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Abstract. In modern applications, spatial objects are often annotated
with textual descriptions, and users are offered the opportunity to for-
mulate spatio-textual queries. The result set of such a query consists of
spatio-textual objects ranked according to their distance from a desired
location and to their textual relevance to the query. In this context, a
challenging problem is how to select a set of at most b keywords to en-
hance the description of the facilities of a spatial object, in order to make
the object appear in the top-k results of as many users as possible. In
this paper, we formulate this problem, called Best-terms and we show
that it is NP-hard. Hence, we present a baseline algorithm that provides
an approximate solution to the problem. Then, we introduce a novel
algorithm for keyword selection that greatly improves the efficiency of
query processing. By means of a thorough experimental evaluation, we
demonstrate the performance gains attained by our approach.

1 Introduction

Spatio-textual search has attracted increased attention recently, due to the nu-
merous applications that provide value-added services to the users by combining
spatial location with textual relevance. Given a database of geographical points
of interest that are annotated with textual information (also called spatio-textual
objects), the objective of a spatio-textual query is to retrieve a ranked set of top-
k spatio-textual objects that are close to the query point and have high textual
similarity to the query keywords. As a notable example, consider hotels that are
annotated with their facilities (e.g., in the form of keywords), and tourists that
search for hotels close to some location of interest and a set of query keywords
indicating desired facilities (for example “pool” or “Wi-Fi”).

An interesting problem encountered in real-life applications that rely on
spatio-textual retrieval is how to improve the ranking of a spatio-textual ob-
ject for as many users as possible. For instance, for a newly established hotel at
some location, the question is how to enrich its textual annotation in order to
maximize its rank for many different users. To address this challenging problem,
we capitalize on reverse top-k queries [19], which retrieve the set of users that



have a given object in their top-k results. We model the problem as a maxi-
mization of the cardinality of the reverse top-k result set, and we explore the
different combinations of keywords that will increase the query object’s rank
for many users, when added to its textual annotation. We call this problem as
Best-terms, we show that it is NP-hard, and we present a greedy solution that
serves as baseline. Then, we propose a novel algorithm that boosts the perfor-
mance of query processing, by deliberately selecting keywords that increase the
score of the query object for many users simultaneously. Finally, we present the
results of our experimental evaluation that verifies the performance gains of our
algorithm.

In summary, our main contributions are outlined below:

– We formulate the novel problem, called Best-terms, of increasing the rank
of a spatio-textual object for many different users, by enriching its textual
description.

– We show that the Best-terms problem is NP-hard and we provide a baseline
solution.

– We propose an efficient query processing algorithm that significantly out-
performs the baseline consistently.

– We provide an experimental evaluation that demonstrates the merits of our
approach.

The rest of this paper is structured as follows: Section 2 provides an overview
of the related work. Section 3 presents the necessary background and prelimi-
nary concepts. Then, in Section 4, we formally describe the problem statement.
Section 5 presents the baseline algorithm, while Section 6 describes our efficient
query processing algorithm. Section 7 presents the experimental evaluation, and
Section 8 concludes the paper.

2 Related Work

In this section, we provide an overview of the related research literature.
Keyword recommendation. Zhang et al. [23] present a method for recom-

mending keywords for advertisements in keyword search results using Wikipedia.
They focus mostly in cases where the advertisement (target) consists of short-
text web pages that contain inadequate textual content to describe the adver-
tised entity. Based on the fact that a large number of entities are described in
Wikipedia, they use Wikipedia articles relevant to the advertised entity in order
to recommend keywords to connect to the target. Fuxman et al. [9] follow a
different approach. They suggest keyword queries to advertisers using logs that
store the queries posed by the users and the URLs of the result set that were
selected by the users. Some of the URLs are also connected to a set of concepts.
The target of the authors is to connect the set of concepts to the queries using
the Markov Random Field model and suggest the most relevant queries for each
concept to the advertisers. Ravi et al. [16] propose a variety of methods for au-
tomatic generation of bid phrases. Among others they introduce the usage of a



translation model that extends a predefined mapping between bidding phrases
and target web pages. Papadimitriou et al. [15] study the problem of mapping an
advertisement in a set of URLs based on a set of keyword queries. In particular,
they assume that each advertisement is mapped to a set of keyword queries and
their aim is to map each advertisement in a set of URLs which will be represen-
tative of the results produced by the attached keyword queries. Choi et al. [4]
create a representative summary of the advertisement based on the context of
the advertised material. Their method makes use of co-occurrence and seman-
tic vectors in order to enrich the ad context and create a representative set of
terms. Cholette et al. [5] study the problem of finding optimal bids in search-
based algorithms. Agrawal et al. [1] introduce an approach for recommending
bid phrases from a given ad landing page by classifying a set of labels generated
by click logs. Their classifier has logarithmic complexity and can efficiently make
predictions on large sets of labels.

The aim of the aforementioned approaches is to identify potentially relevant
queries to the advertised products and form bid phrases based on the identified
queries. Our approach is inherently different, because the above techniques try
to predict relevant queries and do not consider the relevance of the advertised
product in relation to similar products. In addition, they do not consider top-k
search criteria as the appearance of a product in a search result is decided mainly
on the bidding strategy. On the contrary, our aim is to enhance the description
of a spatio-textual object and to increase the number of queries for which the
target product appears in the top-k list of the search results. In this effort, we
take into consideration not only the user preferences, but also the rest of the
spatio-textual objects that are relevant to those queries.

Spatial keyword search. Spatial keyword search has been well studied
during the recent years and several index structures have been introduced for
efficient search. A detailed evaluation of existing spatio-textual indexes can be
found in [3]. Cong et al. [6] introduced the IR-tree and its variants. The IR-tree
is based on the R-tree structure. Each node of the tree is also associated with
inverted index containing the textual information of the children of the node.
Rocha et al. [17] proposed the S2I index which uses different strategies for fre-
quent and infrequent terms and outperforms the IR-tree. Zhang et al. proposed
the I3 index [22], which is based on the quadtree, and the RCA approach [21],
which is based on Fagin’s CA algorithm [8]. Both approaches outperform the S2I
and IR-tree index structures. Nonetheless, the IR-tree is able to perform a spatial
only search, retrieving objects that are not textually relevant to a spatio-textual
query. This possibility is not offered by any of the S2I, I3 and RCA approaches.
Cao et al. [2] introduce the concept of prestige where a spatio-textual object has
a higher prestige if it is collocated with other textually similar objects. They
calculate the prestige of a spatio-textual object based on a graph where each
node corresponds to an object and two nodes are connected if and only if their
textual similarity and spatial proximity exceed certain thresholds. Deng et al. [7]
suggested an approach of finding a set of spatio-textual objects that are rele-
vant to a spatio-textual query and at the same time they fulfill a desired spatial



property. In particular, their aim is to identify a keyword-cover of optimal score,
where as keyword cover is defined a set of objects where each object is associated
with exactly one term of the spatio-textual query.

Lu et al. [14] and Lu et al. [13] studied the problem of reverse spatial and
textual k nearest neighbor search where, given a query point q, the objective
is to locate the set of spatio-textual objects for which q is among the k nearest
neighbors. The distance between the objects is a linear combination of the textual
and the Euclidean distance of the objects. The authors introduce the IUR-tree
which is an adaptation of the IR-tree. Each node of the IUR-tree contains the
union and the intersection of the terms contained in the objects in the subtree
rooted at the node. Our approach is different, as we do not evaluate the similarity
between elements of a set of spatio-textual objects, but our aim is to increase the
relevance and therefore the visibility of an object against a set of user preferences
which constitutes a different set from that of the spatio-textual objects that our
query object belongs.

Wu et al. [20] propose the W-IR-tree which is similar to the IR-tree but it is
constructed based primarily on textual distance. The W-IR-tree shows improved
performance for batch queries where objects are considered relevant to the query
only if they contain all terms of the query. The W-IR-tree cannot be applied in
our case as we consider it possible for a spatio-textual object to be relevant to
a user preference even if it does not contain all terms of the user preference.
Gao et al. [10] propose a filter-and-refinement framework for processing reverse
boolean top-k spatial keyword queries. They focus on queries where a spatio-
textual object must contain all terms of a query to be considered a valid result.
Lin et al. [12] study the problem of identifying important terms in the textual
description of a spatio-textual object that cause the object to be highly ranked
for a specific query or a specific region. Our approach is different, as we focus
on enriching the textual description of a an object with new terms.

3 Preliminaries

Let D be a set of objects, where each object o is represented by a tuple of the
form o = 〈o.T, o.L〉 where o.T is a set of keywords describing the features of o
and L is a point in R2 describing the location of o. We denote as A =

⋃
o∈D o.T

to be the set of all keywords in D. In the scope of this paper, we call these objects
spatio-textual objects. For a given object o, we consider the size of o to be equal
to |o.T |, namely the size of an object is the number of terms it contains.

3.1 Top-k spatial keyword queries

Let u be a user preference query on D, where u is represented by the a tuple
u = 〈u.T, u.L, α〉, u.T ⊆ A is the text describing the user’s desired features,
u.L ∈ R2 denotes the desired location and α ∈ [0, 1] denotes the importance of
location over matching the desired features. Given a preference u, we can assign



a score to each object using the following equation:

f(o, u) = α× δ(o.L, u.L) + (1− α)× θ(o.T, u.T ) (1)

where δ(o.L, u.L) is the spatial distance, and θ(o.T, u.T ) is the textual distance
between the object o and the user preference u. Given an integer k, we can
return the top-k spatio-textual objects according to their score. In the scope
of this paper, we assume that lower scores are better, both spatial and textual
distances are normalized in the interval [0, 1] and f(o, u) = 1.0 if θ(o.T, u.T ) = 1.
The latter assumption implies that objects that are not textually relevant to the
query cannot be considered as a valid result.

The textual relevance we employ is the normalized intersection of terms
between the description of a spatio-textual object o.T and a user preference
keyword set u.T , i.e., θ(o.T, u.T ) = 1 − |o.T

⋂
u.T ||u.T |−1. Although in large

documents different textual similarity functions are more appropriate, the in-
tersection is more representative in cases of feature selection. For instance if a
user is looking for a hotel with a restaurant and a pool, any hotel offering more
features (e.g. restaurant, pool, bar) than the ones specified by the user should
not be less textually relevant than a hotel which offers only the features specified
by the user preference (restaurant, pool).

Definition 1 Top-k query. Given a set D of spatio-textual objects, a set of
terms A, a scoring function f , an integer k, and a query u, the result set
TOPk(u) of a top-k query is a set of spatio-textual objects such that TOPk(u) ⊆
D, |TOPk(u)| = k and ∀o1, o2 : o1 ∈ TOPk(u), o2 ∈ D − TOPk(u) it holds that
o1.T

⋂
u.T 6= ∅ and f(o1, u) ≤ f(o2, u).

If an object o belongs to the TOPk(u) set of a user preference u, we say that
o is visible to u or that u sees o. For a specific set of objects D and a set of
user preferences U , it is possible to identify for a query object q the set of users
who can see q. This is the reverse procedure of a top-k query and therefore it is
called reverse top-k (RTOPk) query [18].

Definition 2 RTOPk query. Given a set D of spatio-textual objects, a set of
user queries U , a scoring function f , integer k, and a spatio-textual object q, the
result set RTOPk(q) of a reverse top-k query is set such that RTOPk(q) ⊆ U
and u ∈ RTOPk(q) if and only if ∃o ∈ TOPk(u) such that f(q, u) ≤ f(o, u).

The cardinality of the RTOPk set of a query-object q is called influence score
of the object and we denote it as I(q). The influence score indicates the number
of users to whom q is visible.

3.2 IR-tree

We employ a state-of-the-art index structure to process spatial keyword queries,
namely the IR-tree [6]. The IR-tree is an R-tree where each node is associated
with an inverted index of the objects contained in the respective sub-tree rooted



at the node. The IR-tree offers the possibility of retrieving objects that are near
a query point but not textually relevant to it, a property that is essential in
identifying possibly interesting terms. In more detail, each leaf node contains an
inverted index of the spatio-textual objects contained in the node. The leaf node
is characterized by a spatio-textual pseudo-object which consists of a minimum
bounding rectangle (MBR) that encloses all objects of the node and a pseudo-
document that consists of the union of all the terms contained in the children
of the node. Each non-leaf node contains an inverted index of the spatio-textual
pseudo-objects of the children nodes it contains. Non-leaf nodes are also charac-
terized by spatio-textual pseudo-objects which are constructed similarly to the
pseudo-objects of the leaf nodes.

4 Problem Definition

Given a set of spatio-textual objects D and a set of spatio-textual preferences
U , the influence score of an object q is the number of preferences to which q
is visible. Assuming that the location of a spatio-textual object cannot change,
the only the way to improve the influence score of q is to enhance its textual
description, in order to increase the textual relevance between q and the user
preferences in U . In this paper, we study the problem of finding a set of b terms,
which when added to the textual description of q, they maximize the influence
score of q. We refer to this problem as Best-terms.

Definition 3 Best-terms query. Given a set D of spatio-textual objects, a set
of terms A =

⋃
o∈D o.T , a set of queries U , a scoring function f , an integer k,

a spatio-textual object q = 〈q.T, q.L〉, and an integer b, the set BT is a set of
terms such that BT ⊆ A, BT

⋂
q.T = ∅, |BT| ≤ b and ∀T ⊆ A− BT, |T | ≤ b it

holds that I(q1) ≥ I(q2) where q1 = 〈q.T
⋃

BT, q.L〉 and q2 = 〈q.T
⋃
T, q.L〉.

The Best-terms problem is NP-hard. We show that by studying a special case
of a Best-terms query, namely the respective decision problem of finding whether
there exists a set of terms T with |T | ≤ b such that I(〈q.T

⋃
T, q.L〉) = |U |.

Problem 1 Best-terms (decision problem). Given a set D of spatio-textual
objects, a set of terms A =

⋃
o∈D o.T , a set of queries U , a scoring function f ,

an integer k, and a spatio-textual object q = 〈q.T, q.L〉 ∈ D, decide if there is
a set BT such that BT ⊆ A, BT

⋂
q.T = ∅, |BT| ≤ b for which it holds that

I(q1) = U where q1 = 〈q.T
⋃

BT, q.L〉

We will show that Problem 1 is NP-complete by reducing the set cover prob-
lem in Problem 1 using the restriction technique [11].

Definition 4 Set cover problem. Let U be a set of elements (universe) and
T = {T1, . . . , Tn} be a collection of sets where

⋃n
i=1 Ti = U . The set cover

problem decides if there is a subset of T , T ′ ⊆ T of size |T | ≤ b such that T ′ is
a cover of U .



Theorem 1 The decision problem of Best-terms is NP-complete.

Proof. Let an oracle machine select the BT set for a query object q. We set
p = 〈q.T

⋃
BT, q.L〉 and by performing a TOPk query for each user preference

we can calculate the RTOPk(p) set and the influence score I(p) of object p in
polynomial time. Therefore the solution can be verified in polynomial time and
our problem belongs to the NP class.

We set U a to be a set of users and D = {q}, where q.T = ∅. We define
a collection T = {T1, . . . , T|A|} of sets, one for each term ti in A where a user
u belongs in Ti only if ti ∈ u.T . If we consider k = 1, then, for all users that
q.T

⋂
u.T = ∅ it holds that q 6∈ TOPk(u) since q is not relevant to u.T . If

q.T
⋂
u.T 6= ∅ then q ∈ TOPk(u) as it is the only object. Therefore any selection

of a term ti is equivalent of selecting a subset of Ti of U . The set cover problem
is consequently reduced to Problem 1, as it can be seen as a special case of
Problem 1. Problem 1 is therefore NP-complete. Best-terms is at least as hard
as Problem 1, which leads us to the conclusion that the Best-terms problem is
NP-hard.

5 The Best Term First (BTF) Algorithm

Since the Best-terms problem is NP-hard, an exact solution is infeasible, even
for medium-sized datasets. Motivated by this observation, in this section we
describe a greedy algorithm, termed Best Term First (BTF), that provides an
approximate solution to the Best-terms problem. BTF operates in an iterative
way consisting of b steps, and in each step it adds to the query object the term
that induces the highest increase in influence score.

5.1 Algorithmic Description

Algorithm 1 describes the BTF approach in more detail. BTF takes as input
an IR-tree index containing the set of spatio-textual objects D, and an IR-tree
index containing the set of user preferences U . BTF works in b iterations, and in
each iteration the best term (i.e., the term that induces the maximum increase
in the influence of q) is selected and added to the terms of the query object.

Initially, BTF creates a pseudo-preference q′ defined by q and using α = 1,
which indicates that q′ uses only distance to data objects, not textual similarity,
for ranking. The role of q′ is to enable traversing the preference dataset solely
based on distance to the query object q. This imitates a sorted access to the
preferences, yet this is achieved by means of the IR-tree index on U , without
having to sort U .

In each iteration, BTF first creates a set C of candidate spatio-textual ob-
jects, one for each term that can be added to q. The size of C is equal to
|A− q.T |. In lines 9 and 10 the algorithm exploits the sorted access to the pref-
erence dataset, in order to avoid processing some top-k queries. More accurately,
given the current user preference u, the score of the last retrieved spatio-textual



Algorithm 1: Best Term First (BTF) Algorithm

Input: U :set of users, D: set of objects,
q:query point, b : number of new terms

Output: BT: set of new terms
1: C ← ∅, buffer ← ∅
2: q′ ← 〈q.T, q.L, 1〉
3: bestCandidate← q
4: for i = 0; i < b; i+ + do // repeat until b new terms have been found

5: forall the t ∈ A− q.T do
6: C ← C

⋃
{〈bestCandidate.T

⋃
{t}, bestCandidate.L〉}

7: u←next(U,q′)
8: while u 6= null do
9: τ ← max

p∈buffer
(f(p, u)) // empty buffer in first iter., so we set τ ←∞

10: if ∃c ∈ C : f(c, u) ≤ τ then
11: buffer← TOPk(u)
12: τ ← max

p∈buffer
(f(p, u))

13: forall the c ∈ C do
14: if f(c, u) ≤ τ then
15: I(c)← I(c) + 1

16: u←next(U,q′)

17: bestCandidate← argmax
c

(I(c))

18: BT← bestCandidate.T-q.T
19: return BT

objects is compared with the scores of the candidate objects C, and if no can-
didate object has a better score than the k-th ranked spatio-textual object, the
user preference is ignored (pruning condition) as no candidate object can be in
its TOPk set. Otherwise, the top-k query needs to be executed and its TOPk
result set is stored in the buffer. All candidate objects that are no worse than the
k-best element of the calculated TOPk set belong also to the TOPk set of u and
therefore their influence score is increased. When all user preferences have been
examined, the object with the highest influence score is selected and a new set
of candidate objects is created based on that object. The procedure is repeated b
times until an object with b new terms is created. The b terms that were selected
constitute the resulting BT set.

Although BTF adopts a greedy technique to select the b terms, the use
of sorted access to dataset U together with the pruning condition reduce the
number of processed top-k queries, thereby saving computational costs.

5.2 Complexity Analysis

The cost of the BTF algorithm is determined by the cost of selection of each
of the b terms. The main factors that affect the cost of term selection are the



construction of set C with cost O(|A|), and the cost Ctopk of processing a top-k
query which in worst case will be processed |U | times. Thus, the overall com-
plexity of BTF is equal to CBTF = O(b(|A| + |U |Ctopk)). However, in practice
the number of processed top-k queries is much smaller than |U |.

6 Graph-Based Term Selection

BTF extends the textual description of a spatio-textual object iteratively, which
forces the algorithm to scan the preferences set U multiple times. In this sec-
tion we present a novel algorithm, named Graph-Based Term Selection (GBTS),
which examines the set of preferences only once and creates a graph of terms
that provides an estimation of the influence gain any combination of terms may
provide.

Essentially, GBTS consists of two separate algorithms. The first algorithm,
named Graph Construction (GC), creates a graph connecting the terms which
when added to the spatio-textual query object q, they can induce an increase
in its influence score. The second algorithm, named Best Subgraph Selection
(BSS), traverses the graph in a deliberate manner, in order to identify the sets
of terms that will induce the highest increase in the influence score of q.

6.1 Graph Construction Algorithm

Given a set of objects D, a set of user preferences U and a spatio-textual object
q, we denote as Û(q) the subset of all preferences (Û(q) ⊆ U) for which q is
not visible and at most b terms are needed for q to become visible. The Graph
Construction algorithm builds a weighted graph G = (V,E) where each node
of the graph represents a candidate term, and the weights on edges indicate
the maximum increase in the influence score of q that can be induced, if the
respective set of terms is added to q.

In more detail, for each examined user preference u, the algorithm adds to
graph G a node for each previously unseen term. The edges connecting the nodes
and the weights of the edges are determined by the number of terms λ that need
to be added to u for it to be included in RTOPk(q). The value of λ is calculated
based on Equation 2, where τ is the worst score that q is required to have in
order to be in the TOPk(u) set and derives directly from Equation 1.

τ = α× δ(q.L, u.L) + (1− α)× |q.T
⋂
u.T |+ λ

|u.T |
(2)

– If λ ≤1, the algorithm adds a loop edge with weight equal to 1 to each term
t that is not contained in q. If the edge already exists, the weight is simply
added to the weight of the existing edge.

– In the case that λ > 1, i.e., more than one terms are necessary for q to be
included to TOPk(u), the procedure is slightly different. Let T = u.T−q.T =
{t1, . . . , tn} be the terms that are included in u but not in q. For each pair of
terms in u.T − q.T , the algorithm adds an edge with weight we. As before,
if an edge already exists, the weight is added to the existing edge.



Algorithm 2: Graph Construction (GC) Algorithm

Input: U :set of users, D: set of objects, q:query point, b : number of new terms
Output: G = (V,E): resulting graph

1: V ← ∅, E ← ∅, buffer← ∅,G← (V,E) // graph initialization

2: q′ ← 〈q.T, q.L, 1〉
3: u← next(U, q′)
4: while u 6= null do
5: buffer← TOPk(u)
6: τ ← max

p∈buffer
(f(p, u))

7: if f(q, u) > τ then // if q 6∈ TOPk(u)

8: T ← u.T − q.T
9: V ← V

⋃
T

10: λ← max

(
1,

⌈(
1− τ − aδ(q, u)

1− a

)
|u.T | − |q.T

⋂
u.T |

⌉)
// from Eq. 2

11: if λ = 1 then
12: E ← E

⋃
{e = (ti, ti, 1) : ti ∈ T}

13: else if 1 < λ ≤ b then

14: E ← E
⋃{

e =

(
ti, tj ,

2

λ(λ− 1)

)
: ∀ti, tj ∈ T and ti 6= tj

}
15: u←next(U,q′)

16: return G

Since we add λ terms that correspond to λ(λ−1)/2 pairs of terms, the weight

of each edge we is set to 2 (λ(λ− 1))
−1

, which is a normalization that makes the
sum of weights added equal to 1. Intuitively, we add a total weight of 1 to each
subgraph G′ = (V ′, E′) where V ′ ⊆ T and |V ′| = λ, indicating the potential
increase in the influence score of q if the terms contained in G′ were added to q.

Algorithm 2 describes the construction of the term graph G. Similarly to
Algorithm 1, GC traverses the preferences based on their distance to q. For each
user preference u, if q is not in the TOPk(u) set, GC updates the node set of G
and calculates λ (line 10), the number of terms that need to be added in q for it
to be included in the TOPk(u) set. A non-positive value of λ indicates that u is
located near q but q.T

⋂
u.T = ∅ and therefore q is not included in the TOPk(u)

set. The addition of any term will allow q to be added to TOPk(u) set and
therefore one loop edge is added to each term t for which it holds t ∈ u.T − q.T .
If more than one terms are necessary to be added in q (λ > 1), GC adds all
necessary edges in the graph. The algorithm continues until all user preferences
have been examined.

The size of the graph depends on the number of distinct terms contained in
Û(q). The terms correspond to the features extracted from the textual descrip-
tions of spatio-textual objects that describe the offered facilities. In practice, we
have noticed that the vocabulary for the targeted applications is limited and
therefore the graph is expected to fit in main memory.



user terms min terms to be added

u1 t1, t2, t3 1

u2 t2, t4, t5 2

u3 t2, t3, t5, t6 3

u4 t1, t3, t6 3

User terms

(a) The term-sets for the users

t3t1 t2

t4t5t6

1 11

1

0.33

1
1.33

0.33

0.33
0.66

0.33

0.33

0.33

(b) The resulting graph

Fig. 1. Example graph: The nodes of the suggested solution are colored with light gray

Example 1 As an example, let the user preferences in Figure 1(a) be the Û(q)
set for b = 3, i.e., the set of user preferences that can be added to the RTOPk(q)
set if 3 more terms are added to the spatio-textual object q. We also assume that
the shown terms for each user preference are not included in q. The first step of
the algorithm is the evaluation of the user preference u1. The algorithm adds to
the graph the nodes t1, t2, t3 and since only one term needs to be added to q for
u1 to be added to RTOPk(q), it adds one loop edge with weight 1 to all terms.
On the next step u2 is processed and two more nodes (t4, t5) are added to the
graph. For each pair of the terms contained in u2 we add an edge to the graph
with weight equal to 2(λ(λ − 1))−1 where λ is equal to 2 which the number of
terms needed to be added to q, for u to be in RTOPk(q). When u3 is processed,
t6 is added to the graph and for each pair of terms in u3 an edge with weight 1/3
is added to graph. Finally, u4 is processed and the graph is updated accordingly.

6.2 Best Subgraph Selection Algorithm

When the graph has been created, the Best Subgraph Selection algorithm (BSS)
chooses as seed nodes the b nodes (terms) of the graph with the highest degree
and creates a set of b subgraphs with initially one node each. Next, each subgraph
is expanded by adding at each step the node with highest degree that is adjacent
to a node of the subgraph. The expansion of each subgraph is continued until
each subgraph has b nodes or the subgraph cannot be expanded. Finally, the
subgraph with the highest sum of edge weights is selected as solution and the
set of terms included in the subgraph are the ones that constitute the BT set.

Algorithm 3 describes the algorithm of term selection. Initially an empty
priority queue (Q) is constructed. Subsequently, at line 3 the algorithm chooses
as seed the highest degree node ti that has not yet been selected and constructs
the subgraph Gti (line 4). The subgraph is constructed by repeatedly selecting
the highest degree node adjacent to the Gti until |Gti | = b or until no nodes can
be added to Gti . When each subgraph is constructed, it is pushed to Q. The
sorting key of Q is the sum of weights of the edges in the subgraph. The BT



Algorithm 3: Best Subgraph Selection (BSS) Algorithm

Input: G = (V,E): graph, b: number of desired terms
Output: BT:set of new terms

1: Q← ∅, BT← ∅
2: for i = 0; i < b; i+ + do
3: ti ← next node of G with the highest degree
4: Gti ← createSubgraph(ti)
5: Q.add(sumOfWeights(Gti),Gti)

6: while |BT| ≤ b do
7: GS ←Q.pop()
8: add to BT the b− |BT| highest degree nodes from GS

9: return BT

set is constructed by selecting the subgraph with the highest sum of edges and
adding the terms of the subgraph to BT. If the subgraphs contain less than b
terms, more subgraphs are pulled from the priority queue until BT contains b
terms. In such cases we add from each subsequent subgraph to BT the b− |BT|
highest degree nodes of the subgraph.

Example 2 Continuing the previous example, during the execution of BSS, 3
subgraphs are created with seed nodes the terms t2, t5 and t3. We denote the re-
spective subgraphs as Gti where ti is the seed node of the subgraph. Each subgraph
Gti is extended to the highest degree node adjacent to Gti . In the case of Gt2 , the
subgraph is expanded by adding first node t5, which is the node with the highest
degree adjacent to t2 and subsequently with node t3 which is the highest degree
node adjacent to either t2 or t5. After the addition of t3, the size of Gt2 becomes
equal to 3 and therefore the expansion stops and the next subgraph is processed.
In the case of the example all subgraphs produce the same result which includes
the light gray nodes in Figure 1(b). The nodes contained in the result are the
ones to be added to q.

6.3 Complexity Analysis

The overall complexity of Graph-Based Term Selection is determined by the two
algorithms that comprise it.

CGBTS = CGC + CBSS
GC consists of two parts: the processing of |U | top-k queries and the addition

of edges Û(q) times. The addition of an edge is done in constant time and

therefore the cost of GC is equal to: CGC = O(|U | · Ctopk + Û(q)).
BSS also consists of two parts: the construction of b subgraphs, and the

selection of nodes (terms) from the best of these subgraphs. The main cost of
BSS is the construction of the b subgraphs, which is O(b · (b3 + logb)). The cost
of expanding a single-node subgraph b times and finding the highest degree node
is equal to O(b3), while the cost of insertion to the priority queue is equal to
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Fig. 2. Evaluating the quality of results

O(logb). The node selection is in worst case O(b · logb), though in practice it is
logb. Hence, we derive: CBSS = O(b · (b3 + logb)).

Consequently, the overall complexity of Graph-Based Term Selection is equal
to: CGBTS = O(|U | · Ctopk + Û(q) + b · (b3 + logb)).

7 Experimental Evaluation

In this section, we present the results of the experimental evaluation. All al-
gorithms were implemented in Java and the experiments were executed on an
AMD Opteron 4130 Processor (2.60GHz), with 32GB of RAM and 2TB of disk.

Datasets and metrics. For the data set D of spatio-textual objects, we
used a set of 200000 descriptions of hotels from the site of Booking.com1. The
dataset contains 188 distinct features. The set of preferences U was generated
using a uniform distribution for creating the location and the α parameter of
each preference, while the terms were randomly chosen from the vocabulary
generated by processing the set of hotels. The location of the user preferences
was bounded in the MBR defined by set of hotels. We also tested our algorithm
against a Zipfian distribution of terms. We used the Zipfian distribution gener-
ator provided by the Apache Commons project2. The metrics under which we
evaluated the implemented algorithms were: a) increase in the influence score
∆I, b) number of I/O’s performed by each algorithm, and c) processing time.

Experimental procedure. Both datasets D and U were indexed using an
IR-tree where the maximum capacity of each node was 100 entries. We employed
a buffer which was fixed at the size of 4MB, for both the tree index and the in-
verted files. The performance of the proposed algorithms was evaluated through
a series of experiments varying the parameters of a) the cardinality of D in
the interval [10K,200K], b) the cardinality of U , [10K,200K], c) the number of
returned results per user preference k, [5,50], d) the maximum size of user pref-
erences, [1,5], and d) the number of returned terms for a query object b, [2-5].
For the Zipfian distribution we varied the value of the characteristic exponent s
in the interval [0.1-1.0]. The default setup for the experiments was: |D| = 20K,

1 http://www.booking.com
2 http://commons.apache.org/proper/commons-math/
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Fig. 3. Analysis for varying |D|, |U |, k, and b

|U | = 20K, k = 10, b = 3 and each the maximum preference size was set to 5.
For each experiment a random set of 20 query objects was selected from D.

Quality evaluation. We compared the proposed algorithms against an ex-
haustive algorithm, which examines all

(|A−q.T |
b

)
term combinations3 and cal-

culates the optimal set of terms BT. Due to the high processing cost of the
exhaustive algorithm even for small values of b, we employed datasets of limited
size. The default setting for this series of experiments was |D| = 100, |U | = 1000,
and b = 3. The set of objects D, consisted of a random set of hotels from the
area of Catalonia in Spain, and they were selected from Booking.com. The set of
preferences U , follows a uniform distribution in Figures 2(a) and 2(b), and a Zip-
fian distribution in Figure 2(c). Figure 2 indicates that both algorithms achieve
an increase to the influence score which is very close to the optimal value. The
execution time of the exhaustive algorithm was in all cases orders of magnitude
larger than the execution time of BTF and GBTS.

Varying |D|. Figures 3(a), 3(e), and 3(i) illustrate the performance of the
algorithms as we vary the number of spatio-textual objects. Figure 3(a) indicates
that both algorithms perform similarly with respect to the increase of the influ-
ence score. As the number of objects increase the gain in influence score drops
as more spatio-textual objects compete for the same number of user-preferences
and therefore it becomes harder for a query object to increase its influence score.

3 Based on the adopted similarity function, the addition of a term does not have a
negative effect on the influence score. In the general case, an exact algorithm should
examine 2|A| term combinations.
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Figures 3(e) and 3(i) indicate that the I/O accesses and the processing time for
both algorithms increase when the dataset size increases. As the dataset size
increases the cost of a single TOPk query increases as well and therefore both
algorithms are affected by the dataset size. The effect on BTF is larger than in
GBTS as BTF accesses the data multiple times in order to create the set of new
terms.

Varying |U |. Figures 3(b), 3(f), and 3(j) depict the performance of both
algorithms as more preferences are processed. When the number of preferences
increases there are more user preferences that can be added to the RTOPk set
of an object with an addition of a new set of terms and therefore the gain
in influence score increases as well. The processing cost for both algorithms is
expected to raise for a larger number of user preferences, as more preferences
have be to examined. Both processing time and I/O cost raise faster for BTF
than for GBTS. In particular the processing cost for BTF grows almost by a
factor of b faster than GBTS as BTF has to process the set of preferences b
times in order to identify the set of new terms.

Varying k. As the size of the TOPk set of each preference increases, the cost
of a single TOPk query increases as well. Figures 3(c), 3(g), and 3(k) indicate that
the increased I/O and processing cost of a TOPk query affects both algorithms.
Similarly to the increase on the size of datasets, the effect on BTF is magnified
by a factor of b. The influence score gain raises as well, since with the increase
in k more objects can be included in the TOPk set of a user preference and the
necessary increase in the text similarity for a query object q to be added to a
TOPk set of a user preference u becomes smaller.
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Varying b. Figures 3(d), 3(h), and 3(l) illustrate the performance of the
algorithms as we vary the number of new terms added to each query object. It
is noteworthy that both algorithms behave similarly with respect to the increase
of the influence score. The cost of BTF raises linearly with respect to b, which
is expected as it has to process the data b times before returning the resulting
BT set. On the other hand, GBTS remains unaffected by the increase of the b
parameter, as it has to access the preferences set only once.

Varying the query size. Figure 4 indicates that as the maximum prefer-
ence size increases, the possible gain of influence score for a spatio-textual object
drops. The reason lies in the fact that for a large user preference u, more terms
are required to be added to a spatio-textual object q, for q to enter the TOPk(u)
set. Larger queries require more complex TOPk queries on the indexes and con-
sequently the performance of both algorithms is affected. As expected BTF is
affected in a larger degree than GBTS by the increased cost of the TOPk queries.

Zipfian distribution. It is quite common that the terms of user-preferences
follow a Zipfian distribution. We tested our algorithms against a set of user
preferences where the occurrences of terms follow a Zipfian distribution. Figure 5
illustrates the experimental results. Similarly to the uniform distribution, GBTS
outperforms BTF in terms of I/O accesses and processing time while producing
the same gain in influence score. In cases where the exponent of the Zipfian
distribution takes high values the gain in influence score raises significantly.
Such behavior is expected as when a small number of distinct terms appear in a
large number of user preferences, adding those terms to a spatio-textual object
will result in a significant increase of its influence score since the addition of
those terms will allow it to enter the TOPk set of many user preferences.

Scalability analysis. We evaluated the performance of GBTS against larger
datasets to evaluate the scalability of our approach. BTF is not included in
the results as it needed excessive time to produce results. The experimental
results shown in Figure 6 indicate that the processing time of GBTS grows
logarithmically with respect to the size of the D, while the I/O cost increases
linearly. The performance difference between processing time and I/O accesses
lies in the fact that in the first TOPk queries we have an increased number of
I/Os, however after a certain number of queries, several nodes of the IR-tree are
buffered and as a result the subsequent TOPk queries induce a limited number
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of I/O accesses. Figure 7 illustrates the performance of GBTS with respect to
the cardinality of user preferences set. Both the processing time and the I/O
increase linearly with respect to time.

8 Conclusions

In this paper, we address the challenging problem of increasing the influence of a
spatio-textual object, by enriching its textual description with at most b carefully
selected keywords. In this way, the spatio-textual object’s textual relevance to
user queries is increased, with the ultimate objective being for the object to
become part of the top-k result for many different users. We provide a formal
problem statement that is novel and relies on concepts related to top-k and
reverse top-k queries. We show that the problem is NP-hard, and we present a
greedy solution to the problem. Then, we propose a more efficient algorithm that
achieves results of comparable quality, but with significantly lower processing
cost. We demonstrate the performance gains of the proposed approach by means
of a thorough experimental evaluation that includes real data.
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