
NTNU at SemSearch 2011

Krisztian Balog, Marek Ciglan, Robert Neumayer, Wei Wei, Kjetil Nørvåg
Department of Computer and Information Science, Norwegian University of Science and Technology

Sem Sælands vei 7-9
Trondheim, Norway

{krisztib,ciglan,neumayer,wwei,noervaag}@idi.ntnu.no

ABSTRACT
In this paper we describe our participation in the Semantic
Search Challenge of the Semantic Search 2011 Workshop.
We focus on integrating multiple knowledge sources for the
entity search task. With respect to the list search task we
attempt to model human user behaviour when searching in
Wikipedia. Since only preliminary results are available at
the time of writing, we only present our approaches and do
not draw any conclusions.

1. INTRODUCTION
The Database Systems Group of the Department of Com-

puter and Information Science of the Norwegian University
of Science and Technology (NTNU) participated in both
tracks of the Semantic Search Challenge of the Semantic
Search 2011 Workshop. Two tasks were investigated: entity
search, where each query refers to one particular entity [3],
and list search, where queries target a group of entities that
match certain criteria (a task, similar in spirit to the List
Completion problem at the INEX Entity Ranking track [2]
and to the Entity List Completion task of the TREC Entity
track [1]). The dataset for both tasks is the Billion Triple
Challenge 2009 (BTC) collection.

Our main emphasis for the entity search task was on
combining evidence from multiple knowledge sources, where
each source is queried using a retrieval method tailored to
its specific properties. For the list search task our goal was
to mimic the behaviour of humans searching in Wikipedia
for we believe much of the answers to list queries is available
there, albeit not directly accessible. Finally, for both tasks,
we exploited sameAs links extracted from DBPedia.

In the remainder of the paper, in two largely independent
sections, we discuss our approaches to the entity search and
list search tasks in Sections 2 and 3, respectively. We con-
clude and outline future directions in Section 4.

2. ENTITY SEARCH
In this section we outline our approach to the entity search

track. This denotes to anwering queries that refer to one
particular entity.

2.1 Retrieval model
We formulate the entity search problem as follows. We

rank candidate entities (e) according to their probability of

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

being relevant given the query q: P (e|q). Instead of estimat-
ing this probability directly, we use Bayes’ rule and rewrite
it to:

P (e|q) =
P (q|e) · P (e)

P (q)
. (1)

Next, we drop the denominator as it does not influence the
ranking of entities. The term P (e) could be used to express
the a priori belief that an entity is relevant (to any query); in
this work, we assume this probability to be uniform. Hence,
we rank entities according to P (q|e).

To estimate P (q|e) we consider a linear combination of
three different entity representations: based on name only
(N), based on DBPedia (D), and based on the BTC collec-
tion (B):

P (q|e) = λNPN (q|e) + λDPD(q|e) + (1− λN − λD)PB(q|e).
(2)

We take PN (q|e) to be either 0 or 1, based on strict string
matching between the query and the name of the entity.
PD(q|e), and PB(q|e) are estimated using a (fielded) Lan-
guage Modeling approach. The mixture weights λN and λD

were set to correspond with the importance of the individ-
ual sources. Intuitively, we assigned the following weights:
λN = 0.5 and λD = 0.3. We detail the computation of these
components in the next section.

2.2 Entity representations

2.2.1 Name-only representation
For each entity, we collected all its name variants from

DBPedia (see Section 2.4.1 for the details). Let eN denote
the set of name variants that belongs to e. Based on this
representation we make a binary decision:

PN (q|e) =


1, ∃n ∈ eN : match(n, q)
0, otherwise,

(3)

where match(n, q) is a strict, case insensitive string match-
ing function that returns true iff n equals to q.

2.2.2 DBPedia representation
We rank entities in DBPedia using a fielded Language

Modeling (LM) approach. Each entity e is represented as
a multinomial probability distribution over terms: e. The
likelihood of the query given this model is then computed
as a product of individual term probabilities:

P (q|θe) =
Y
t∈q

P (t|θe)n(t,q), (4)

where n(t, q) denotes the number of times term t occurs in
the query. So far, this approach equals to the standard LM
approach. We deviate from it in the estimation of the entity
language model θe:

P (t|θe) =
X
f∈F

P (t|θef) · P (f), (5)

where F is the set of DBPedia fields considered, P (t|θef)
the term’s probability given a specific field f , and P (f) is
the importance of that field. We estimate field-specific term
probabilities as a linear combination of field-level and entity-
level term probabilities, both smoothed by Dirichlet priors:

P (t|θef) = (1− λe) · P (t|ef) + λe · P (t|e), (6)

where

P (t|ef) =
n(t, ef) + µf · P (t|Cf)

|ef |+ µf
(7)

and

P (t|e) =

P
f n(t, ef) + µ · P (t|C)P

f |ef |+ µ
. (8)

The components of Eq. 7 and Eq. 8 are as follows: n(t, ef) is
the number of times term t appears in field f of entity e, |ef |
is the length of field f of e (i.e.,

P
t n(t, ef)), µf is a smooth-

ing parameter for field f , µ is the entity-level smoothing
parameter, P (t|Cf) is a field-specific background language
model, and P (t|C) is the general language model for the col-
lection. The smoothing parameter µf was set to the average
field length of f , i.e.,

P
e |ef |/|e|, where e is the number of

entities. Similarly, µ was set to the average entity represen-
tation length. The background models P (t|Cf) and P (t|C)
were calculated using a standard maximum-likelihood esti-
mate on the corresponding representation. We set the λe

parameter in Eq. 6 to a fixed value of 0.5. The fields and
corresponding weights we used in are listed in Table 2.

2.2.3 BTC representation
We consider two representations based on the BTC collec-

tion. The first approach (BTC singlefield) renders triples
as single-field documents, and ranks them using a standard
LM approach. Specifically, we use Eq. 4 for ranking, where
the entity model is estimated using Eq. 8. The other vari-
ation (BTC name+content) distinguishes between name and
content fields. Using the retrieval model introduced in the
previous subsection, we set F = {name, content} and con-
sider the two fields equally important. λe (in Eq. 6) was
set to 0.7 based on empirical results with last year’s queries.
Smoothing parameter estimation is as discussed before.

2.3 Exploiting sameAs relations
Additionally, we experimented with exploiting “sameAs”

relations extracted from DBPedia. We propagate a fraction
of the original query-likelihood scores along sameAs links:

score(q|e) = P (q|e) + λS ·
X

e′∈eS

|P (q|e′)− P (q|e)|, (9)

where eS denote the set of sameAs variants of entity e. We
set λS to 0.75.

2.4 Preprocessing and Indexing
Both collections we used (DBPedia and BTC) were sorted

prior to indexing to facilitate the indexing on a per-entity ba-
sis; every subject in the collections was treated as an entity,

where the corresponding predicate-object values constitute
to the entity’s representation. For the indexing part, we used
Apache Lucene1. Preprocessing was based on Lucene’s stan-
dard analyzer, including lowercase transformation and basic
stop word filtering. We processed all queries with the Ya-
hoo! Spelling Suggestion API2 and applied the same trans-
formations (lowercasing and stop word removal) as to entity
documents. Table 1 summarizes the indexes we built; next,
we discuss the collection-specific details.

Index #fields #entities #size
DBPedia 7 7.8M 20GB
BTC singlefield 1 23.9M 42GB
BTC name+content 2 38M 35GB

Table 1: Indexes used.

2.4.1 DBPedia
We used the most recent complete dump of DBPedia made

available on the DBPedia homepage3. We performed ad-
ditional preprocessing with respect to URI decoding and
matching in order to be compatible with the BTC collection.
Additionally, we filtered out those DBPedia URIs from the
result list that do not exist in the BTC collection as a sub-
ject. To catch all dependencies we used reversed versions of
the input files (with subject and object positions switched)
for disambiguations, page links, and redirects. We did not
perform exhaustive parameter tuning; we tried a few differ-
ent configurations and used the one that performed best on
the SemSearch 2010 queries. The list of fields used and their
corresponding weights are shown in Table 2.

Field Name Weight
short abstracts 0.10
long abstracts 0.10
article categories 0.07
disambiguations 0.20
infobox properties 0.11
labels 0.30
wikipedia links 0.12

Table 2: Fields in the DBPedia index.

We also used DBPedia to find name variants for exact name
matches: for each DBPedia URI we considered the title and
titles of pages redirecting to that URI as the set of name
variations.

2.4.2 BTC
For the single field index (BTC singlefield) we ignored

the predicate fields and concatenated all object fields that
were literals. We filtered out subjects that had less than
50 characters of textual material associated with them. As
to the multi-field index (BTC name+content) we manually
identified predicates that hold names for the top 10 sources
of the BTC collection. All other predicates were considered
“content.” Again, we limited ourselves to literal objects and
filtered out subjects that had less than 40 characters worth
of textual data in the content field.
1http://lucene.apache.org/java/docs/index.html
2http://developer.yahoo.com/search/web/V1/
spellingSuggestion.html
3http://wiki.dbpedia.org/Downloads36

http://lucene.apache.org/java/docs/index.html
http://developer.yahoo.com/search/web/V1/spellingSuggestion.html
http://developer.yahoo.com/search/web/V1/spellingSuggestion.html
http://wiki.dbpedia.org/Downloads36

2.5 Submitted runs
Table 3 presents an overview of the runs we submitted.

For each, we used the same approach to identifying exact
name matches and to ranking entities in DBPedia.

RunID BTC index sameAs MAP
NTNU-Olav BTC singlefield N 0.2072
NTNU-Harald BTC name+content N 0.2063
NTNU-Godfrid BTC name+content Y 0.2050

Table 3: Runs submitted to the entity search track.

3. LIST SEARCH
This section describes our approach to the list search task.

We begin with a brief overview of our approach, followed
by the description of the datasets we have used in Section
3.1. Finally, we present the procedure we used to generate
answers for the input queries in Section 3.2.

Our approach to the list search task was inspired by the
process that a human user would carry on to answer list
queries were he asked to do so with the help of Wikipedia.
This process would probably be to enter the query to the
search field of the Wikipedia GUI and inspect the top k
results, matching Wikipedia articles, for the correct answer.
One could suspect that the items of the correct answer to the
list query would be distinct Wikipedia articles themselves
and would be linked from the top results of the full-text
query issued against the index of Wikipedia articles. In this
spirit, our approach relies on retrieving information from
the index of long abstracts of Wikipedia articles; from the
top k retrieved articles, we expand by hyperlinks to obtain
the list of articles, representing candidate entities for the
list query answer. We then check whether the candidate list
contains Wikipedia article sets, if so, we boost the scores of
members of these sets. Under the term Wikipedia article
set, we understand a set of Wikipedia articles forming a
semantic group; we describe Wikipedia sets used in this work
in Section 3.1. If no sets are identified in the candidate list,
we merely rely on boosting the score of the items from the
candidate list related to the principal entity of the query.

3.1 List Search Datasets
This subsection provides a list and description of the data

sets we have used for the list search task.
Wikipedia article index. Lucene index of the long ab-

stracts of Wikipedia articles. More specifically, this index is
used to retrieve the articles most related to the input query.

Wikipedia link graph. This data set contains the net-
work of Wikipedia articles and links between them. An
article is a node in the network and links correspond to
the hyperlinks connecting articles. Each node has several
attributes—Wikipedia identifier, article title and list of iden-
tifiers of the sets the article belongs to. The data set is used
to form the candidate list from the top k most related arti-
cles to the query.

Wikipedia sets. This dataset contains sets of Wikipe-
dia articles that form a semantically related group. We
used the membership in Wikipedia categories and the in-
clusion of Wikipedia templates to generate the Wikipedia
sets. For example, Wikipedia articles belonging to the cat-
egory “Category:Astronauts” form one set in Wikipedia set

dataset, and articles using the Wikipedia template “Tem-
plate:Ancient Cities of Cyprus” form another set (derived
from the template inclusion in Wikipedia). We have also
constructed an index of the Wikipedia sets. For each set a
document was created by concatenating the short abstracts
of articles belonging to that set. Those documents were in-
dexed and we use the index to check the relevance of the
input query to the sets identified as potential answers.

Annotation dictionary. This data set contains a map-
ping between strings and the Wikipedia articles referred to
by those strings. We used the default dictionary used by
Wikipedia miner4, containing the mapping between anchor
texts and articles, and extended it by adding article names
and names of the redirect pages.

3.2 List Search Process
Here, we describe the main components of our approach

to the list search task. It consists of the following steps
(each of which will be described in more detail below): query
analysis, querying the article abstracts index, generating the
list of candidate items, boosting of scores of entities related
to the main entity of the query, and, finally, boosting of
scores of items belonging to Wikipedia sets.

1. Query analysis. Our first step is to analyze the
query, which is facilitated by using the Wikipedia miner
toolkit to annotate the query with Wikipedia topics. This
gives us: a) query segmentation that we exploit in the full-
text search step, b) entities (in form of Wikipedia article
titles) that the query targets. We identify the principal en-
tity of the query (the one with the highest relevance score
from Wikipedia miner) and use it for query reformulation.
If the query segment related to the principal entity is only
slightly different from the entity article’s title (the Leven-
shtein distance equals to 1), we try to reformulate the query
by replacing the given query segment with the title of the
entity article. We run both the original and the reformu-
lated query against the index of Wikipedia abstracts. If the
sum of the scores of top 10 items of the reformulated query is
significantly higher (at least 2 times) than the sum of scores
of the top 10 items from the original query, we use the re-
formulated query in the following steps. In the SemSearch
Challenge dataset, the query reformulation was used instead
of the original for two queries.

2. Querying the article abstracts index. We run two
queries against the article abstracts index. The first one is
evaluated by the Language Modeling approach described in
2.2. The second query is a boolean query with the following
constraint: the terms from the text query segment related
to the principal entity (identified in step 1) must be present
in the target document. As the two result sets use different
scoring functions, we merge the results by normalization;
from each result set, we take the first 100 items, and nor-
malize their scores (so that their sum is equal to 1), we then
merge the results. Let Tk be the set of top k results of the
merged ranks, and members of the set are Wikipedia arti-
cles. Let r(i); i ∈ Tk be the rank of the item i in the merged
result ranking.

3. Generating the list of candidate items. In this
step, we take the top k (in the submitted runs k = 10) items
from the previous step (Tk). We generate the list of candi-
date entities by taking those top k results and expanding
from related articles by Wikipedia links. Every item added

4http://wikipedia-miner.sourceforge.net/

http://wikipedia-miner.sourceforge.net/

to the candidate list is assigned a score proportional to the
rank of the item from Tk. If the item already exists in the
candidate list the score is added to its existing score. In
this way, the items referred by multiple links from the result
set from the previous step will receive a higher score. More
formally, let G = V,E be the link graph of Wikipedia. Let
e(i, j) = 1⇔ ei,j ∈ E and e(i, j) = 0⇔ ei,j /∈ E. We hence
denote a candidate set C as:

C = {j; j ∈ V ∧ ∃i ∈ Tk : e(i, j) = 1}. (10)

We set the score of item c ∈ C to be:

w(c) =
X

i inTk

e(i, c)× (1− ((r(i)− 1)× (1/k))). (11)

4. Boosting of items related to principal entity. We
take the principal entity P identified in the query analysis
(Step 1) and boost the scores of the entities in the candidate
list that both are: a) linked to by the principal entity and b)
link to the principal entity (in the link graph of Wikipedia).
We boost the score of such an item I by computing the cosine
similarity of the principal entity and the given item. In this
case we represent Wikipedia articles as vectors constructed
from their adjacency lists in the link graph. If w(I) is the
original score of the item, the boosted score wb1(I) is defined
as follows: wb1(I) = w(I) × sim(P, I) × b1, where b1 is the
boost constant (in our experiments we used b1 = 100) and
sim(P, I) is the cosine similarity of the adjacency vectors.

5. Boosting of scores of Wikipedia set items. In
this step, we identify Wikipedia sets that have more than
p fraction of their members in the candidate list. For each
such set S we compute the similarity score of the query and
the set document D(S) (see Section 3.1), using the standard
Lucene scoring function. We boost scores for the items from
the candidate list according to:

wb2(I) = w(I)× b2 ×
X

I∈S:|S∩C|≥p×|S|

sim(q,D(S)). (12)

Here, b2 is the boost constant for sets, and sim(q,D(S)) is
the similarity of the set document D(S) and query q; in our
runs we have used p = 0.7.

6. Postprocessing. In the postprocessing step, we sort
the items in the candidate list in descending order according
to their scores and we map results back to subjects in the
BTC collection.

3.3 Submitted runs
We submitted three runs for the list search task. The first

one followed the process as described in Section 3.2, only
omitting Step 5.—boosting of the Wikipedia sets items. The
second run exactly followed the approach presented in Sec-
tion 3.2. The third run differed in the postprocessing step.
For the items with a score higher than a defined threshold,
have also added entities linked by sameAs relations.

3.4 Discussion
For the list search task, we limited our approach to the Wi-

kipedia data set. The reason for this was purely pragmatic—
while a part of the team was processing the BTC data set to
a usable form, the rest of the team was experimenting with
the list search task on the Wikipedia data set (which, in the
form of DBPedia, is also covered in the BTC collection). Due
to time constraints and the quality of pre-submission results
we achieved, we decided to keep using only the Wikipedia

dataset. However, our approach is fully transferable to the
BTC collection or any other to RDF dataset in general, as we
exploit textual descriptions of entities, links between them,
and type information (in the form of categories/templates).
One important observation from the results is that by ex-
ploiting Wikipedia sets and boosting sets’ members we can
achieve substantial improvements compared to our baseline.
Considering sameAs variants of high scoring entities led to
further performance improvements; see Table 4.

RunID Wikipedia set boosts sameAs MAP
NTNU-1 N N 0.1625
NTNU-2 Y N 0.2594
NTNU-3 Y Y 0.2790

Table 4: Runs submitted to the list search track.

4. CONCLUSIONS
In our participation we focused on integrating evidence

from multiple sources for the entity search task: we em-
ployed a fielded Language Modeling approach to rank enti-
ties in the BTC collection and in DBPedia. Additionally,
we considered strict name matches based on a dictionary of
entity name variants extracted from DBPedia. As to the
list search task we attempted to model human user behav-
ior when searching in Wikipedia. Our approach includes a
query analysis step to identify the principal entity in the
query. In the ranking phase we utilize the Wikipedia link
graph and semantically related article sets, defined by Wi-
kipedia categories and templates.

Based on the preliminary results our best entity search
run ranked third among all submissions and our list search
runs were placed first, second, and third, of all runs. These
initial results indicate that our approaches are very effective
and show great promise for tackling these tasks.

In future work we plan to perform an exhaustive success
and failure analysis based on the full system evaluations.
As our approaches employ a number of parameters, most of
which were set intuitively in the lack of time and—in case of
the list search task—in the lack of training data, we believe
that there is much to gain by adjusting these settings.

5. REFERENCES

[1] K. Balog, P. Serdyukov, and A. P. de Vries. Overview of
the TREC 2010 entity track. In Proceedings of the Nine-
teenth Text REtrieval Conference (TREC 2010). NIST,
February 2011.

[2] G. Demartini, T. Iofciu, and A. P. De Vries. Overview of
the INEX 2009 entity ranking track. In Proceedings of the
Focused retrieval and evaluation, and 8th international
conference on Initiative for the evaluation of XML re-
trieval, INEX’09, pages 254–264. Springer-Verlag, 2010.

[3] H. Halpin, D. M. Herzig, P. Mika, R. Blanco, J. Pound,
H. S. Thompson, and D. T. Tran. Evaluating ad-hoc ob-
ject retrieval. In Proceedings of the International Work-
shop on Evaluation of Semantic Technologies (IWEST
2010), 2010.

	1 Introduction
	2 Entity Search
	2.1 Retrieval model
	2.2 Entity representations
	2.2.1 Name-only representation
	2.2.2 DBPedia representation
	2.2.3 BTC representation

	2.3 Exploiting sameAs relations
	2.4 Preprocessing and Indexing
	2.4.1 DBPedia
	2.4.2 BTC

	2.5 Submitted runs

	3 List Search
	3.1 List Search Datasets
	3.2 List Search Process
	3.3 Submitted runs
	3.4 Discussion

	4 Conclusions
	5 REFERENCES

