores
the maximum impact of the term (normalized weight). Consequently, the vector
allows computing an upper bound for the textual score (textual relevance) that
can be achieved visiting a given node. Hence, it is possible to rank the nodes
according to textual relevance and spatial relevance, and decide which nodes
should be accessed first to compute the top-k results.

The work of Cong et al. goes beyond the work of Li et al. by incorporating
document similarity to build a more advanced R-tree namely DIR-tree. DIR-tree
groups, in the same node, objects that are near each other in terms of spatial
distance, and whose textual description are also similar. Furthermore, instead of
comparing vectors at query time, DIR-tree employs an inverted index associated
with each node that permits to retrieve the children of the node that can con-
tribute with a given query keyword efficiently. Only the posting lists associated
with the query keywords are accessed. Cong et al. also propose clustering the
nodes of DIR-tree (CDIR-tree) to further improve the query processing perfor-
mance. The main idea is grouping related entries (objects, in case of leaf-nodes)
and employing a pseudo-document to represent each group. Hence, more pre-
cise bounds can be estimated at query time, consequently, improving the query
processing performance. However, it is not clear if the improvement achieved
at query processing time compensates the additional cost required for clustering
the nodes (pre-processing), and the extra storage space demanded by CDIR-tree.
Moreover, keeping a CDIR-tree updated is more complex. For this reason, we
decided to compare our approach against the DIR-tree proposed by Cong et al.,
and we consider this approach as the state-of-the-art.

3 Problem Statement

Let P be a dataset with |P | spatio-textual objects p = 〈p.id, p.l, p.d〉, where p.id
is the identification of p, p.l is the spatial location (latitude and longitude) of
p, and p.d is the textual document describing p (e.g., menu of a restaurant).
Let q = 〈q.l, q.d, q.k〉 be a top-k spatial keyword query, where q.l is the query
location (latitude and longitude), q.d is the set of query keywords, and q.k is
the number of expected results. A query q returns q.k spatio-textual objects
{p1, p2, · · · , pq.k} from P with the highest scores τ(p, q), τ(p1, q) ≥ τ(p2, q) ≥
· · · ≥ τ(pk, q). Furthermore, a spatio-textual object p is part of the result set R
of q, if and only if exists at least one term t ∈ q.d that is also in p.d (p ∈ R ⇔
∃t ∈ q.d : t ∈ p.d). The score of p for a given query q is defined in the following
equation:

τ(p, q) = α · δ(p.l, q.l) + (1− α) · θ(p.d, q.d) (1)

where δ(p.l, q.l) is the spatial proximity between the query location q.l and the
object location p.l, and θ(q.d, p.d) is the textual relevance of p.d according to

Efficient Processing of Top-k Spatial Keyword Queries 5

q.d. Both measures return values within the range [0, 1]. The query preference
parameter α ∈ (0, 1) defines the importance of one measure over the other. For
example, α = 0.5 means that spatial proximity and textual relevance are equally
important. In the following, we define the measures more precisely.

Spatial proximity (δ). The spatial proximity is defined in the following equa-
tion:

δ(p.l, q.l) = 1− d(p.l, q.l)

dmax

(2)

where d(p.l, q.l) is the Euclidean distance between p.l and q.l, and dmax is the
largest Euclidean distance that any two points in the space may have. The
maximum distance may be obtained, for example, by getting the largest diagonal
of the Euclidean space of the application.

Textual relevance (θ). There are several similarity measures that can be used
to evaluate the textual relevance between the query keywords q.d and the text
document p.d [13]. In this paper, we adopt the well-known cosine similarity
between the vectors composed by the weights of the terms in q.d and p.d:

θ(p.d, q.d) =

∑

t∈q.d wt,p.d · wt,q.d
√

∑

t∈p.d(wt,p.d)2 ·
∑

t∈q.d(wt,q.d)2
(3)

In order to compute the cosine, we adopt the approach employed by Zobel and
Moffat [18]. Therefore, the weight wt,p.d is computed as wt,p.d = 1 + ln(ft,p.d),
where ft,p.d is the number of occurrences (frequency) of t in p.d; and the weight

wt,q.d is obtained from the following formula wt,q.d = ln(1 + |P |
dft

), where |P | is
the total number of documents in the collection. The document frequency dft of
a term t gives the number of documents in P that contains t. The higher the
cosine value, the higher the textual relevance. The textual relevance is a value
within the range [0, 1] (property of cosine).

We also define the impact λt,d of a term t in a document d, where d represents
the description of an object p.d or the query keywords q.d. The impact λt,d is
the normalized weight of the term in the document [1, 16], λt,d =

wt,d√∑
t∈d

(wt,d)2
.

The impact takes into account the length of the document and can be used to
compare the relevance of two different documents according to a term t present in
both documents. Consequently, the textual relevance θ(p.d, q.d) can be rewritten
in terms of the impact [16], θ(p.d, q.d) =

∑

t∈q.d λt,q.d · λt,p.d.
Other types of spatial proximity and textual relevance measures such as

Okapi BM25 [13] can be supported by our framework. The focus of this paper
is, however, on the efficiency of top-k spatial keyword queries. In the following,
we present the S2I (Sect. 4) and describe the algorithms to process top-k spatial
keyword queries efficiently (Sect. 5 and 6).

4 Spatial Inverted Index

The S2I was designed taking in account the following observations. First, terms
with different document frequency should be stored differently. It is well-known

6 João B. Rocha-Junior et al.

term id dft type ptr

bar t1 4 tree →֒
pop t2 2 block →֒
pub t3 5 tree →֒
rock t4 2 block →֒
samba t5 2 block →֒

storage

aRt1

〈p1, p5〉
aRt3

〈p2, p3〉
〈p4, p7〉

(a) S2I.

(b) aRt1 . (c) aRt3 .

Fig. 2. Spatial Inverted index and the aR-tree of terms t1 and t3.

that the document frequency of terms in a corpus follows the Zipf’s law, which
means that there are a small number of terms that occur frequently, while most
terms occur infrequently [10]. Current approaches that support top-k spatial
keyword queries ignore this property and store frequent and infrequent terms in
the same way. For example, the impact of a term that occurs in a single object
has to be replicated in several nodes of the DIR-tree to indicate the path in the
tree for the given object. Second, good support for distribution is important for
scaling applications that can benefit from top-k spatial keyword queries. Third,
keeping the index update is important. The current approaches require accessing
one or several inverted files to perform a single update, which has a significant
cost. Finally, response time is critical for several applications. Our approach
accesses less disk pages and can perform queries more efficiently.

The S2I maps each term t to an aggregated R-tree (aR-tree) or to a block
that stores the spatio-textual objects p that contain t. The most frequent terms
are stored in aR-trees, one tree per term. The less frequent terms are stored in
blocks in a file, one block per term. Similarly to a traditional inverted index, the
S2I maps terms to objects that contain the term. However, we employ two dif-
ferent data structures, one for less frequent terms and another for more frequent
terms that can be accessed in decreasing order of keyword relevance and spatial
proximity efficiently.

The S2I consists of three components: vocabulary, blocks, and trees.

Efficient Processing of Top-k Spatial Keyword Queries 7

– Vocabulary. The vocabulary stores, for each distinct term, the number of
objects in which the term appears (dft), a flag indicating the type of storage
used by the term (block or tree), and a pointer to a block or aR-tree that
stores the objects containing the given term.

– Blocks. Each block stores a set of objects, the size of a block is an application
parameter. For each object, we store the object identification p.id, the object
location p.l, and the impact of term t in p.d (λt,p.d). The objects stored in a
block are not ordered.

– Trees. The aggregated R-tree [14] of a term aRt follows the same structure
of a traditional R-tree. A leaf-node stores information about the data objects:
p.id, p.l, and λt,p.d. An intermediary-node stores for each entry (child node) a
minimum bounding rectangle (MBR) that encloses the spatial location of all
objects in the sub-tree. Differently from an R-tree, the nodes of an aR-tree
store also an aggregated non-spatial value among the objects in its sub-tree.
In our case, the aggregated value is the maximum impact of the term t among
the objects in the sub-tree of the node. Hence, we can access the objects in
aRt in decreasing order of term relevance and spatial proximity.

Example 1. Fig. 2 presents the S2I created from the objects depicted in Fig. 1.
In order to simplify the presentation, we assume in all examples that the impact
of a term in a document (λt,d) is defined by the number of occurrences of the
term in a document. We also assume that α = 0.5 in all examples. We drop these
assumptions in the experimental evaluation. The less frequent terms are stored
in a block, while the more frequent terms are stored in an aR-tree, see Fig. 2(a).
The aR-tree of terms t1 and t3 is depicted in Fig. 2(b) and 2(c), respectively.
The root of Rt1 contains two entries e1 and e2. The entry e1 contains the spatio-
textual objects {p1, p3}, while e2 contains {p4, p6}. The objects p1 and p3 have
one occurrence of t1 (f = 1), while p4 and p6 have two occurrences of t1 (f = 2).
The number of occurrences of a term in bold present the maximum number of
occurrences of a term among the entries of each node.

The S2I has several good properties. First, terms with different document fre-
quency are stored differently. Second, S2I has good support for distribution. S2I
employs a different data structure for each term and can benefit from techniques
used by traditional distributed search engines such as term partitioning [18].
Third, S2I provides good support for updates. Although one tree or block has to
be accessed for each term in an object, the operations executed at each tree or
block can be performed efficiently. Furthermore, the average number of distinct
terms per document is small in most of the applications that are target of this
query, as it can be seen in Table 2 (Section 7). Finally, S2I allows efficient query
execution. For queries with a single keyword, only one small tree (in general)
or a block needs to be accessed. For queries with several keywords only few
nodes of a set of small trees or blocks are accessed. No access to external in-
verted indexes is required. In the following, we present the algorithm to process
single-keyword (Sect. 5) and multiple-keyword queries (Sect. 6) employing S2I.

8 João B. Rocha-Junior et al.

Algorithm 1 SKA(MaxHeap Ht, Query q)

1: INPUT: MaxHeap Ht with entries e in decreasing order of score τ(e, q) and the
query q.

2: OUTPUT: The next object p with highest score τ(p, q).
3: Entry e← Ht.pop() //e is the entry with highest score τ(e, q) in Ht

4: while e is not an object do
5: if e is an intermediary-node then

6: for each node n ∈ e do

7: Ht.insert(n, τ(n, q))
8: end for

9: else //e is a leaf-node
10: for each spatio-textual object p ∈ e do

11: Ht.insert(p, τ(p, q))
12: end for

13: end if

14: e← Ht.pop()
15: end while

16: return e

5 Single-Keyword Queries

Top-k spatial keyword queries with a single keyword t can be efficiently processed
using the S2I, since only one single block or tree containing the objects with the
term t is accessed. If the objects are stored in a block, the query processing
steps are: 1) retrieve all objects p in the block, 2) insert the objects in a heap in
decreasing order of τ(p, q), and 3) report the top-k best objects. If the objects
are stored in an aR-tree, we employ an incremental algorithm (Algorithm 1) to
retrieve the objects in decreasing order of τ(p, q).

The SKA (Single Keyword Algorithm, Algorithm 1) visits entries e (nodes
or objects) in an aR-tree in decreasing order of τ(e, q). The score of a node n,
τ(n, q), and the score of an object p, τ(p, q), are computed in a similar way.
The spatial proximity δ(n, q) is obtained computing the minimum Euclidean
distance between q and any border of the MBR of n. On the other hand, the
textual relevance θ(n, q) is obtained multiplying the impact of t in the query
λt,q by the impact of t in the node λt,n that is the maximum impact among any
entry e in the sub-tree of n. Consequently, the score τ(n, q) is an upper bound
score for any entry e in the sub-tree of n, since any entry e in the sub-tree of n
has a distance to q longer or equal d(q, n), d(q, n) ≤ d(q, e); and the term impact
of n is higher or equal the term impact of any entry e, λt,n ≥ λt,e.

SKA receives as parameter a priority queue (MaxHeap) Ht and a query q.
The heap stores the entries e of Rt in decreasing order of score τ(e, q). Initially,
the heap has the root of Rt. The entry e (line 3) is the entry with highest score
in Ht. If e is an intermediary-node (line 5), the algorithm computes the score of
all nodes n children of e and insert n in Ht in decreasing order of τ(n, q) (lines
6-8). If e is a leaf-node (line 9), the algorithm computes the score of all objects
p children of e and insert p in Ht in decreasing order of score (lines 10-12).

Efficient Processing of Top-k Spatial Keyword Queries 9

This process repeats until an object p achieves the top of the heap (line 4). This
means that there is no other object in Ht with higher score than p. Therefore,
p can be reported incrementally (line 16). The algorithm keeps the state of the
variables for future access.

Example 2. Assume that we want to obtain the top-1 object among the objects
depicted in Fig. 1 according to the query keyword q.d = {bar} and the query
location q.l = (6, 5). The query processing starts accessing the S2I and acquir-
ing the information that objects with the term “bar” (t1) are stored in aRt1 ,
Fig. 2(b). The SKA algorithm starts with the root of aRt1 in Ht1 and inserts
the entries e1 and e2 in the heap, Ht1 = 〈e2, e1〉. The entry e2 is in the top of
Ht1 because it has a better score, τ(e2, q) > τ(e1, q). The score of e2 is higher
because it has a higher term frequency (fe2,t1 = 2) and is nearer to q. The algo-
rithm continues removing e2 from the heap and inserting the objects p4 and p6
into Ht1 = 〈p4, p6, e1〉. In the next iteration, p4 reaches the top of the heap Ht1

and is returned as top-1.

The problem of retrieving the objects in increasing order of score is simi-
lar to the problem of retrieving the nearest neighbors incrementally [8]. In the
following, we present the algorithm to process multiple keyword queries.

6 Multiple-Keyword Queries

We divide this section in two parts. First, we define partial-score that is the
score of an object according to a single term in the query, Sect. 6.1. Second, we
present the algorithm to aggregate the objects retrieved in terms of partial-score
to compute the top-k results, Sect. 6.2.

6.1 Partial-Score on Keyword

Processing multiple-keyword queries in the S2I requires aggregating objects from
different sources Si (aR-trees or blocks), where i refers to a distinct term ti ∈ q.d.
The näıve way is to retrieve objects p from each source Si in decreasing order
of score τ(p, q) (Equation 1) replacing q.d by a query term t ∈ q.d, τ(p, {t}).
The final score is obtained adding the scores retrieved for each term. However,
τ(p, q) 6= ∑

t∈q.d τ(p, {t}), because the spatial proximity is replicated in the
scores computed for each term τ(p, {t}). Hence, we propose to derive a partial-
score on keyword τ t(p, q) such that the score τ(p, q) can be computed in terms
of the sum of partial-scores obtained from each source, τ(p, q) =

∑

t∈q.d τ
t(p, q).

In order to obtain the partial-score τ t(p, q), we rewrite Equation 1 so that
the score τ(p, q) can be obtained in terms of the sum of partial-scores of t:

τ(p, q) = α · δ(p.l, q.l) + (1− α) · θ(p.d, q.d)
= α · δ(p.l, q.l) + (1− α) ·

∑

t∈q.d

λt,p.d · λt,q.d

=
∑

t∈q.d

(α · δ(p.l, q.l)|q.d| + (1− α) · λt,p.d · λt,q.d)

10 João B. Rocha-Junior et al.

where |q.d| is the number of distinct terms in the query. From the equation
above, we define partial-score τ t(p, q) of p in relation to a term t as:

τ t(p, q) = α · δ(p.l, q.l)|q.d| + (1− α) · λt,p.d · λt,q.d . (4)

The partial-score reduces the weight of the spatial proximity δ(p.l, q.l) ac-
cording to the number of distinct terms in the query q.d. Furthermore, once we
have obtained an object p from a source Si, we can also derive a lower bound
partial-score τ t−(p, q) for p on the other sources in which p has not been seen yet,

τ t−(p, q) = α · δ(p.l,q.l)
|q.d| . This is the lowest possible partial-score that p may have

in a source where it has not been seen yet, since the proximity between p and
q will not change. With the partial-scores τ t(p, q) and τ t−(p, q), we can compute
the lower bound and upper bound scores based on partial information about the
object.

Example 3. Assume a query with two terms ti and tj , where the partial-score of
p according to term ti is known. The lower bond score of p, p−, can be computed
adding the partial-score of p according to ti with the lower bound partial-score
of p according to tj , p− = τ ti(p, q) + τ

tj
− (p, q).

In the following, we present the MKA algorithm that employs the partial-
scores to compute the top-k results for queries with multiple-keywords.

6.2 Multiple Keyword Algorithm

The Multiple Keyword Algorithm (MKA) computes a top-k spatial keyword
query progressively by aggregating the partial-scores of the objects retrieved for
a given keyword. The objects containing a given term are retrieved in decreasing
order of partial-scores from the source (aR-tree or block). In order to retrieve the
objects in decreasing order of partial-score, we employ the SKA algorithm (Al-
gorithm 1) replacing the score τ(p, q) by partial-score τ t(p, q).

Each time an object p is retrieved from a source Si (Si.next()), we compute
the lower bound score of p, update the upper bound score for any unseen object,
and check if there is an object whose the lower bound score is higher or equal
the upper bound of any other object. Those objects are reported progressively.
We repeat this process until k objects have been found.

Algorithm 2 presents the MKA algorithm. MKA receives as parameter a
top-k spatial keyword query q and reports the top-k results incrementally. MKA
employ one source Si for each distinct term ti ∈ q.d (line 3). Next, for each
source Si, the algorithm sets an upper bound u−

i that maintains the highest
partial-score among the objects unseen from Si (line 6). The upper bound is
updated every time that an object p is retrieved from Si (line 10).

During each iteration (lines 7-23), MKA selects a source i (line 8), where
the procedure selectSource(q.d) defines the strategy to select the source. In
this paper, we employ a round-robin strategy that selects a source Si that is

Efficient Processing of Top-k Spatial Keyword Queries 11

Algorithm 2 MKA(Query q)

1: INPUT: The top-k spatial keyword query q.
2: OUTPUT: Progressively reports the top-k objects found.
3: Si ← source of the term ti ∈ q.d

4: C ← ∅ //List of candidate objects.
5: Li ← ∅ //List of objects seen in the source Si

6: u−
i ←∞ //Upper-bound score for any p ∈ Si

7: while ∃Si such that Si 6= ∅ do
8: i← selectSource(q.d)
9: p← Si.next() //Next object p in Si with highest τ ti(p, q)
10: u−

i ← τ ti(p, q) //Update upper bound score for source Si

11: Li ← Li ∪ p

12: p− ←
∑

∀j:p∈Lj
τ tj (p, q) +

∑
∀j:p 6∈Lj

τ
tj
− (p, q) //Update lower bound score of p

13: if p 6∈ C then

14: C ← C ∪ p

15: end if

16: for each p ∈ C do //Update upper bound score of the candidates

17: p− ←
∑

∀j:p∈Lj
τ tj (p, q) +

∑
∀j:p 6∈Lj

max(u−
j , τ

tj
− (p, q))

18: end for

19: while ∃p ∈ C : p− ≥ max∀o∈C,o 6=p(o
−) do

20: C ← C − p

21: reports p as next top-k, halt if q.k objects have been reported
22: end while

23: end while

24: if less than q.k objects have been reported then

25: return the objects in C with highest lower bound score p−
26: end if

not empty. Other more sophisticated strategies such as keeping an indicator
that express the effectiveness of selecting a source [6] can also be employed.
MKA continues retrieving from Si the next object p with highest partial-score
τ ti(p, q) (line 9), and updating the upper bound score u−

i (line 10) with the new
partial-score retrieved from Si. At this point, any unseen object in Si has a lower
or equal partial-score than u−

i . Next, MKA marks that p has been seen in Si

adding p into Li (line 11), and updating the lower bound score for p (line 12).
The lower bound score is computed by summing the partial-scores known for p
with the worst possible partial-score that p may have based on the sources in
which p has not been seen yet. Then, MKA checks if p is in the candidate set C,
inserting p otherwise (lines 13-15). Next, MKA updates the upper bound score
for any object in the candidate set C (lines 16-18). The upper bound score for
a given object in a source that it has not been yet, does not decrease bellow
its lower bound score on that source (line 17). The objects p ∈ C whose lower
bound p− is higher or equal the upper bound o− of any other object in C (lines
19-22) are reported incrementally. MKA repeats this process until k objects has
been reported, or the sources are empty. If the sources are empty and less than

12 João B. Rocha-Junior et al.

Steps aR
t1 aR

t3 Candidate set C = {p[p−,p
−]}

↓ ↓
2 τ t1(p4, q) ≈ 1.2 τ t3(p5, q) ≈ 1.21 p4[1.39, 2.41], p5[1.42, 2.41]
2 τ t1(p6, q) ≈ 1.17 τ t3(p6, q) ≈ 1.17 p4[1.39,2.37], p5[1.42,2.38], p6[2.34, 2.34]
1 τ t1(p3, q) ≈ 0.65 p4[1.39, 2.37], p5[1.42,1.86], p6[2.34, 2.34]
1 τ t3(p2, q) ≈ 0.68 p4[1.39,1.88], p5[1.42, 1.86], p6[2.34, 2.34]

Fig. 3. State of some variables during the execution of MKA. The candidates p2 and
p3 have low score and are omitted from the list of candidates.

k objects have been returned, MKA reports the objects in C with highest lower
bound score (lines 24-26) as the remaining top-k.

Example 4. Assume a top-k spatial keyword query q, where q.l = (5, 6), q.d =
{bar, pub}, and q.k = 1. The MKA accesses the aR-trees aRt1 (bar) and aRt3 (pub)
as depicted in Fig. 2. The state of some variables during the execution of MKA
is shown in Fig. 3. After the second iteration (step), MKA has retrieved p4 and
p5 from aRt1 and aRt3 respectively. MKA continues retrieving p6 from both aR-
trees aRt1 and aRt3 . Although p6 has been found in both aR-trees, it cannot be
reported as top-1 since the upper bound score of the other candidates p4 and p5
is still smaller than the score of p6 (Fig. 3). However, after retrieving p3 from
aRt1 and p2 from aRt3 , p6 can be reported progressively as top-1 since its score
is smaller than the upper bound score of the other candidates.

Aggregating term-scores to compute the top-k spatio-textual objects is sim-
ilar to aggregating ranked inputs to compute the top-k results [9, 15]. For sim-
plicity, we omit from the description of Algorithm 2 some implementation details
that permit reducing the size of the candidate set and the number of compar-
isons to update the upper bound score [12]. In the following, we evaluate the
performance of SKA and MKA algorithms.

7 Experimental Evaluation

In this section, we compare our approach the S2I against the DIR-tree proposed
by Cong et al. [4]. All algorithms were implemented in Java using the XXL
library1. The nodes of the aR-trees, employed in S2I, have a block size of 4KB
that is able to store between 42 and 85 entries. The blocks in the file used to
store the non-frequent items has a maximum size of 4KB that permits to store a
maximum of 146 entries. The intuition behind this choice is that we store objects
in an aR-tree only when there are enough objects to fill more than one node of
an aR-tree. Each node of a DIR-tree also has a block size of 4KB and is able
to store between 46 and 92 entries. The parameter β used to balance textual
similarity and spatial location during the construction of the DIR-tree was set
to 0.1 as suggested by Cong et al. [4].

1 http://dbs.mathematik.uni-marburg.de/Home/Research/Projects/XXL

Efficient Processing of Top-k Spatial Keyword Queries 13

Parameter Values

Number of results (k) 10, 20, 30, 40, 50
Number of keywords 1, 2, 3, 4, 5
Query preference rate α 0.1, 0.3, 0.5, 0.7, 0.9
Twitter dataset 1M, 2M, 3M, 4M
Other datasets Data1, Wikipedia (Wiki), Flickr, OpenStreetMap (OSM)

Table 1. Settings used in the experiments. The default values are presented in bold.

Datasets Tot. no.

of. objects

Avg. no. of unique

words per object

Tot. no. of

unique words

Tot. no. of

words

Twitter1 1,000,000 11.94 553,515 12,542,414
Twitter2 2,000,000 12.00 1,009,711 25,203,367
Twitter3 3,000,000 12.26 1,391,171 38,655,751
Twitter4 4,000,000 12.27 1,678,451 51,661,462
Data1 131,461 131.70 101,650 32,622,168

Wikipedia 429,790 163.65 1,871,836 169,365,635
Flickr 1,471,080 14.49 487,003 25,417,021

OpenStreetMap 2,927,886 8.76 662,334 31,526,352

Table 2. Characteristics of the datasets.

Setup. Experiments were executed on a PC with a 3GHz Dual Core AMD
processor and 2GB RAM. In each experiment, we execute 100 queries to warm-
up the buffers, and collect the average results of the next 800 queries. The queries
are randomly generated using the same vocabulary and the same spatial area
of the datasets as used by Cong et al. [4]. We employed a buffer whose size
was fixed in 4MB for both approaches. In the experiments, we measured the
total execution time (referred as response time) and the number of I/Os (page
faults). All charts are plotted using a logarithmic scale on the y-axis. The main
parameters and values used through the experiments are presented in Table 1.

Datasets. Table 2 shows the characteristics of the datasets used in the ex-
periments. We employed four Twitter datasets of 1M, 2M, 3M, and 4M objects
each, where each object is composed by a Twitter message (tweet) and a ran-
dom location where latitude and longitude are within the range [0,100]. In order
to create these datasets, we used the first 10 million non-empty tweets from
the Standford Twitter dataset2. The Data1 dataset was created combining texts
from 20 Newsgroups dataset3 and locations from LA streets4. This dataset is
similar to the Data1 dataset used by Cong et al. [4]. However, instead of select-
ing only 5 groups, we employed all documents in the 20 Newsgroups dataset.
We also conducted experiments on real datasets: Wikipedia, Flickr, and Open-

2 http://snap.stanford.edu/data/twitter7.html
3 http://people.csail.mit.edu/jrennie/20Newsgroups
4 http://barcelona.research.yahoo.net/websmapm/datasets/uk2007

14 João B. Rocha-Junior et al.

 1

 10

 100

 1000

 10000

 10 20 30 40 50

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of results (k)

DIR-tree S2I

(a) Response time.

 0.1

 1

 10

 100

 10 20 30 40 50

I/
O

Number of results (k)

Dir-tree S2I

(b) I/O.

Fig. 4. Response time and I/O varying the number of results (k).

StreetMap. The Wikipedia dataset is composed by Wikipedia articles with a
spatial location. The Flickr dataset contains objects referring to photos taken in
the area of London. Each object is composed by a spatial location and a text de-
scribing the photo (title and description). Finally, the OpenStreetMap5 dataset
contains objects downloaded from OpenStreetMap covering the entire planet.

7.1 Query Processing Performance

In this section, we evaluate the query processing performance of the S2I and
DIR-tree for different setups. In all experiments, we employ the default set-
tings (Table 1) to study the impact on I/O and response time, while varying a
single parameter.

Varying the number of results (k). Fig. 4 plots the response time and
I/O of the S2I and DIR-tree, while varying the number of results k. The response
time achieved using S2I is one order of magnitude better than using DIR-tree
(Fig. 4(a)). Furthermore, the advantage of S2I increases when the number of
results increases. The main reason for this is that S2I accesses less disk pages
to process a query (Fig. 4(b). In order to process a query employing DIR-tree,
the inverted files at each node are accessed to obtain the posting lists of each
distinct keyword in the query. For example, a query with 3 distinct keywords is
performed in two steps: first, the postings lists of each keyword is retrieved in
order to identify the entries of the node that can contribute to the query results,
then the relevant entries are visited in decreasing order of score. Although the size
of the posting lists are small, since they are bounded by the maximum capacity
of a node, the process to perform such queries on inverted indexes incurs in
non-negligible cost.

Varying the number of keywords. Fig. 5 depicts the response time
and I/O, while varying the number of query keywords. Again, the response
time (Fig. 5(a)) and I/O (Fig. 5(b)) achieved by using the S2I are one order of
magnitude better. Single-keyword queries are processed efficiently employing the
SKA algorithm. Hence, few pages are accessed during the query processing. As

5 http://www.openstreetmap.org

Efficient Processing of Top-k Spatial Keyword Queries 15

 1

 10

 100

 1000

 10000

 1 2 3 4 5

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of keywords

DIR-tree S2I

(a) Response time.

 0.1

 1

 10

 100

 1 2 3 4 5

I/
O

Number of keywords

Dir-tree S2I

(b) I/O.

Fig. 5. Response time and I/O varying the number of keywords.

 1

 10

 100

 1000

 10000

1M 2M 3M 4M

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Dataset size

DIR-tree S2I

(a) Response time.

 0.1

 1

 10

 100

1M 2M 3M 4M

I/
O

Dataset size

Dir-tree S2I

(b) I/O.

Fig. 6. Response time and I/O varying the cardinality of the Twitter dataset.

expected, the larger the number of keywords, the higher the I/O required to pro-
cess the query. However, the advantage of S2I over DIR-tree remains constant,
which demonstrates the efficiency of the MKA algorithm.

Varying the cardinality. In Fig. 6, we evaluate the impact of increasing
the dataset size (cardinality) on response time and I/O. Again, the response
time achieved by using the S2I is around one order magnitude better than S2I,
see Fig. 6(a). Moreover, the advantage increases when the dataset increases. The
same behavior is noted in the number of I/Os required, see Fig. 6(b).

Varying the query preference parameter (α). In Fig. 7, we study the
impact of α (Equation 1) on response time and number of I/Os. The perfor-
mance of the S2I increases for higher values of the query preference parameter
α (Fig. 7(a)), which means that S2I can terminate earlier if the preference pa-
rameter gives more weight to proximity over text relevance. The same behavior
repeats in Fig. 7(b) that plots I/O. The query preference parameter does not
present an impact on the performance of DIR-tree. The main reason for this is
that the Twitter dataset has a large vocabulary and the objects are uniformly
spread in the spatial space, which reduces the capacity of DIR-tree to put objects
with similar content and similar location in the same node.

Varying the datasets. In Fig. 8, we present response time and I/O for dif-
ferent datasets. The S2I presents better response time (Fig. 8(a)) and I/O (Fig. 8(b))
for all datasets. The response time is influenced by the size of the dataset. The

16 João B. Rocha-Junior et al.

 1

 10

 100

 1000

 10000

 0.1 0.3 0.5 0.7 0.9

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Query preference rate (α)

DIR-tree S2I

(a) Response time.

 0.1

 1

 10

 100

 0.1 0.3 0.5 0.7 0.9

I/
O

Query preference rate (α)

Dir-tree S2I

(b) I/O.

Fig. 7. Response time and I/O varying the query preference rate (α).

 1

 10

 100

 1000

 10000

Data1 Wiki Flickr OSM

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Datasets

DIR-tree S2I

(a) Response time.

 0.1

 1

 10

 100

Data1 Wiki Flickr OSM

I/
O

Datasets

DIR-tree S2I

(b) I/O.

Fig. 8. Response time and I/O for different datasets.

Wikipedia dataset is one of the largest dataset evaluated, since the text as-
sociated with each object has many keywords. On the other hand, Flickr and
OpenStreetMap datasets have similar number of distinct terms per object, which
is, in general, small. Consequently, the performance on those datasets is similar.
Finally, Data1 presents the highest I/O. This happens because the total number
of unique words in Data1 is small compared to its dataset size. Data1 is cre-
ated combining 131,461 locations with only 20 thousand documents to create a
dataset with 131,461 spatio-textual objects. Hence, there are many objects with
the same textual description.

7.2 Maintenance and Space Requirements

In this section, we evaluate the maintenance cost and space requirements in both
the DIR-tree and S2I.

Maintenance. We evaluate the cost of insertions, which are more frequent
than updates and deletions. In order to obtain the insertion cost, we inserted 100
objects in S2I and DIR-tree and collected the average time. After each insertion,
we flush the data in the index structures. The results are presented in Fig. 9.

Several storage units (blocks and trees) of the S2I, one per distinct term, are
accessed due to an insertion of a new object. However, the tasks executed in a
block or in an aR-tree are performed efficiently since they do not require com-
puting the textual similarity between the new object and the objects currently

Efficient Processing of Top-k Spatial Keyword Queries 17

 0.1

 1

 10

 100

 1000

1M 2M 3M 4M

T
im

e
 (

s
e
c
o
n
d
s
)

Dataset size

DIR-tree S2I

Fig. 9. Update time (seconds).

10M

100M

1G

10G

100G

Data1 Wiki Flickr OSM Twitter2

S
iz

e
 (

b
y
te

s
)

Datasets

DIR-tree
DIR-tree (update)

S2I

Fig. 10. Size of the indexes.

stored in the index. However, the cost of inserting a new object in a DIR-tree re-
quires comparing the similarity between the text of the new object and the text
of other several objects in order to find the region of DIR-tree that better ac-
commodates the new object. Moreover, the insertion requires updating inverted
files which is also challenging and costly.

Space requirements. Fig. 10 depicts the space required for both indexes
DIR-tree and S2I. The size required by S2I is larger than the size required
by DIR-tree. The main reason is that S2I employs more trees that do not use
the space in the nodes effectively. The figure shows also the space required by
DIR-tree to execute updates. This space includes the size of the vectors of the
pseudo-documents at each node. The vectors are required only during updates,
since at query time DIR-tree employs only inverted files. The space required by
S2I to perform search and update is the same.

8 Conclusions

In this paper, we present a new index named Spatial Inverted Index (S2I) and
algorithms (SKA and MKA) to support top-k spatial keyword queries efficiently.
Similar to an inverted index, S2I maps distinct terms to the set of objects that
contains the term. The list of objects that contain a term are stored differently
according to the document frequency of the term. If the term occurs often in
the collection, the objects with the term are stored in an aggregated R-tree and
can be retrieved in decreasing order of partial-score efficiently. Differently, the
objects of infrequent term are stored together in a block in a file. Furthermore,
we present algorithms to process single-keyword (SKA) queries and multiple-
keyword (MKA) queries efficiently. Finally, we show through extensive experi-
ments that our approach outperforms the state-of-the-art approach in terms of
query and update cost.

Acknowledgments

We are thankful to Massimiliano Ruocco for providing the Flickr dataset used
in the experimental evaluation.

18 João B. Rocha-Junior et al.

References

1. V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early
termination. In Proc. of ACM Special Interest Group on Information Retrieval
(SIGIR), pages 35–42, 2001.

2. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the ACM
Int. Conf. on Management of Data (SIGMOD), pages 322–331, 1990.

3. Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in geographic web
search engines. In Proceedings of the ACM Int. Conf. on Management of Data
(SIGMOD), pages 277–288, 2006.

4. G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant
spatial web objects. In Int. Conf. on Very Large Data Bases (VLDB), pages 337–
348, 2009.

5. I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In
Proceedings of Int. Conf. on Data Engineering (ICDE), pages 656–665, 2008.

6. U. Güntzer, W. Balke, and W. Kießling. Optimizing Multi-Feature queries for im-
age databases. In Proceedings of the Int. Conf. on Very Large Data Bases (VLDB),
pages 419–428, 2000.

7. R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (SK)
queries in geographic information retrieval (GIR) systems. In Proceedings of the
Int. Conf. on Scientific and Statistical Database Management (SSDBM), pages
1–10, 2007.

8. G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM
Transactions on Database Systems (TODS), 24(2):265–318, 1999.

9. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Comp. Surveys, 40(4):1–58, 2008.

10. T. Joachims. A statistical learning model of text classification for support vec-
tor machines. In Proc. of ACM Special Interest Group on Information Retrieval
(SIGIR), pages 128–136, 2001.

11. Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang. IR-tree: An efficient
index for geographic document search. Proceedings of the IEEE Transactions on
Knowledge and Data Engineering (TKDE), 99(4):585–599, 2010.

12. N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient top-k aggrega-
tion of ranked inputs. ACM Transactions on Database Systems (TODS), 32(3):19,
2007.

13. C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

14. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial
data warehouses. In Proceedings of the Int. Symposium on Advances in Spatial and
Temporal Databases (SSTD), pages 443–459, 2001.

15. J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørv̊ag. Efficient pro-
cessing of top-k spatial preference queries. Proceedings of the VLDB Endowment
(PVLDB), 4(2):93–104, 2010.

16. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

17. Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma. Hybrid index structures for
location-based web search. In Proceedings of Int. Conf. on Information and Knowl-
edge Management (CIKM), pages 155–162, 2005.

18. J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comp. Surveys,
38(2):1–56, 2006.

