
The Vagabond Approach to Logging and Recovery in Transaction-Time
Temporal Object Database Systems

Kjetil Nørvåg
Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
email: Kjetil.Norvag@idi.ntnu.no

Abstract

In most current database systems, data is up-
dated in-place. In order to support recovery and
increase performance, write-ahead logging is used.
This logging defers the in-place updates. However,
sooner or later, the updates have to be applied to the
database. Even if this is done as a batch operation,
it can result in many non-sequential writes. In order
to avoid this, another approach is to eliminate the
database completely and use a log-only approach.
In this case, the log is written contiguously to the
disk, in a no-overwrite way using large blocks. When
using the log-only approach keeping previous versions
comes almost for free, and this approach is therefore
particularly interesting for transaction-time object
database systems. Although the log-only approach in
its basic form is relatively straightforward, it is not
trivial to support features such as steal/no-force buffer
management, fuzzy checkpointing, and fast commit.
In this paper, we describe in detail algorithms and
strategies for object and log management that make
support for these features possible.

Keywords: Object database systems, temporal data-
base systems, logging, recovery

1 Introduction

Many emerging application areas for database sys-
tems demand efficient support for features that are dif-
ficult to support with today’s systems. Common to

many of these, is the need for management of complex
objects, support for temporal objects, and support for
querying changes (for example, updates since a par-
ticular time T). Examples of such application areas
are XML/Web databases and geographical information
systems. In the case of XML/Web databases, users
might want to see changes in a collection of documents
(or Web pages) since the last time they checked. In the
case of geographical information systems, users fre-
quently want to see an area as it was at a certain point
in time, or what features a map included at a certain
time.

In this paper we describe the Vagabond approach
for efficient storage and management of temporal ob-
jects, which is based on a log-only approach. Using
a log-only approach, updated data is written contigu-
ously to the disk, in a no-overwrite way using large
blocks. This is done by writing many objects and index
entries, possibly from many transactions, in one write
operation. This gives good write performance, but at
the expense of read performance. However, with to-
day’s large main-memory buffers this is less of a prob-
lem than it was previously. In the log-only approach,
the log is the final repository for the data. This differs
from most current object database systems (ODBs),
where data is updated in-place, i.e., updated pages are
written back to the same location. In order to sup-
port recovery and increase performance, write-ahead
logging can be used. This logging defers the in-place
updates, but sooner or later the updates have to be ap-
plied, and this often results in the writing of a large
number of pages.

Figure 1 summarizes the most important differences

1

Main−
memory:

Disk:
Log Log segment

Log segment

Log segment

Log segment

Object
Buffer

Page
Buffer

Traditional
ODB

Log−Only
ODB

Database
Pages

Figure 1. In-place update page server vs. log-
only object database system.

between a traditional ODB and an (object-based) log-
only ODB. In the traditional approach, pages contain-
ing objects are buffered in main memory, and recov-
ery information is written sequentially to the log. The
pages themselves are updated using random accesses
to the disk. Even if this is done as a batch operation,
it can result in many non-sequential writes. Using an
object-based log-only ODB, an object buffer is nat-
urally used, which gives a high memory utilization.
Data is written sequentially to the log, giving a low
write cost.

The log-only approach has many features that make
it interesting. Two examples are fast recovery and
ability to benefit more from using RAID technology
than traditional systems (because of the writing of par-
ity blocks, it is desirable that blocks to be written are
much larger than those used in non-RAID systems). A
third feature, which is the motivation for our research,
is the fact that keeping previous versions of objects
is a feature that comes almost for free when using a
log-only approach. This is particularly interesting for
transaction-time object database systems, where ob-
ject updates do not make previous versions inacces-
sible. On the contrary: previous versions of objects
can still be accessed and queried, and a system main-
tained timestamp (commit time of the transaction that
created this version of the object) is associated with
every object version. In a traditional system with in-
place updating, keeping old versions of objects usually
means that the previous version has to be copied to a
new place before update. This doubles the write cost.

When using a log-only approach, this is not necessary.
Using the log-only approach also gives new oppor-

tunities to improve performance. In order to reduce
storage space and disk bandwidth, objects can be com-
pressed before they are written. With the log-only
approach, objects are written to a new location every
time, so that it is only necessary to use as much disk
space as the size of the current version that is being
written. In a system that employs in-place updating it
is difficult to benefit from object compression, because
the compression ratio will differ from version to ver-
sion, and it is difficult to know in advance how much
space to reserve.

Previous log-only object database systems have
been page-server based. While this works well in
many contexts, it is not ideal. By operating on page
granularity you get many of the disadvantages of tra-
ditional page servers. For example, if clustering is bad,
and only a small part of a page has been updated, it is
still necessary to write back the whole page. When this
is the case, main-memory buffer utilization will be bad
as well. A page-based log-only ODB also makes trans-
action management difficult. In order to avoid page
level locking (note that from the concurrency-control
point of view it is possible to use object-level locking,
the problem is log management and recovery), you es-
sentially need to 1) still have a separate log, possibly
integrated into the segmented log, 2) use shadow pag-
ing, or 3) use ad-hoc techniques to solve the problem.
All these solutions are likely to hurt performance and
increase complexity. This has together with perfor-
mance analysis of log-only temporal ODBs [13] con-
vinced us that an object based log-only temporal ODB
should be the preferred alternative.

Although the log-only approach in its basic form
(using page granularity) is relatively straightforward,
more effort is needed in order to achieve performance
and high concurrency. In this paper, we describe the
Vagabond approach for efficient storage and manage-
ment of temporal objects. With the Vagabond ap-
proach, some of the problems in related designs are
avoided, and steal/no-force buffer management, fuzzy
checkpointing and fast commit are supported.

The organization of the rest of the paper is as fol-
lows. In Section 2 we give an overview of related
work. In Section 3 we describe the Vagabond log-only
approach. In Section 4 we describe in detail the algo-

2

Anchor
Point
Record
Table

Initial
Record

Delta
Record

Initial
Record

Initial
Record

Delta
Record

Delta
Record

Figure 2. POSTGRES page.

rithms for the most important operations in the Vaga-
bond approach. Finally, in Section 5, we conclude the
paper.

2 Related work

No-overwrite strategies have been used previously
in several approaches. One example is variants of
shadow-paging recovery strategies that were used in
early database systems, e.g., in System R [3]. How-
ever, the performance has not been satisfactory using
these strategies. The main reasons for this, were lim-
ited buffer size in combination with unclustered data,
and relatively large amounts of metadata that had to be
written during the commit process.

POSTGRES [21, 22] also employed a no-overwrite
strategy. Data in POSTGRES was stored in relations,
which themselves were stored in files. Pages were al-
located or deallocated for a file on demand, and were
linked together. As illustrated in Figure 2, each page
in POSTGRES had an anchor table, used to retrieve
records stored on a page. When a record was created,
space was allocated for the record. When records were
updated, they were not updated in-place in the page.
Instead, a delta record was created, which recorded the
changes from the previous version. When a record was
to be read, the whole chain from the first record had
to be traversed and processed. POSTGRES was opti-
mized for small records (although a large object inter-
face was added later), and delta records should be on
the same page as the initial record. Although POST-
GRES introduced many novel ideas, the performance
was lower than expected. The main reasons for this
were some serious problems resulting from the way
records were stored:

• Read operations could be very expensive because
of the delta chains.

• POSTGRES used a force buffer policy. At com-
mit, all pages modified by the transaction had
to be written, giving a very high commit cost.
In addition, a separate transaction log storing
the state of all transactions had to be updated.
It should be mentioned that the reason for this
problem, was the assumption during the design
of POSTGRES that stable main memory (non-
volatile RAM) would be available. With stable
main memory, the high commit cost could have
been avoided.

• Even though POSTGRES could be used as a ba-
sis for a temporal DBMS, the use of append-only
linked lists for each record was too inflexible and
inefficient. An additional index was needed in
most cases, thus increasing the overhead.

• In common with other no-overwrite strategies,
POSTGRES also held the risk of declustering re-
lations.

Other aspects that were not covered by the original
design were integrated tuple/object identifier indexing
(although this could be provided by an external index)
and long transactions.

The no-overwrite idea was borrowed from POST-
GRES and used in log-structured file systems, which
the Vagabond approach is based on. Log-structured
file systems were first introduced by Rosenblum and
Ousterhout [16], and later refined by Seltzer et al. in
BSD-LFS [18]. Log-structured file systems have also
been the basis for other systems, for example Spira-
log [24]. An interesting aspect of Spiralog is the B-
tree integrated into the approach. However, although it
could be used as a basis for indexing objects in an ob-
ject manager, it was designed for file system updates,
which are short transactions, and is less suitable for
long-living transactions.

Log-structured file systems have also been used as
the basis for several object managers: the Texas per-
sistent store [19], as a part of the Grasshopper oper-
ating system [4], and the Lumberjack object store [5].
The storage managers in Texas and Grasshopper are
page based, i.e., when an object has been modified, the
whole page it resides on has to be written back. Simi-
lar to these approaches was Seltzer’s implementation
of transactional support in a log-structured file sys-

3

tem [17]. In her system, locking and updates were per-
formed at page granularity, and all dirty buffers were
held in memory until commit. Seltzer’s study also in-
cluded a performance comparison between a conven-
tional system and a log-structured system. The results
showed that the log-structured approach offered a per-
formance improvement compared to the traditional ap-
proach.

To our knowledge, the only log-only ODB that is
able to operate on object granularity (similar to the
approach described in this paper) is Lumberjack. In
Lumberjack, objects are stored in a logical log, man-
aged by the client. The logical log is stored in paged
segments. It is unclear how problems related to scala-
bility and aspects of long-running transactions can be
solved in that approach.

In the area of ODBs with integrated support for
temporal objects, we are only aware of one proto-
type: POST/C++ [23]. POST/C++ is based on the par-
titioned storage approach, where current-version ob-
jects are stored clustered together, similar to a non-
temporal ODB, and historical versions are stored sep-
arately from the current version. When an object is
updated, the previous current version is copied to the
history store before the new current version is updated
in-place in the page. In addition, temporal ODBs built
on top of non-temporal ODBs exist. One example is
TOM, built on top of O2 [20].

Storing data in a sequentially written log has been
proposed as a way to store the historical versions in
temporal databases [7]. The log-structured history
data access method [9] uses some of the same ideas
as in log-structured file systems and object stores. The
log-structured history access method is based on the
log-structured merge-tree, which is a hierarchy of in-
dexes. Inserts and updates are only applied to the first
level index, and the contents of one level in the index
is asynchronously migrated to the next level. As a re-
sult, all data inserted or modified during a certain time
period will be in the same level. Search for data writ-
ten at a certain time is efficient, but searching for the
most recent version of data, which is probably the most
frequent operation also in a temporal database system,
can be costly.

More details about the Vagabond approach can be
found in the author’s doctoral thesis [15].

Segment
 0

Segment
 1

Segment
 N−1

Segment
 N−2

... ...Checkpoint
blocks

Volume
info

Figure 3. Disk volume structure.

3 The Vagabond approach

In this section we give an overview of our approach
to log-only temporal ODBs. We give an overview of
log management, storage objects, indexing, read- and
write-efficiency related issues, and object access and
queries.

3.1 Introduction to log-only log management

In the log-only approach, data that is already writ-
ten is never modified. Instead, new versions of the ob-
jects are appended to the log. Logically, the log is an
infinite-length resource, but the physical disk size is,
of course, not infinite. As illustrated in Figure 3, this
problem is solved by dividing the disk into large equal-
sized physical segments. When one segment is full,
writing is continued in the next available segment. As
data is vacuumed, deleted or migrated to tertiary stor-
age, old segments can be reused. Dead data, which in
a temporal log-only ODB most frequently is old ver-
sions of index nodes, will leave behind partially filled
segments. The data in these segments can be collected
and moved to a new segment. This process, which is
called cleaning, makes the old segments available for
reuse. By combining cleaning with reclustering, it is
possible to get well-clustered segments.

A segment can be in one of three states. A segment
starts in a clean state, i.e., it contains no data. The seg-
ment currently being written to, is called the current
segment. When the segment is full, writing continues
into a new segment. The new segment now goes from
the clean state, to the current state. The previous seg-
ment is now dirty, it contains valid data (note that dirty
in this context has nothing to do with main-memory
state versus disk state, which is the context where the
term is more frequently used). Information about the
state of the segments is kept in a segment status table.
The segment status table is kept in main memory dur-
ing normal operation, but is regularly checkpointed to
disk, interleaved in the log, so that it can be recovered
after a crash.

4

For each segment a live-byte count keeps track of
how much of that segment that still is valid data. This
live-byte count is decremented when data in a segment
becomes invalid, for example when a non-temporal
object is deleted. However, note that this is not the
case when a temporal object is deleted. The previ-
ous version should still be available, so in this case
the previous version is considered to be alive, and the
live-byte count is not decremented.

At regular times a checkpoint operation is per-
formed. In the checkpoint operation, enough informa-
tion is written to the log in order to make it possible
to use the current position in the log as a consistent
starting point for recovery. The checkpoint informa-
tion is stored in checkpoint blocks, which are stored in
fixed positions in the log. Recovery in a log-only data-
base can be performed very fast, since there is no need
to redo or undo any data: at recovery time it is only
necessary to do an analysis pass from the last known
checkpoint to the end of the log where the crash oc-
curred (or from the penultimate checkpoint in the case
of our approach, where recovery time is slightly in-
creased in order to increase performance and concur-
rency during normal operation).

3.2 Objects

In an object database, an object is uniquely iden-
tified by an object identifier (OID) (which can be as
simple as an integer). When an object is updated, the
new version has the same OID as the previous version.
This is also the case in a temporal database. In order
to distinguish between different versions of an object
that have the same OID, the timestamps are used. In
a transaction-time temporal database, the timestamp is
the commit timestamp of the transaction that created
or updated the actual object version.

Every object version has an associated object de-
scriptor (OD), which contains the OID, physical loca-
tion of the object in the log, commit timestamp (when
the OD is not in the OIDX, the end timestamp of an
object version is also included in the OD in order to
reduce the cost of certain operations), and other ad-
ministrative information. These ODs are used in the
mapping from OID (and/or timestamp) to physical lo-
cation on secondary storage, and stored in an OID in-
dex (OIDX).

In a non-temporal ODB with in-place updating of
objects, the OIDX needs only to be updated when ob-
jects are created, not when they are updated. In a log-
only ODB, however, the OIDX needs to be updated
on every object update. This might seem bad, and
can indeed make it difficult to realize an efficient non-
temporal ODB based on this technique. However, in
the case of a temporal ODB, the OIDX needs to be
updated on every object update also if using in-place
updating, because either 1) the previous or 2) the new
object version must be written to a new place. Thus,
when supporting temporal data management, the in-
dexing cost is the same in these two approaches.

In our approach, all objects smaller than a cer-
tain threshold should be written as one contiguous ob-
ject. Objects larger than this threshold are segmented
into subobjects, and a subobject index is maintained
for each of these large objects (this should be done
transparently to the user/application). The subobject
indexes used in the Vagabond approach are heavily
based on the EXODUS large storage objects [2], which
also take care of versioning of large objects. The value
of the large object threshold can be set independently
for different object classes. This is very useful, be-
cause different object classes can have different object
retrieval characteristics.

The entries in the leaf nodes of the subobject in-
dexes are subobject descriptors. The subobject de-
scriptors are also stored together with the subobject in
the segments. The contents of a subobject descriptor
includes OID, physical location, and write timestamp.

3.3 OID indexing in a temporal ODB

In a traditional ODB, the OIDX is usually realized
as a hash file or a B+-tree, with ODs as index entries,
and using the OID as the key. In a temporal ODB, there
are more than one version of some of the objects, and
it is necessary to be able to access current as well as
old versions efficiently. Our approach to indexing is to
have one index structure, containing all ODs, current
as well as previous versions. The reason for having
one index, instead of separate indexes for current and
historical versions, is to reduce the update costs. Suit-
able indexes are, e.g., a traditional multiversion access
method such as the TSB-tree [6], or the Vagabond tem-
poral OID index, which is optimized for OID indexing

5

in temporal ODBs [14].
The most recently used OIDX pages are kept in a

buffer pool in order to make OID mapping efficient.
However, in an OIDX, index entries have in general
low locality, i.e., only one or a few ODs in an index
page are accessed before the page again is evicted from
the buffer. In order to better utilize the memory, it
is possible to keep the most recently used ODs in an
OD cache.

In a database with many objects most of the ODs
that are updated during one checkpoint interval1 will
reside in different leaf nodes in the OIDX. As a re-
sult, many leaf nodes have to be updated during one
checkpoint interval. When an index node is to be up-
dated, an installation read of the node has to be done
first. With a large index, the accesses to the nodes will
be random disk accesses, and as a result the installa-
tion reads are very costly. In order to improve up-
date performance, the persistent cache (PCache) can
be used. The PCache is an intermediate index struc-
ture, that contains a subset of the entries in the OIDX.
The goal is to have the most frequently used ODs in the
PCache. In addition, recently updated/created ODs are
also stored in the PCache. In contrast to the OD cache
in main memory, the PCache is persistent (i.e., its con-
tents is not lost after a crash), so that it is not necessary
to write its entries back to the OIDX tree during each
checkpoint interval. This is actually the main purpose
of the PCache: to provide an intermediate storage area
for persistent data, in this case, the ODs. The result
should be reduced OD update costs.

The size of the PCache is in general larger than the
size of the main memory, but smaller than the size of
the OIDX tree. The number of nodes in the PCache
should be small enough to make it possible to store
pointers to all the PCache nodes in main memory. The
entries in the PCache are maintained according to an
LRU-like mechanism. The result should be higher
locality on accesses to the PCache nodes, which re-
duced the total number of installation reads. The aver-
age OIDX lookup cost will therefore also be less than
without using a PCache. Management information for
the PCache, including the LRU access tables, PCache
pointers, and OID ranges for all PCache nodes, are
kept in a PCache status table. This table is regu-

1A checkpoint interval is the time between two consecutive
checkpoints.

PCache

PC0 PC1 PC2 PC3 PC4 PC5 PC6

...

Main
Memory OD

Cache

PC1 PC4

PC6

TreeIDX

OIDX
Disk/
Tertiary Storage

TreeIDX/PCache
Node Buffer

TNODk TNODj

TNODi

TNOD0 TNOD1 TNODn

Figure 4. Overview of the TreeIDX, PCache,
and index-related main-memory buffers.
PCache nodes PC1, PC4 and PC6, and three
TreeIDX nodes (denoted TNODn) are in the
main-memory buffer.

larly checkpointed to disk. A more detailed descrip-
tion and performance analysis of the PCache can be
found in [12].

In order to avoid confusion, we will in the rest
of this paper denote the OID index tree itself as the
TreeIDX, and use OIDX to denote the combined in-
dex system, i.e., the PCache and the TreeIDX. Thus,
when we say an entry is in the OIDX, it can be in the
PCache, in the TreeIDX, or in both. This is illustrated
in Figure 4.

3.4 Read and write efficiency issues

A log-only ODB is write-optimized, and as a result,
object retrieval is a potential bottleneck. Several tech-
niques can be used in order to improve the read perfor-
mance: 1) careful layout of objects, 2) hash-based sig-
natures, and 3) object compression. Object compres-
sion will also improve write efficiency, as it reduces
the amount of data that needs to be written to disk. In
addition to the techniques listed above, writing of delta
objects can be employed to further reduce the amount
of data that needs to be written to disk. This technique
reduces the write cost, but might increase the read cost.

6

Careful layout of objects. Several strategies can be
used to store objects on disk in a way that reduces read
cost. One important strategy is to try to store related
objects close to each other. When using a no-overwrite
strategy, heuristics can be used to reorder objects in
segments that are to be written to disk, and during
cleaning of segments. This problem is similar to the
general problem of reclustering of objects, and tech-
niques from existing work is applicable here [8].

Hash-based signatures. A hash-based signature,
generated by applying a hash function on the contents
of some or all of the attributes of an object, can be
stored in the OD. In a perfect match query, it is possi-
ble to determine from this signature whether an object
is a possible match: a hash-based signature generated
from the attributes in the query is compared with the
signatures of the objects that are queried, and only ob-
jects with the same signature as the query signature
can be possible matches. This comparison can be per-
formed even before the objects are retrieved, so that
in many cases it is possible to avoid the retrieval of the
object themselves. The OD is accessed on every object
access in any case, so that the additional signature-
retrieval cost is only marginal. In addition, in a log-
only ODB, the OIDX is updated every time an object
is modified, so that additional signature maintenance
cost is also small. As shown in [11], substantial gain
can be achieved by the signature-in-OD approach.

Object compression. Objects can be compressed
before they are written to disk. In this way, storage
space and use of disk bandwidth can be reduced. With
a log-only approach, objects are written to a new lo-
cation every time. As a result, only as much space as
the size of the version that is currently written is used.
This contrasts to in-place updating approaches, where
more space has to be reserved in case subsequent ver-
sions have a lower compression ratio.

Delta objects. Often, only a small part of an object
is changed when a new version is created. In this case,
much can be gained if only the changes between the
versions are written. This is especially the case if an
object is a hot-spot object, but it is also interesting as
a way to reduce the storage requirements of a tempo-
ral database. An object that only contains the changes

from the last version of the object, is called a delta
object. Unlike traditional systems, that only use delta
objects to reduce the log writing, a delta object in a
log-only database system can be an object version on
its own, i.e., the complete version will not necessarily
be written.

3.5 Object access and queries

In non-temporal ODBs, ODMG’s OQL or a similar
query language can be used for ad-hoc queries. Sim-
ilar to the way OQL is a superset of the part of stan-
dard SQL that deals with databases queries, it is pos-
sible to design a temporal OQL that is a superset of
TSQL2, a temporal SQL-like query language. How-
ever, one of the main advantages of ODBs is the avoid-
ance of the language mismatch by providing computa-
tionally complete data manipulation languages with no
mismatch between language and storage. For ODBs,
language bindings based on several languages exists,
including C++ and Java. Such language bindings are
also needed for temporal ODBs.

A general purpose programming language is only
designed for current data. Integrating support for ac-
cess to historical data into a programming language
introduces a lot of interesting but difficult issues, in-
cluding which object interface to use when accessing
an historical object version (the schema might have
been changed since the historical version was created),
which method implementation to use when calling
methods in historical objects, and how to integrate time
into the syntax of the programming language. A more
detailed discussion of these issues is given in [15].

4 Log-only database operations

In this section we present the algorithms for the
most important operations in a log-only temporal ODB
based on the Vagabond approach. We give an overview
and an introductory example of log writing, and con-
tinue with more detailed descriptions of the different
operations in the rest of the section.2 First, we start
with a summary of what should be stored in the log

2The description in this section is based on using magnetic disk
as secondary storage. However, except for the device that stores
the checkpoint blocks (see Section 3.1), other storage technologies
can also be used.

7

segments and what buffers should be available in or-
der to efficiently support the algorithms and strategies
described in this paper.

The segments in the log should contain the physical
address of the previous and next segment, object re-
lated information (including TreeIDX nodes, PCache
nodes, ODs, small objects, subobjects and subobject-
index nodes of large objects), transaction control in-
formation (including commit operations, as will be
described in more detail in Section 4.3.1), and parts
of persistent copies of the main-memory tables (seg-
ment status, PCache status, and transaction identifier/-
timestamp/counter tables).

The information to be written to a segment is in gen-
eral collected from the relevant main-memory buffers.
The most frequently used ODs and the ODs not yet in-
stalled into the OIDX should be stored in an OD cache,
as illustrated in Figure 4. In order to reduce in-
dex access cost, the most frequently used PCache and
TreeIDX nodes should also be buffered in main mem-
ory. In addition to the index-related buffers, modified
or recently used small objects should be buffered in a
small object buffer. As described in Section 3.2, large
objects can be segmented into subobjects, and recently
used or modified subobjects and subobject index nodes
should be buffered in dedicated buffers. All buffers
can be maintained according to a LRU policy.

4.1 Introduction

When a transaction3 is started, it is assigned a trans-
action identifier (TxID). Unlike many other systems, it
is not necessary to write information to the log when
a transaction starts. In fact, if a transaction is aborted
before it writes any objects to the log, there will be no
trace left of the aborted transaction’s existence at all.

Modified objects can be written to the log before
a transaction commits (buffer steal strategy). This re-
duces commit time (the objects are already safe on disk
when the commit operation starts), as well as making
it possible to handle large amounts of data in one trans-
action (the amount of main memory does not limit the
amount of data a transaction can create/update).

When an object is written to the log, it is always

3All transactions in this paper are assumed to be flat transac-
tions having ACID properties (atomicity, consistency, isolation,
and durability).

written together with its OD. This OD is only in-
tended to be used if crash recovery is needed. The
commit timestamp is obviously not known before
commit time, so that when objects are written to
the log the ODs in the log contain the TxID in-
stead of the timestamp. When a transaction com-
mits, a (TxID,timestamp) tuple for the commit-
ting transaction is written to the log as a part of the
commit operation. In this way, it is possible to know
the timestamp of a committed transaction when doing
recovery.

After a transaction commits, the objects that have
been created or updated by the committing transaction
become current versions, and should be available for
other transactions to read. When another transaction
later wants to read an object, it has to first retrieve
the OD of the object. This OD is either still in the
OD cache (see Section 3.3), or has been installed into
the OIDX. During normal operation, ODs from a com-
mitted transaction are lazily installed into the OIDX
after the commit has been finished, and ODs are never
discarded from main memory before they have been
installed into the OIDX.4 When the ODs are inserted
into the OIDX, the timestamp is used in the OD, and
not the TxID.

In order to bound the amount of log that has to
be processed during crash recovery, all ODs gener-
ated from a transaction that commits during one check-
point interval (between two consecutive checkpoints),
should be installed into the OIDX before the next
checkpoint interval ends (if this is not the case, the
ODs will be written at that time, before the checkpoint
operation can finish). This implies that during recov-
ery, we know that we only have to process log back
to the penultimate checkpoint (the actual length of a
checkpoint interval can be application specific, and in
general, it will be a tradeoff between performance and
recovery time).

We denote a transaction as short if all the created
objects and ODs from the transaction, and the commit
operation, are written during one checkpoint interval.
If a transaction lasts longer than one checkpoint inter-

4Remember that we denote the index tree itself as the TreeIDX,
and use OIDX to mean the combined index system, i.e., the
PCache and the TreeIDX. Thus, when we say an entry is in the
OIDX, it can be in the PCache, in the TreeIDX, or in both (see
Section 3.3).

8

val, we allow ODs generated by this transaction to be
inserted into the PCache, even if the transaction has
not yet committed. These ODs are stored as uncom-
mitted ODs in the PCache nodes, and can not be used
by any other transaction. In this way, when the trans-
action commits, all its ODs are still guaranteed to be
installed into the OIDX during the next checkpoint in-
terval. Some of its ODs in the PCache will at this point
still be marked uncommitted, but during crash recov-
ery we know which committed transactions have dirty
entries in the PCache, so that these can be handled
properly (this will be described in more detail in Sec-
tion 4.2.1). Entries from aborted transactions will be
lazily removed from the PCache nodes as the PCache
nodes are retrieved from disk later. Objects in the log
from aborted transactions will simply be discarded the
next time the segments are cleaned.

An interesting point that should be observed is that
nothing from a transaction is written to the log before
the transaction commits or one of its objects (and OD)
is evicted from the buffer. A transaction that only mod-
ifies a few objects, and accesses these frequently, does
not necessarily write anything to the log before com-
mit time, even if it has a long duration. This implies
that in a system based on the principles described in
this paper, many long transactions can be considered
similar to short transactions (but note that problems
related to concurrency control, e.g., lock contention,
still remain).

Fast crash recovery is one of the advantages of a
log-only system. If crash recovery is needed, the last
part of the log is scanned. Because all ODs gener-
ated from a transaction that commits during one check-
point interval should be installed into the OIDX when
the next checkpoint interval ends, only the log written
after the penultimate checkpoint has to be processed.
ODs from committed transactions that are not yet in-
stalled into the OIDX are collected when the log is
read, and can later be installed into the OIDX. ODs
from aborted transactions and transactions that were
ongoing at crash time, are discarded.

4.1.1 Example

We will now illustrate log writing with the use of Fig-
ure 5, which shows a number of transactions Ti. On
the top, there is the time-line, running from left to

Time

...
......

...

Inserting
"uncommitted"
into
PCache

CP1 CP CP CP2 3 4

Installing
into OIDX

3T :

2T :

1T :

Object

Commit
Abort

OD

Figure 5. Example of log writing. In the figure,
an object written to the log is illustrated with
a ©, an OD as a 2, the commit operation by
a 4, and the abort operation with a ×.

right, with checkpoints marked. The ODs are written
together with the objects, and installed into the OIDX
at a later time (note that at the time ODs are installed
into the OIDX, they are still in main memory), as il-
lustrated in the figure. Please note that even though the
transactions are illustrated with separate lines, objects
and ODs from different transactions, as well as nodes
of the OIDX, can be stored in the same segments.

Starting with transaction T1, this is a short trans-
action. The transaction commits during the second
checkpoint interval between checkpoint 2 and 3, and
the ODs generated from this transaction should be in-
stalled into the OIDX when checkpoint 4 ends. In this
way, it is guaranteed that in the case of a crash after
checkpoint 4, no uninstalled ODs from transaction T1

will exist in the part of the log written before check-
point 3.

Transaction T2 spans more than one checkpoint in-
terval, and is therefore treated as a long transaction.
All the ODs written by transaction T2 during the first
checkpoint interval (before checkpoint 2), must be in-
stalled into the PCache before the end of checkpoint
3. This might be postponed until the end of check-
point period 2, but if the ODs have to be replaced
from main memory, they can also be installed “uncom-
mitted” into the PCache in the background during the
second checkpoint interval. After the transaction has
committed, its ODs can be inserted into the TreeIDX
as well. To emphasize: Before transaction T2 com-
mits, its ODs can only be inserted into the PCache, but

9

after the transaction has committed, its ODs can be in-
serted into the TreeIDX as well as the PCache. This
will be explained in more detail in Section 4.2.1.

Similar to the case of transaction T2, some of
the ODs from transaction T3 written during the first
checkpoint interval might have been inserted into the
PCache before it aborts. If this was the case, they will
be removed from the PCache in a lazy way, as time
goes by. ODs (and objects) written to the log will be
removed later, during the segment cleaning process.

We have now given a short introduction to the log
generation, and will continue with a more detailed de-
scription of the operations.

4.2 Object operations

A new OD is created every time an object is cre-
ated, updated or deleted. In the case of an object cre-
ate or update, the OD is written together with the ob-
ject to the log, and in the case of an object delete, it
will be written to the log at a convenient time. In all
cases, they will be written to the log before the trans-
action can finish the commit operation. The ODs will
be inserted into the OIDX if the transaction commits.
An OD will never be inserted into the TreeIDX before
the actual transaction commits, but in the case of long
transactions, some of the ODs can be inserted into the
PCache (this will be described in more detail later in
this section). Modified OIDX nodes will in general be
written at a later time, so that the response time for a
transaction commit can be short.

The following description of the operations is
mainly independent of which concurrency control
strategy is used. This means that we assume that in ad-
dition to performing the actions described below, con-
currency control aspects are maintained. For example,
if two-phase locking is used, we expect that the neces-
sary lock(s) have been acquired before the actual op-
eration is carried out.

4.2.1 OD management

In traditional applications, most transactions are short
and update only a few objects. In the approach de-
scribed in this paper, the ODs that the short transaction
have generated are in general not discarded from main
memory until they have been installed into the OIDX,

Time
CP1 CP2 CP4 CP5CP3

T :4

Figure 6. Long transaction.

and the ODs written together with the objects in the log
will only be used later if crash recovery have to be per-
formed. In addition, all ODs resulting from a transac-
tion committed during one checkpoint interval, should
be installed into the OIDX before the next checkpoint
interval ends. However, in the case of long5 trans-
actions, which can be common in applications using
ODBs, the number of ODs can be very high. If all
ODs are required to be resident in the OD cache un-
til they are inserted into the OIDX, the maximal size
of a transaction would in this case be restricted by the
size of the OD cache. Another problem is transactions
that last longer than a certain number of checkpoint
intervals. All of the log created from the time when
the transaction started to write to the log has to be pro-
cessed during crash recovery. This can take a lot of
time and it makes cleaning more complex. This is in
many situations not acceptable.

The problems with long transaction problems are
illustrated in Figure 6, which shows an example of a
long transaction. If 1) ODs are not installed into the
OIDX before commit time6, 2) transaction T4 com-
mits during checkpoint interval 5, and 3) the system
crashes shortly after that, all the log back to check-
point 1 has to be processed during recovery. This is
necessary because the log might contain ODs from this
committed transaction that had not been installed into
the OIDX when the crash occurred. Some possible so-
lutions to the problems with long transactions are to
1) use a larger OD cache, 2) use one or more segments
as “sidefiles” to store the ODs from long transactions,
or 3) allow ODs from uncommitted transactions to be
inserted into the PCache. We will now discuss these
alternatives, and why we consider the third alternative
as the best solution.

5When we in this section study long transactions, we mean
both traditional long-living transactions, as well as “large transac-
tions”, i.e., transactions that generate large amounts of data.

6Instead of using the approach of storing uncommitted ODs as
described previously, and in more detail below

10

Large OD cache. Solving the long transaction prob-
lem by increasing the size of the OD cache has several
drawbacks:

• Increasing the OD cache means less memory
available for buffering OIDX nodes and objects.
This increases the buffer-miss rates, which in turn
reduces the performance of the system.

• This approach is not truly scalable. Even in the
extreme case of allocating all of the available
main memory to the OD cache, there can be trans-
actions that create more ODs than will fit in the
OD cache.

• The problem with long-lived transactions is not
solved, because there would still be a large
amount of log to be processed during recovery.
Most of the log to be processed would be from
transactions that have already been committed
and have their ODs inserted into the OIDX, which
means that most of the log processing is duplicat-
ing earlier work.

For these reasons, we do not consider a large OD cache
as a reasonable solution to the problem.

Sidefile segments. One or more segments could be
used as “sidefiles”, which are segments that are used
only for storing the ODs generated by one particu-
lar transaction. The sidefile segments of the transac-
tion can later be processed efficiently if the transaction
commits, by reading the sidefile segments and insert-
ing the ODs into the OIDX. A transaction would start
to write to a sidefile segment when the number of cre-
ated ODs from the transaction becomes larger than a
certain threshold, or when the transaction lasts longer
than a certain number of checkpoint intervals.

By using sidefile segments, locking a large number
of ODs in the OD cache is avoided, and the amount
of log that needs to be processed during recovery is
reduced. However, as was the case with the previous
approach, the sidefile segment approach has also got
its problems.

One problem with sidefiles, is the situation where
there is a long-lived transaction that updates the same
object more than once. If the time between each up-
date of the object is long enough, the object as well as

its OD might have been written back to disk and re-
moved from the buffer due to buffer replacement. In
this case, the next time the object is modified, it is dif-
ficult to know that it has already been modified by the
same transaction. A result could be several ODs repre-
senting updates on this object in the sidefile. Only the
last OD should be inserted into the OIDX (one trans-
action creates only one new object version), so this is
wasted disk space and disk bandwidth. However, al-
though this problem is a nuisance, it is not fatal. By
careful processing of the sidefile segments and inserts
into the OIDX, duplicate ODs can be detected.

Another problem, is what happens after a transac-
tion Ti has committed. If this transaction generated
sidefile segments, the ODs in the sidefiles are not yet
in the OIDX, and they are not guaranteed to be in the
OD cache in main memory. This means that if an-
other transaction Tk tries to access objects written by
Ti, it is possible that the transaction can read a non-
current OD, because it does not know that there is a
more recent OD stored in the sidefile. This is certainly
not acceptable. Again, this is a nuisance, but not fatal:
the problem can be solved by not releasing write locks
until after the sidefile segments have been processed.
The unfortunate result of this is of course that objects
can be locked for quite a long time. However, in most
situations, this should not be a real issue. Long trans-
actions will keep write locks for a long time anyway,
which means that if this is regarded as a problem, the
problem is likely to be present even without the locks
on objects with ODs in sidefiles.

The really serious problem with sidefiles, is what
happens when a transaction wants to read an object
that has been previously modified by the same trans-
action. If the object and its OD has been replaced in
the main-memory buffers, the transaction would need
to search all of its sidefile segments to find out where
the object is. This would be necessary to do for ev-
ery read operation where the transaction has already
got a write lock on an object whose current version
is not main-memory resident, because it could not be
sure if it had modified the object or not. Although this
problem could be solved by storing the sidefile ODs in
index trees, this would affect performance too much.
Instead of simply writing the ODs sequentially into the
sidefiles as described previously, a costly insert into a
sidefile tree would be necessary. As a result, we con-

11

sider using sidefile segments to be too complex and
costly.

ODs from uncommitted transactions in the
PCache. The third approach is to allow ODs from
uncommitted transactions to be inserted into the
PCache. This is not an ideal solution. However,
it seems to be the most efficient and least compli-
cated solution to our problems. PCache nodes are
frequently read and written, so that the extra cost is
only marginal. Because most transactions commit, the
PCache space wasted by this approach is also only
marginal.

We do not allow ODs from uncommitted trans-
actions to migrate further from the PCache to the
TreeIDX. The reason for this, is that this would com-
plicate commit processing, recovery and it would also
be costly. Also, it should not be necessary. In the case
of very long transactions, the size of the PCache can
be adaptively resized, so that its size does not limit the
transaction size.

4.2.2 Management of ODs from uncommitted
transactions

Based on the discussion above, it is clear that the
best solution to the problems regarding long transac-
tions, is to allow ODs from uncommitted transactions
to be inserted into the PCache. In this case, it must
be possible to know which ODs in the PCache nodes
are ODs from committed transactions, and which ODs
are from uncommitted transactions. This is neces-
sary in order to avoid other transactions accessing ODs
from the uncommitted transactions, and because ODs
from uncommitted transactions contain TxIDs instead
of timestamps. The problem can be solved in several
ways, for example by using one bit in the OD as a
flag to tell whether it belongs to a committed trans-
actions or not, or to use a separate bitmap in each
PCache node in order to know whether an OD in a
slot is from a committed or a uncommitted transac-
tion. However, a better solution is to store the ODs in
a PCache node in a binary tree. In order to know which
ODs are from committed transactions, and which ODs
are from transactions that were uncommitted when the
ODs were inserted into the PCache node, two trees
can be used. One tree, the committed tree, is used for

the ODs of committed transactions, and the other tree,
the uncommitted tree, is used for ODs from uncom-
mitted transactions. Only one extra pointer in each
PCache node is needed, so this solution has minimal
space overhead. Management is also cheaper than for
the two other approaches, because it is easy to find the
ODs from uncommitted transactions when necessary.

When a transaction commits, the ODs it generated
that have been inserted into PCache nodes should be
moved from the uncommitted trees to the commit-
ted trees. This is done lazily. Every time a PCache
node is retrieved, all ODs from committed transactions
that are still in the uncommitted tree are moved to the
committed tree. When an OD is moved, the TxID in
the OD is replaced with the commit timestamp of the
transaction that generated the OD.

It is necessary to keep the TxID of a commit-
ted transaction until all ODs that were stored in the
PCache before the transaction committed have been
moved to committed trees. For each committed trans-
action, a counter of how many ODs from the transac-
tion that are still in uncommitted trees in the PCache
is maintained. Every time we move an OD from an
uncommitted tree to a committed tree, this counter is
decremented. When the counter reaches zero, infor-
mation about this transaction can be discarded. The
(TxID,timestamp,counter) tuples are stored
in a TxID/timestamp/counter table. Entries from this
table are written to the log during each checkpoint in-
terval, in order to make it possible to reconstruct the
table during recovery.

4.2.3 Creating and updating objects

When an object is created, it is allocated a unique OID,
and an OD is created. A new OD is also created every
time we update an object. The OD of the new ver-
sion will eventually make its way into the OIDX if the
transaction commits, as described previously. There
is little difference between temporal and non-temporal
objects in the case of create and update operations, the
difference is mostly whether the old OD is kept in the
OIDX or not.

When large objects are updated, only the modified
subobjects and the affected subobject-index nodes are
written to the log. The use of the versioned subobject
index (see Section 3.2) ensures that only the affected

12

parts of the subobject index need to be written. Large
objects are possibly spread over several segments, and
therefore the writing of large objects has to be done
carefully. This is achieved by first writing the updated
subobjects, and then the modified parts of the subob-
ject index.

We will now describe in more detail the use of delta
objects and compressed objects. The OD of an object
version will contain the information about whether it
is a delta object and/or is compressed.

Delta objects. As described in Section 3.4, a delta
object is the difference between the new and the pre-
vious committed version of an object, and by writ-
ing delta objects instead of the complete objects, the
amount of data that has to be written to the log is re-
duced.

The fact that only a delta object is written to disk
does not affect the efficiency of future accesses to the
current version of an object while the current version
is still in the buffer. However, if the object is removed
from the buffer because of buffer replacement or a sys-
tem crash, future accesses have to read the last com-
plete version that was written to disk, as well as the
delta object(s) written after that, in order to reconstruct
a particular object version. Reading a chain of delta
objects is costly. For current object versions, it can be
avoided by always writing the complete object to disk
before removing it from the buffer. This means that
it is only after a crash that it will be necessary to re-
trieve the current version of an object through a chain
of delta objects. When retrieving historical object ver-
sions, reading a chain of delta objects can be necessary
if the actual version was only written as a delta object.

It is not always beneficial to write delta objects.
This should only be done if certain criteria are satis-
fied, for example that the size of the delta object should
be much smaller than the size of the complete object,
and accesses to historical versions of the actual object
should be infrequent.

Compressed objects. When a compressed object is
written to the log, the uncompressed size of the object
is included in the object. This makes it possible to
know how much buffer space that has to be allocated
before the object is decompressed. The size stored in
the OD is the compressed size of the object, i.e., how

much space the compressed version occupies on disk.
This information is needed when the object is to be
read from disk.

4.2.4 Deleting objects

Temporal objects are not physically deleted. In this re-
spect, they are mostly treated as non-deleted objects.
For example, during cleaning, a version of a deleted
temporal object will be moved to the new segment,
similar to a non-deleted object. A non-temporal ob-
ject, on the other hand, will not be accessed after it
has been deleted. It will be physically removed from
the segment it resides in the next time the segment
is cleaned. Whether an object is temporal or non-
temporal, is stored in the object’s OD.

Deleting temporal objects. Deleting an object
which is defined as temporal is done by writing a tomb-
stone OD, which is an OD where the physical location
is NULL, and the timestamp is the delete time.

Deleting non-temporal objects. If we do not want
to keep the deleted version, i.e., it is not a temporal
object, its OD is written to the log with both physi-
cal location and timestamp set to NULL. Unlike the
tombstone OD, this OD is written to the log as logging
information to be used in the case of recovery. When
the OIDX is updated later, the OD for this object will
be removed. When the object is deleted, the live-byte
counter (in the segment status table, see 3.1) for the
segment where the object resides, is decremented ac-
cordingly.

If the object is a delta object, the live-byte counter
for the segment where the last complete object was
written is decremented, and if there were intermediate
delta objects, the live-byte counters for the segments
where these delta objects reside are decremented as
well. The object (and delta objects) will be removed
next time the segment(s) are cleaned.

If the object is a large object, the subobject in-
dex has to be traversed in order to decrease the live-
byte count for the segments where the subobject-index
nodes and the subobjects are stored. The subobject-
index nodes and the subobjects will be deleted the next
time the respective segments are cleaned.

13

Deleting new objects. If an object is deleted by the
same transaction that created it, the effect on the data-
base should be the same as if the object had never been
created. This is assured by using the following algo-
rithm:

1. If the object has not yet been written to the log,
the only action needed is to remove the OD from
the OD cache and delete the object from the main-
memory buffer.

2. If the object has been written to the log, but its
OD is still in the OD cache and is dirty with re-
spect to the OIDX, the only action needed is to
write a tombstone OD to the log. If a crash oc-
curs, the recovery algorithm will know that an ob-
ject deleted by the same transaction that created
it, should be discarded.

3. If the object has been written to the log, and the
OD in the OD cache is clean or the OD is not res-
ident in the OD cache, that means that the OD
has been inserted into a PCache node. In this
case, the OD has to be removed from the PCache
node. In order to avoid a synchronous operation,
a tombstone OD is created and inserted into the
OD cache. The OD in the PCache node is re-
moved the next time the PCache node is brought
into main memory. The tombstone OD that is in-
serted into the OD cache has to be written to the
log before or during commit, if the PCache node
has not been updated before that time.

4.2.5 Reading objects

We will now describe how to retrieve current as well
as historical object versions, and how to treat delta ob-
jects and compressed objects.

Reading objects stored as complete versions. The
physical location of an object version is stored in its
OD, and in order to read an object that is not resident
in memory the object’s OD has to be retrieved first. If
the object is a large object, the location in the OD is
the location of the root of the subobject index of the
actual object version, and this subobject index has to
be traversed in order to retrieve the requested subob-
ject(s).

• Current versions. When reading the current
version of an object based on OID, a lookup in
the OD cache is performed to check if the OD
is resident in the OD cache. If not, a lookup
in the OIDX is necessary. An OIDX lookup
is performed by first searching the PCache, and
if the OD is not found in the PCache, the
TreeIDX is searched. When doing a lookup in a
PCache node, the uncommitted tree only has to be
searched if it is possible that the object has been
previously modified by the same transaction that
is now requesting the object. If a locking protocol
is used, this can only be the case if the transaction
already owns a write lock on this object (or in
the case of hierarchical locking, a lock for a more
coarser granularity, for example a container/set of
objects). When the OD is found, the object is read
from the physical location found in the OD.

• Historical versions. If the timestamp of the his-
torical version that is to be retrieved is known, the
lookup for the OD and retrieval of the object can
be performed in the same way as when reading
the current version of an object. However, quite
often the query is for an object version valid at
a certain time tj . In this case, the OD with the
largest timestamp less than or equal to tj has to
be retrieved. It is this operation that makes an
end timestamp in the OD beneficial when the OD
is outside the TreeIDX (see Section 3.2). If the
end timestamp was no in the OD, it would not be
sufficient to access the OD cache or the PCache
to find the OD. Even if we found an OD in the
OD cache or PCache with a timestamp ti that
was close to tj , there could have been updates
between ti and tj . This would be impossible to
know from the ODs alone, and it would be neces-
sary to do a lookup in the TreeIDX for every such
retrieval.

Delta objects and compressed objects. As de-
scribed above, the OD has to be retrieved before an
object can be retrieved in order to determine the phys-
ical location where the object is stored. The OD also
indicates if the actual object version is a delta object
or is compressed (except in the case of large objects,
where this information is stored in the subobject de-

14

scriptors).

Delta objects. If we want to retrieve an object
version Vj that is stored physically as a delta object,
the actual version has to be recreated by retrieving the
most recent complete version Vc that was created be-
fore Vj , in addition to retrieving the delta objects Di

that were written between Vc and Vj . This is achieved
by first retrieving the ODs of the delta objects Di and
the OD of the complete version Vc. This is done by
searching the OIDX backwards from version Vj to Vc

(this operation will not be very costly, because the
number of delta objects between two complete ver-
sions should be relatively small, and the ODs will be
clustered in the OIDX). After the ODs have been re-
trieved, the actual object version Vc and the delta ob-
jects are retrieved, and the object version Vj can be
reconstructed.

Note that when delta objects have been written for
a non-temporal object, there will be one OD for each
delta version and one OD for the last complete object
that was written.

Compressed objects. If the requested object ver-
sion was compressed before it was stored, the com-
pressed version is read into the object buffer, and then
decompressed into a new location in the buffer. Af-
ter decompression, the compressed version is removed
from the buffer.

4.3 Transaction management

In order to be able to do recovery after a failure, it is
necessary to ensure that enough information has been
written to the log before a transaction commits. We
have previously described how objects can be written
to disk before a transaction commits, in order to avoid
writing all the objects modified by the transaction in
one burst during commit, and how ODs are written to
the log in order to avoid synchronous updates of OIDX
nodes at commit time. This section will give a more
detailed description of transaction management in the
Vagabond approach.

4.3.1 Commit

The transaction commit operation can in principle be
implemented by first writing to the log the objects from
the transaction that is still dirty in the object buffer, fol-
lowed by a transaction finished mark which includes a
(TxID,timestamp) tuple. After the objects and
the transaction finished mark have been written to the
log, the transaction commit is considered finished. Ob-
jects, ODs, and the transaction finished mark can be
stored in the same segment, and more than one trans-
action can be committed in one segment write (simi-
lar to traditional group commit). In this way, the re-
sponse time can be as low as the time it takes to write
one segment. Although this technique in most cases
should give good throughput in a single server system,
it is possible that in the case of transactions that have
generated a large number of ODs the result could be
a queue of transactions that want to commit. In that
case, smaller transactions could be blocked for a long
period. However, the most important problem is that
it would be difficult to implement an efficient 2-phase
commit operation by using this simple technique. 2-
phase commit is crucial to ensure consistency in multi-
server systems where data is distributed, and to support
it a more elaborate commit protocol has to be used,
where more information is written to the log in the var-
ious phases of the commit process.

2-phase commit. When a transaction is started on
node NodeIDc, it is allocated a transaction identifier
TxIDc on the node where it is started. If the transac-
tion TxIDc accesses other servers, a transaction TxIDp

is started on each of these servers. The transaction
on NodeIDc maintains a table of all subtransactions
TxIDp that it controls.

At commit time, the controller (TxIDc) sends a pre-
pare message to the participating nodes. If all of the
participating nodes vote yes, the controller sends the
commit message to all of them. When the commit
is finished they acknowledge the commit to the con-
troller, which considers the commit finished when all
acknowledge messages have been received. In more
details, the commit algorithms are as follows (also il-
lustrated in Figure 7):

Controller:

15

Controller Participant A Participant B

Write ODs and objects
Write Prepared

Write ODs and objects
Write Prepared

Yes

Yes

Commit

Commit

CommitCompleted

CommitCompleted

Write CommitCompleted
Write CommitCompleted

Write CommitEnd

Write ODs and objects
Write Prepared

Yes

No

Abort

Decide
to vote no,
write Abort

Write Abort

Write Abort

Write CommitStart

Prepare

Prepare

Prepare

Prepare

Figure 7. Messages and transaction infor-
mation written to the log during a 2-phase
commit involving a controller and two par-
ticipants. On the top is illustrated a commit
where all participants vote yes, and the com-
mit succeeds. On the bottom is illustrated a
commit where one of the participants votes
no, with an abort as the result.

1. Send the Prepare(TxIDp,TxIDc) message
to all participating nodes.

2. Wait for reply from all participating nodes.

3. (a) If all participating nodes vote yes, write
CommitStart(TxIDc,timestamp)
to the log, and send
Commit(TxIDp,timestamp) mes-
sages to the participating nodes. When
all participating nodes have acknowl-
edged with CommitCompleted,
a CommitEnd(TxIDc) tuple is writ-
ten to the log.

(b) If not all of the participating nodes voted
yes, or the controller has not received
votes from all participants within the time-
out period, the commit process is aborted.
Abort(TxIDc) is written to the log, and
Abort(TxIDp) messages is sent to the
participating nodes that voted yes.

Participating nodes:

1. (a) When the Prepare message is received
and the participating node decides to vote
no, Abort(TxIDp) is written to the log,
the no vote is sent to the controller, and the
local transaction is aborted.

(b) If the participating node decides to vote yes,
the rest of this algorithm is executed.

2. When the Prepare message is received and the
participating node decides to vote yes, all objects
and ODs that have been created or modified by
the transaction and are still dirty in the buffer
are written to disk. In the same segment as
the last objects and ODs, or in a subsequent
segment, Prepared(TxIDp,timestamp,
NodeIDc,TxIDc) is written to the log.

3. When the Prepared is safe on disk, a
Yes(TxIDp,timestamp) message is sent to
the controller, and the participating node waits
for the outcome of the voting phase from the con-
troller.

4. (a) If a Commit message is received,
CommitCompleted(TxIDp,

16

timestamp) is written to the log,
and a CommitCompleted(TxIDp)
message is sent to the controller. Only after
this has been done the transaction is consid-
ered committed, and created/modified ODs
can be installed into the TreeIDX.

(b) If an abort message is received, transaction
TxIDp is aborted, and Abort(TxIDc) is
written to the log. It is not strictly necessary
to write an abort record to the log using our
approach, but by doing so we avoid having
to ask the controller node of the outcome
after a crash.

If the transaction TxIDc has not accessed data on other
nodes, the commit can by done by simply writing
CommitCompleted(TxIDc,timestamp) to the
log after the dirty objects and ODs have been written,
possibly in the same segment. Failure of one of the
nodes during the 2-phase commit process can be han-
dled in the same way as in traditional systems.

4.3.2 Abort

In a log-only database, it is not necessary to undo oper-
ations when a transaction is aborted. If the transaction
that wrote an object does not commit, an object writ-
ten to the log before the abort operation will simply be
a dead object, which will be removed the next time the
segment is cleaned.

No ODs reflecting updates from a transaction will
be installed into the TreeIDX until after the commit
has completed. ODs with OIDs that have been allo-
cated by a transaction that has aborted will never be
inserted into the TreeIDX, and the OIDs are not reused
later by any other transaction. ODs from aborted trans-
actions that have been inserted into the PCache will be
removed lazily at the same time as ODs from commit-
ted transactions are moved to the committed tree (see
Section 4.2.2).

When a transaction aborts, the live-byte counts in
the segment status table for the segments where the ob-
jects were written are decremented accordingly. This
can only be done immediately for the objects whose
ODs are still in main memory. For those objects that
the ODs have been removed from the OD cache and in-
serted into the PCache, the live-byte counts are decre-

mented when the ODs are removed from the PCache
nodes.

The fact that no transaction control information is
written to the log before a transaction starts the com-
mit process, simplifies abort considerably. This can
be useful in a client-server environment, and can also
be used to exploit optimistic concurrency control tech-
niques, because the commit process is performed only
if the validation phase succeeds.

4.3.3 Other transaction models

The description of transaction management has been
presented in the context of flat ACID transactions.
Other transaction models could also be implemented.
For example, nested transactions can be realized as a
variant of 2-phase commit and reduced isolation be-
tween subtransactions.

4.4 Recovery

When a system is restarted, it is determined from
the checkpoint block whether the shutdown of the sys-
tem was done controlled, or caused by a crash. If
caused by a crash, recovery is needed. In this section,
we describe how to reduce the recovery time by check-
pointing, and take a closer look at recovery and how to
handle media failures.

4.4.1 Checkpointing

The main purpose of checkpointing is to reduce the re-
covery time. This is achieved by bounding the amount
of log that has to be processed at recovery time. In a
traditional database system, the main part of the check-
point process is to write dirty pages back to disk, usu-
ally by the use of a fuzzy checkpointing technique. In
a log-only system, the log is the final repository, and
objects have to be written to the log before commit
in any case. In this context, the main issue of check-
pointing is to install the ODs into the OIDX. In this
way, the amount of log that has to be read at recovery
time in search of ODs that have not been installed into
the OIDX before the system crashed, is reduced.

During a checkpoint interval (between two check-
points), the ODs from committed transactions are in-
stalled into the OIDX. In order to keep the installation
rate high enough and reduce the amount of memory

17

needed to store ODs that are not yet installed into the
OIDX, all ODs from a transaction committed during
one checkpoint interval, should be installed into the
OIDX no later than the end of the next checkpoint in-
terval.

The segment status, PCache status, and TxID/-
timestamp/counter tables (see Section 3.1, 3.3, and
4.2.2) are resident in main memory. In order to be
able to recreate these tables after a crash, the contents
of these tables is written regularly to the log. Each
time a segment is written, a certain range of entries
from these tables are stored in the segment. During
each checkpoint interval, all entries from these tables
should have been written at least once.

Checkpointing can be costly, so it is important that
the amount of data to be written at checkpoint time is
as low as possible, and that data structures locked as a
part of the checkpointing process are locked only for
a short time. Using the Vagabond approach, most op-
erations can run as normal during checkpointing. The
only restriction is that the timeout values for 2-phase
commit should be smaller than one checkpoint inter-
val. The checkpoint algorithm is as follows:

1. Wait until the number of written objects since last
checkpoint, or the number of segments written
since last checkpoint, reaches a certain threshold.

2. If there are ODs that 1) were created before the
last checkpoint and 2) are not yet installed into
the OIDX, stop all other log processing until they
have been installed. Note that this delay is un-
desirable, and can normally be avoided by giving
high enough priority to OIDX updating. In or-
der to reduce a possibly long checkpointing time
when this situation occurs, it is possible to solve
the problem temporarily (or rather postpone the
problem) by simply writing to the log the dirty
ODs that have not been written since the last
checkpoint.

3. If there are entries in the segment status, PCache
status, or TxID/timestamp/counter tables that
have not been written during this checkpoint in-
terval, write them to the log now.

4. Update the least recently written checkpoint
block. This finishes the checkpointing, and by
definition starts a new checkpoint interval.

4.4.2 Crash recovery

The purpose of crash recovery is to reconstruct a con-
sistent state. In a traditional system, this is a very
complex operation, and typically involves an analy-
sis phase, a redo phase, and an undo phase. In a no-
overwrite system, undo or redo of objects is not neces-
sary. However, the ODs and transaction management
information in the tail of the log have to be read in
order to rebuild the resident structures.

The first step in a recovery is to identify the last
segment that was successfully written before the crash.
This is achieved by reading the log from the last check-
point until one of the following conditions is satisfied:
1) the segment that is read was only partially written
(the system crashed when it was writing this segment),
or the next segment of a segment does not exist (every
segment contains the address of the next segment, and
if this segment does not exist, this means that the sys-
tem crashed in the interval between writing two seg-
ments).

When the log is read in order to find the end of it,
all ODs that are read are collected. Those ODs where
we later find a commit record for the transaction that
generated the ODs, are kept. ODs that do not have a
corresponding commit record can safely be discarded
because the system crashed before the actual transac-
tions committed.

After the end of the log has been identified and the
part of the log written after the last checkpoint has
been processed, the log from the last checkpoint and
backwards is read, until the penultimate checkpoint.
In this way, all segments that might have ODs from
committed transactions but where the ODs have not
yet been installed into the OIDX, are processed. This
backward reading can be done efficiently because all
segments have a pointer to the previous segment.

While reading the segments, the relevant structures
are rebuilt in memory. If it because of insufficient
buffer capacity is necessary to write index nodes dur-
ing recovery, these nodes are written to clean seg-
ments. When the log has been processed, a check-
point is performed, and when the checkpoint process
is finished, the checkpoint blocks are updated. Idem-
potence is guaranteed because no written data is modi-
fied before updating the checkpoint block. If a system
crashes during recovery, it will simply start recovery

18

in the same way next time.

Media failure in a log-only system can be handled
by the use of mirroring (RAID 1) or RAID with parity
blocks (for example RAID 4 or RAID 5). The use of
mirroring will also improve read performance, because
the read bandwidth is doubled. The write performance
will stay the same. Similar to traditional systems, dis-
aster recovery can be supported by additional backup
of logs, or logging to remote nodes.

4.5 Vacuuming

Storing an ever growing database is not always de-
sirable, or even possible. It is therefore necessary
to be able to vacuum the database, i.e., to physically
delete data which has previously been logically deleted
(deleted temporal objects), and non-current (historical)
versions of data. During vacuuming, all objects in a
certain object class or in a certain container (set of ob-
jects), created before a certain time tv, are removed.
After vacuuming, these objects can not be accessed
anymore, not even in historical queries. Vacuuming
can be performed according to two different strategies,
1) eager or 2) lazy vacuuming.

Eager vacuuming. When eager vacuuming is used,
the OIDX is searched, and the ODs of all objects that
are non-current and were created before time tv are
removed from the OIDX. The segment live-counts of
the segments where the objects reside are decremented
accordingly. The objects themselves are physically re-
moved during the cleaning process.

Vacuuming old versions of large objects has to be
done with care, because only the modified parts of the
subobject index are written when a new version is cre-
ated. This means that only the parts of the large objects
that are not referenced by more recent versions, can be
vacuumed.

Eager vacuuming of a container is easy because the
ODs of all objects in a container are clustered in the
OIDX, but eager vacuuming of objects from a certain
class is more difficult. Objects can be stored in arbi-
trary containers, and eager vacuuming of a class can
imply traversing the whole OIDX if there is no class
extent index available.

Lazy vacuuming. If vacuuming is done lazily, the
physical removal of an object is deferred until the seg-
ment it resides in is cleaned. For each object class,
a vacuuming age tv can be defined, so that at cleaning
time a non-current object will be discarded if it is older
than tv .

With lazy vacuuming, it is not guaranteed that all
objects older than tv are inaccessible. In many cases,
this is no problem, because the vacuuming is only done
to reduce storage requirements. If this is considered as
a problem, the age of the object can also be checked
before it is used.

A problem with lazy vacuuming that is more seri-
ous, is that the live-byte count of a segment will not be
decremented before the segment is cleaned. If a seg-
ment consists of objects from the same class, created
at the same time, the system would never discover that
it could be cleaned because it would appear to be full
with data that is still alive.

Choosing a vacuuming strategy. From the discus-
sion above, it is clear that eager vacuuming should be
used when possible, i.e., when it is known in which
container(s) the objects to be vacuumed are stored.
This is further justified by the fact that lazy vacuuming
increases the complexity of the cleaning algorithms.

4.6 Segment cleaning

In a log-only database system, dead data is never
overwritten. After a while, more and more of the space
in the segments will contain “garbage”. For exam-
ple, when a non-temporal object is updated and rewrit-
ten, the previous version becomes outdated. Without
intervention, the disk volume will eventually fill up,
and there would not be any clean segments left. As
described in Section 3.1, this situation is avoided by
cleaning segments. During cleaning, data7 that is still
valid is moved from segments that have mostly dead
data, and written into new segments. The result of this
process is empty (clean) segments.

We will denote data (objects and index nodes) in the
segments as either alive or dead. Data that is alive is:

• All current versions of objects.

7Note that “data” in this context includes objects and subob-
jects, as well as index nodes and subobject-index nodes.

19

• Historical versions of temporal objects that have
not yet been vacuumed (i.e., are younger than the
vacuuming age for the actual object class in the
case of lazy vacuuming, or the OD of the version
is still in the OIDX in the case of eager vacuum-
ing).

• Subobject and subobject-index nodes that are
reachable from a large object that is still alive.

• OIDX nodes that are in the current version of the
OIDX, including the PCache.

All other data can be considered dead and does not
have to be rewritten during cleaning.

Only dirty segments written before the penultimate
checkpoint can be cleaned. The reason for this, is
that parts of the segment status, PCache status, and
TxID/timestamp/counter tables are stored in some (or
all) of these segments, and recovery processing would
become more complex if these segments could be
cleaned. This will not represent a problem in prac-
tice, as these “uncleanable” segments only represent a
small part of the total number of segments in the log.

In the cleaning process, there are several goals to
aim at: 1) free as much space as possible, 2) cluster
together related objects that are expected to be read at
the same time (in order to improve read performance),
and 3) cluster together data that is expected to have the
same lifetime, in order to avoid cleaning the same data
many times. The first goal is easy to quantify, but pre-
dicting how to achieve the other two goals is more dif-
ficult. Clustering together related objects is similar to
dynamic clustering in the context of traditional ODBs,
and results from related research in that area is appli-
cable. Clustering together data that is expected to have
the same lifetime can conflict with the goal of cluster-
ing together related data, and predicting the lifetime of
data can also be difficult.

Due to space constraints we can not go into de-
tails about cleaning-conscious segment creation, but
to give an idea of possible strategies we note that the
expected lifetimes for PCache nodes, TreeIDX nodes
and objects are different. By writing data of only one
category into a particular segment when possible, the
cleaning cost can be reduced. A more general discus-
sion about cleaning techniques for log-structured stor-
age systems can be found in [1, 10].

4.7 Query Processing

Queries are essentially lookup operations, either on
single objects, or on a set of objects. In a temporal
ODB, queries can also be performed on time validity
as well as values. The query processing can be con-
sidered as a mapping from a query into a set of re-
sult objects. From the storage manager point of view,
the job is to deliver a set of candidate objects selected
through the query processing with the help of available
indexes.

Although the techniques for query processing in a
temporal database system are not fundamentally dif-
ferent from the techniques in non-temporal systems,
there is one aspect that should be emphasized: in a
non-temporal system many queries can be efficiently
based on a scan through a selection of tuples or ob-
jects. In a temporal query this will in general not be
the case, and an efficient temporal OIDX will be of a
high importance (the use of such an index in queries is
described in [14]). The details of query processing are
outside the scope (and available space) of this paper,
but a survey of related work can be found in [15].

5 Conclusions and further work

The log-only approach for temporal ODBs has been
shown to be promising with respect to performance.
However, although the log-only approach in its ba-
sic form is relatively straightforward, achieving per-
formance and high concurrency is not straightforward.
In this paper, we have described in detail how this can
be achieved, resulting in a design that avoids some of
the problems in previous related designs. The results
include support for steal/no-force buffer management,
fuzzy checkpointing, and fast commit. This is in par-
ticular made possible by novel use of the PCache struc-
ture.

Based on results from an analytical performance
analysis of the Vagabond log-only approach [13], we
consider this approach very promising for the future,
and we expect the benefits of the log-only approach to
increase with increasing amounts of main memory that
will be available in future systems.

The results from this paper, together with our other
work in this context, has shown that the log-only ap-
proach is feasible. Some ideas that we would like to

20

explore further are the study of a valid time or bitem-
poral ODB using the log-only approach, and parallel
systems based on the log-only approach.

Acknowledgments

I would like to thank Kjell Bratbergsengen and Olav
Sandstå for useful discussions and constructive com-
ments.

References

[1] T. Blackwell, J. Harris, and M. Seltzer. Heuris-
tic cleaning algorithms in log-structured file sys-
tems. In Proceeding of the Winter 1995 Usenix
Conference, 1995.

[2] M. Carey et al. Object and file management in the
EXODUS extensible database system. In Pro-
ceedings of the 12th VLDB Conference, 1986.

[3] J. Gray et al. The recovery manager of the Sys-
tem R database manager. ACM Computing Sur-
veys, 13(2), 1981.

[4] D. Hulse and A. Dearle. A log-structured per-
sistent store. In Proceedings of the 19th Aus-
tralasian Computer Science Conference, 1996.

[5] D. Hulse, A. Dearle, and A. Howells. Lumber-
jack: A log-structured persistent object store. In
Proceedings of the Eighth International Work-
shop on Persistent Object Systems (POS8), 1998.

[6] D. Lomet and B. Salzberg. Access methods for
multiversion data. In Proceedings of the 1989
ACM SIGMOD, 1989.

[7] D. Lomet and B. Salzberg. Exploiting a history
database for backup. In Proceedings of the 19th
VLDB Conference, 1993.

[8] W. J. McIver, Jr. and R. King. Self-adaptive, on-
line reclustering of complex object data. In Pro-
ceedings of the 1994 ACM SIGMOD, 1994.

[9] P. Muth, P. O’Neil, A. Pick, and G. Weikum.
The LHAM log-structured history data access
method. VLDB Journal, 8(3-4):199–221, 2000.

[10] J. M. Neefe et al. Improving the performance of
log structured file systems with adaptive meth-
ods. In Proceedings of the Sixteenth ACM Sym-
posium on Operating System Principles, 1997.

[11] K. Nørvåg. Efficient use of signatures in object-
oriented database systems. In Proceedings of
ADBIS’99, 1999.

[12] K. Nørvåg. The Persistent Cache: Improving
OID indexing in temporal object-oriented data-
base systems. In Proceedings of the 25th VLDB
Conference, 1999.

[13] K. Nørvåg. A comparative study of log-only and
in-place update based temporal object database
systems. In Proceedings of CIKM’2000, 2000.

[14] K. Nørvåg. The Vagabond temporal OID index:
An index structure for OID indexing in tempo-
ral object database systems. In Proceedings of
IDEAS’2000, 2000.

[15] K. Nørvåg. Vagabond: The Design and Analy-
sis of a Temporal Object Database Management
System. PhD thesis, Norwegian University of
Science and Technology, 2000.

[16] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file sys-
tem. ACM Transactions on Computer Systems
(TOCS), 10(1), 1992.

[17] M. Seltzer. Transaction support in a log-
structured file system. In Proceedings of the
Ninth International Conference on Data Engi-
neering, 1990.

[18] M. Selzer et al. An implementation of a log-
structured file system for UNIX. In Proceedings
of the USENIX Winter 1993 Conference, 1993.

[19] V. Singhal, S. Kakkad, and P. Wilson. Texas: An
efficient, portable persistent store. In Proceed-
ings of the Fifth International Workshop on Per-
sistent Object Systems, 1992.

[20] A. Steiner. A Generalisation Approach to Tem-
poral Data Models and their Implementations.
PhD thesis, Swiss Federal Institute of Technol-
ogy, 1998.

21

[21] M. Stonebraker. The design of the POSTGRES
storage system. In Proceedings of the 13th VLDB
Conference, 1987.

[22] M. Stonebraker, L. A. Rowe, and M. Hiro-
hama. The implementation of POSTGRES.
IEEE TKDE, 2(1), 1990.

[23] T. Suzuki and H. Kitagawa. Development and
performance analysis of a temporal persistent ob-
ject store POST/C++. In Proceedings of the 7th
Australasian Database Conference, 1996.

[24] C. Whitaker, J. S. Bayley, and R. D. W. Widdow-
son. Design of the server for the Spiralog file
system. Digital Technical Journal, 8(2), 1996.

22

