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Abstract. Lately, recommendation systems have received significant at-
tention. Most existing approaches though, recommend items of potential
interest to users by completely ignoring the temporal aspects of rat-
ings. In this paper, we argue that time-aware recommendations need
to be pushed in the foreground. We introduce an extensive model for
time-aware recommendations from two perspectives. From a fresh-based
perspective, we propose using different aging schemes for decreasing the
effect of historical ratings and increasing the influence of fresh and novel
ratings. From a context-based perspective, we focus on providing dif-
ferent suggestions under different temporal specifications. To facilitate
user browsing, we propose an effective presentation layer for time-aware
recommendations based on user preferences and summaries for the sug-
gested items. Our experiments with real movies ratings show that time
plays an important role in the recommendation process.

1 Introduction

Recommendation systems provide users with suggestions about products, movies,
videos and a variety of other items. A popular category of recommendation sys-
tems is the collaborative filtering approaches (e.g., [21, 11]) that try to predict
the utility of items for a particular user based on the items previously rated by
similar users. That is, users similar to a target user are first identified, and then,
items are recommended based on the ratings of these users. Users are considered
as similar if they buy common items as in case of Amazon or if they provide
similar movie evaluations as in case of MovieLens.

Although there is a substantial amount of research in the area of recom-
mendation systems [34], most of the approaches produce recommendations by
ignoring the temporal information that is inherent in the ratings, since ratings
are given at a specific point in time. Due to the fact that a huge amount of
user preferences data is accumulated over time, it is reasonable to exploit the



temporal information associated with these data in order to obtain more accu-
rate and up to date recommendations. Our goal is to use the time information
of the user ratings towards improving the predictions in collaborative recom-
mendation systems. We consider two different types of time effects based upon
the recency/freshness and the temporal context of the ratings and consequently,
we propose two different time-aware recommendation models, namely the fresh-
based and the context-based recommendations model.

The fresh-based recommendations model assumes that the most recent user
ratings better reflect his/her current trends and thus, they should contribute
more in the computation of the recommendations. To account for the recency
of the ratings we distinguish between the damped window model that gradually
decreases the importance of ratings over time and the sliding window model
that counts only for the most recent ratings and ignores any previous historical
information. As an example, consider a movie recommendation system that gives
higher priority to new releases compared to other old seasoned movies (damped
window model) or focuses solely on new releases (sliding window model).

From a different perspective, the context-based recommendations model offers
different suggestions under different time specifications. The main motivation
here, is that although user preferences may change over time they display tem-
poral repetition, i.e., recur over time. As an example consider a tourist guide
system that provides different suggestions for winter (typically ski resorts) and
summer (typically sea resorts). Or, a restaurant recommendation system that
might distinguish between weekdays (typically business lunches) and weekends
(typically family lunches).

It is the purpose of this paper to provide a framework for time-aware rec-
ommendations that handles the different temporal aspects of recommendations
through the fresh-based or the context-based model. Apart from the top-k rec-
ommendations extraction, we also focus on their effective presentation to the end
user by adding structure in the results. Our goal is to minimize the browsing
effort of the user and help him/her receive a broader view of the recommended
items. Towards this direction, we exploit preferences defined by users upon items
and extract a ranking of preferences that is used for ordering the suggested items.
We further enrich this structure by summarizing the different levels of prefer-
ences with information for the items.

In a nutshell, this paper makes the following contributions:

– We propose a framework for time-aware recommendations that models the
different types of time effects, that is, the age and the temporal context of
ratings. Furthermore, we consider different cases for selecting the appropri-
ate set of users for estimating the recommendations of a user and introduce
the notion of support in recommendations to model how confident the rec-
ommendations of an item for a user is, in order to deal with the sparsity of
the explicitly defined user ratings.

– We propose an effective presentation solution for the recommended items
which builds upon user preferences for items. Our solution provides a ranked



overview of the suggested items enriched with summarized information and
can facilitate user browsing.

– We implement a proof of concept prototype for time-aware recommendations
in a movie recommendations application and we experiment with different
types of aging and temporal contexts. Our experiments show that time is an
important dimension and should be part of the recommendation process.

The rest of the paper is organized as follows. The basic, time-invariant rec-
ommendation model is presented in Sect. 2. The time dimension is introduced in
Sect. 3, where we distinguish between the aging factor (Sect. 3.1) and the tem-
poral context factor (Sect. 3.2). In Sect. 4, we focus on the effective presentation
of time-aware recommendations based on user preferences. The computation of
recommendations under different temporal semantics is discussed in Sect. 5. In
Sect. 6, we present our experiments using a real dataset of movie ratings. Our
prototype implementation is outlined in Sect. 7, while related work is presented
in Sect. 8. Finally, conclusions and outlook are pointed out in Sect. 9.

2 The Basic Time-free Recommendation Model

Assume a set of items I with relational schema R(A1, . . . , Ad), where each
attribute Aj , 1 ≤ j ≤ d, takes values from a domain dom(Aj). Let A =
{A1, . . . , Ad} be the attribute set of R and dom(A) = dom(A1)× . . .× dom(Ad)
be its value domain. We use i to denote an item in dom(A) of R. For instance,
consider the movies shown in Fig. 1.

mID title year director genre language duration

1 Casablanca 1942 Curtiz Drama English 102

2 Vertigo 1958 Hitchcock Horror English 128

3 Psycho 1960 Hitchcock Horror English 109

4 Schindler’s List 1993 Spielberg Drama English 195

5 The Farmer’s Wife 1945 Hitchcock Drama English 129

6 Suspicion 1941 Hitchcock Drama English 99

7 Twilight Zone: The Movie 1983 Spielberg Horror English 101

8 Arachnophobia 1990 Spielberg Horror English 103

9 Lincoln 2012 Spielberg Drama English 150

10 The Walking Dead 1936 Curtiz Horror English 66

Fig. 1. Movies instance.

Assume also a set of users U . Each user u ∈ U may give a rating for an
item i ∈ I, which is denoted by rating(u, i) and lies in the range [0.0, 1.0].
For instance, consider the ratings shown in Fig 2. We use Zi to denote the set
of users in U that have expressed a rating for item i. The cardinality of the
items set I is usually high and typically users rate only a few of these items,



that is, |Zi| << |U| for a specific item i. For the items unrated by the users, a
relevance score is estimated by invoking a recommendation strategy.

uID mID rating timestamp

1 3 0.9 1296367200

1 1 0.6 1297317600

2 2 0.7 1294639200

2 3 0.9 1298181600

Fig. 2. Ratings instance.

In this section, we first present the basic model for time-free recommendations
(Sect. 2.1) and then define the top-k recommendations problem (Sect. 2.2). The
time–free recommendations model is the generally used recommendations model
where the notion of time is completely ignored.

2.1 Defining Time-free Recommendations

There are different ways to estimate the relevance of an item for a user. In
general, the recommendation methods are organized into three main categories:
(i) content-based, that recommend items similar to those the user has preferred
in the past (e.g., [33, 28]), (ii) collaborative filtering, that recommend items that
similar users have liked in the past (e.g., [21, 11]) and (iii) hybrid, that combine
content-based and collaborative filtering approaches (e.g., [8]).

Our work falls into the collaborative filtering category. The key concept of
collaborative filtering is to use, for a given user u ∈ U , the ratings of other
users in U in order to produce relevance scores for the items unrated by u.
But, which is the appropriate set of users, hereafter called peers, for computing
the recommendations of u? Due to the inherent fuzziness associated with this
question, there exists no single definition for locating the peers of u. In our
model, we consider three different aspects of peers: (i) close friends, (ii) area
experts and (iii) similar users.

The close friends of a user u are explicitly selected by u. Computing recom-
mendations using close friends is based on the assumption that these users would
have similar tastes for most things, because of the closeness of the relationship.

Close Friends: Let U be a set of users. The close friends Cu, Cu ⊆ U , of a
user u ∈ U are explicitly defined by u.

An alternative solution might be the implicit extraction of the set of friends
through some social network like Facebook or Google+.

From a different perspective, area experts can be used for producing recom-
mendations for specific queries, since they are considered to be knowledgeable
on a specific topic, domain or area. Several methods deal with the problem of
finding experts (e.g., [9]); the focus of this paper though is on how to exploit



experts preferences to recommend interesting items to other users and not on
how to identify these experts. So, we consider that the set of experts for a given
query are predefined, e.g., experts in tablet pcs.

Area Experts: Let U be a set of users and Q be a query. The area experts
DQ, DQ ⊆ U , are the users considered as experts for the query Q.

We denote this set as DQ, so, not dependent on the user, since typically
experts are associated with specific queries, subjects or domains rather than
with certain users.

Alternatively, a user can opt to employ the ratings of the users that exhibit
the most similar behavior to him/her in order to produce relevance scores for the
items unrated by him/her, even if other friendship or expert relationships exist.
Similar users are located via a similarity function simU(u, u′) that evaluates
the proximity between two users u and u′. Several methods can be applied for
selecting the similar users of a user u. A direct method is to locate those users
u′ with similarity simU(u, u′) above a given threshold.

Similar Users: Let U be a set of users. The similar users Su, Su ⊆ U ,
of a user u ∈ U is a set of users, such that, ∀u′ ∈ Su, simU(u, u′) ≥ δ and
∀u′′ ∈ U\Su, simU(u, u′′) < δ, where δ is a threshold similarity value.

Clearly, one could argue for other ways of selecting Su, e.g., by taking the k
most similar users to u. Our main motivation here is that we opt for selecting
only highly relevant users.

We define now the general notion of peers for a user by taking into account
the three different cases presented above.

Definition 1 (Peers). Let U be a set of users, u be a user in U and Q be a
query posed by u. The peers Pu,Q, Pu,Q ⊆ U , of u for Q are either:

(i) the close friends Cu of u,

(ii) the area experts DQ for Q, or

(iii) the similar users Su of u.

Based on the peers of a user for a query, we formally define the relevance of
an item for a user as follows:

Definition 2 (Time-free Relevance). Let U be a set of users and I be a set
of items. Let also Q be a query posed by u ∈ U , and Pu,Q be the peers of u for
Q. If u has not expressed any rating for an item i ∈ I, the time-free relevance
of i for u under Q is:

relevancef (u, i,Q) =

∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)× rating(u′, i)∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)

where contribution(u, u′) =

{
1, if Pu,Q is Cu or DQ
simU(u, u′), if Pu,Q is Su



The relevance score of user u for an item i depends on the peers of u that have
given a rating for i, i.e., those in Pu,Q ∩ Zi. The contribution(u, u′) reflects the
importance of each rating(u′, i) for u; this importance depends on how “reliable”
u′ is for u. When close friends or area experts are used, contribution is set to
1, since we are certain about the importance of the ratings of the selected users
to the given user. For the similar users case, the contribution of each user u′

depends on his/her similarity to u.
As already mentioned, due to the abundance of items in a recommendation

application, users typically rate only a small portion of these items. So, the fol-
lowing question usually arises: How confident are the relevance scores associated
with the recommended items? To deal with this issue, we introduce the notion of
support for each candidate item i for user u, which defines the fraction of peers
of u that have provided ratings for i.

Definition 3 (Time-free Support). Let U be a set of users and I be a set of
items. Let also Q be a query posed by u ∈ U , and Pu,Q be the peers of u for Q.
The time-free support of an item i ∈ I for u under Q is:

supportf (u, i,Q) = |Pu,Q ∩ Zi|/|Pu,Q|

Intuitively, the notion of support expresses how reliable is our estimation of
the relevance of item i for user u.

To estimate the worthiness of an item recommendation for a user, we propose
to combine the relevance and support scores in terms of a value function.

Definition 4 (Time-free Value). Let U be a set of users and I be a set of
items. For σ ∈ [0, 1], the time-free value of an item i ∈ I for a user u ∈ U under
a query Q, such that, @rating(u, i), is:

valuef (u, i,Q) = σ × relevancef (u, i,Q) + (1− σ)× supportf (u, i,Q)

We take a generic approach for computing the time-free value of an item
for a user. More sophisticated functions can be designed. However, this linear
combination of relevance and support is simple and easy to implement. Moreover,
when σ = 1, value maps to relevance, which is the typically used recommendation
score.

2.2 Top-k Time-free Recommendations

Given a query Q submitted by a user u and a restriction k on the number of the
recommended items, the goal is to provide u with k suggestions for items that
are highly relevant to u and exhibit high support.

Definition 5 (Top-k Time-free Recommendations). Let U be a set of users
and I be a set of items. Given a query Q posed by a user u ∈ U , recommend to
u a list of k items Iu =< i1, . . . , ik >, Iu ⊆ I, such that:

(i) ∀ij ∈ Iu, @rating(u, ij),



(ii) valuef (u, ij , Q) ≥ valuef (u, ij+1, Q), 1 ≤ j ≤ k − 1, ∀ij ∈ Iu, and
(iii) valuef (u, ij , Q) ≥ valuef (u, xy, Q), ∀ij ∈ Iu, xy ∈ I\Iu.

The first condition ensures that the suggested items do not include already
evaluated items by the user (for example, do not recommend a movie that the
user has already watched). The second condition ensures the descending ordering
of the items with respect to their value, while the third condition defines that
every item in the result set has value greater than or equal to the value of any
of the non–suggested items.

3 Time-aware Recommendations

The basic time-free recommendation model presented above assumes that all
ratings are active and potentially they could be exploited for recommendations.
This way though the temporal aspects of the user ratings are completely ignored.
However, the information needs of a user evolve over time, especially if we con-
sider a long period of time, either smoothly (i.e., drift) or more drastically (i.e.,
shift). As such, the recent user ratings reflect better his/her current interests
comparing to older possible obsolete ratings. From another point of view, user
interests might change under different temporal circumstances and thus, users
may have different needs depending on the temporal context. For example, dur-
ing the weekdays one might be interested in reading IT news whereas during
the weekends he/she might be interested in reading about cooking, gardening or
other hobbies.

To handle such different cases, we propose a framework for time-aware recom-
mendations that incorporates the notion of time in the recommendation process
towards accuracy improvement. We distinguish between two types of time-aware
recommendations, namely the fresh-based and the context-based ones. The fresh-
based recommendations pay more attention to more recent user ratings thus try-
ing to deal with the problem of drift or shift in the user information needs over
time. The context-based recommendations take into account the temporal context
under which the ratings were given (e.g., weekdays vs weekends).

In our time-aware recommendation model, the rating of a user u for an item
i, rating(u, i), is associated with a timestamp tu,i, which is the time that i was
rated by u (c.f., Fig 2) and thus, it denotes the freshness or age of the rating.
Below, we first define the fresh-based recommendation model (Sect. 3.1) and
then, the temporal context-based recommendation model (Sect. 3.2). We also
present a variant of the top-k recommendations problem by defining the top-k
time-aware recommendations (Sect. 3.3).

3.1 Fresh-based Recommendations

Generally speaking, the popularity of the items in a recommendation application
changes over time; typically, items, e.g., movies, pictures or songs, lose popularity
as time goes by. Motivated by the intuition that the importance of item ratings



increases with the popularity of the items themselves, fresh-based recommenda-
tions suggest items by mainly exploiting recent and novel user ratings.

Driven by the work in data streams [18], we use different types of aging
mechanisms to define the way that the historical information (in form of ratings)
is incorporated in the recommendation process. Aging in streams is typically
implemented through the notion of windows, which define which part of the
stream is active at each time point and thus could be used for further processing.
In this work, we use the damped window model that gradually decreases the
importance of historical data comparing to more recent data and the sliding
window model that remembers only the ratings given within a specific, recent
time period. We present these cases in more detail below. Note that the static
case (Sect. 2), corresponds to the landmark window model which considers the
whole rating history from a given landmark.

Damped window model. In the damped window model, although all user
ratings are active, i.e., they can contribute to produce recommendations, their
contribution depends upon their arrival time, i.e., upon the time of rating. In
particular, the rating of a user u for an item i is weighted through some temporal
decay function that gradually discounts the history of past ratings. Typically, in
temporal applications, the exponential fading function is employed, so the weight
of rating(u, i) decreases exponentially with time via the function 2−λ(t−tu,i),
where tu,i is the time of the rating and t is the current time. Thus, t − tu,i is
the age of the rating. The parameter λ, λ > 0, is the decay rate which defines
how fast the past history is forgotten. The higher λ, the lower the importance
of historical ratings compared to more recent ratings.

Under this aging schema, the so-called damped relevance of an item i for a
user u with respect to a query Q in a given timepoint t is given by:

relevanced(u, i,Q) =

∑
u′∈(Pu,Q∩Zi)

2−λ(t−tu′,i) × contribution(u, u′)× rating(u′, i)∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)

So, all user item scores rating(u′, i) are weighted by their recency 2−λ(t−tu′,i).
Since all ratings are active, the damped support of i for u under Q is equal

to the corresponding time-free support, that is:

supportd(u, i,Q) = supportf (u, i,Q)

Finally, the damped value of i for u under Q is computed as in the time-free
case by combining the relevance and support scores (σ ∈ [0, 1]):

valued(u, i,Q) = σ × relevanced(u, i,Q) + (1− σ)× supportd(u, i,Q)

Sliding window model. In the sliding window model only a subset of the
available ratings is exploited, and in particular, the most recent ones. The size
of this subset, referred to as window size, might be defined in terms of timepoints
(e.g., use the ratings given within the last month) or records (e.g., use the 1000



most recent ratings). We adopt the first case. The ratings within the window
are the active ratings that participate in the recommendation computation. Let
t be the current time and W be the window size. Then, a rating of a user u for
an item i, rating(u, i), is active only if tu,i > t−W .

In the sliding window model, the sliding relevance of an item i for a user u
under a query Q is defined with regard to the active ratings of the peers of u for
i. More specifically:

relevances(u, i,Q) =

∑
u′∈(Pu,Q∩Xi)

contribution(u, u′)× rating(u′, i)∑
u′∈(Pu,Q∩Xi)

contribution(u, u′)

where Xi is the set of users in Zi, such that, ∀u′ ∈ Xi, tu′,i > t−W .
The sliding support of i for u under Q is defined as the fraction of peers of u

that have expressed ratings for i that are active at time t. That is:

supports(u, i,Q) = |Pu,Q ∩ Xi|/|Pu,Q|

Finally, the sliding value of i for u under Q, for σ ∈ [0, 1], is a linear combi-
nation of their relevance and support scores:

values(u, i,Q) = σ × relevances(u, i,Q) + (1− σ)× supports(u, i,Q)

3.2 Temporal Context-based Recommendations

In contrast to fresh-based recommendations, the context-based ones assume that
although the user preferences may change over time, they display some kind of
temporal repetition. Or in other words, users may have different preferences un-
der different temporal contexts. For instance, during the weekend a user may
prefer to watch different movies from those in the weekdays. So, a movie recom-
mendation system should provide movie suggestions for the weekends that may
differ from the suggestions referring to weekdays.

As above, the rating of a user for an item, rating(u, i), is associated with the
rating time tu,i. Time is modeled here as a multidimensional attribute. The di-
mensions of time have a hierarchical structure, that is, time values are organized
at different levels of granularity (similar to [32, 35]). In particular, we consider
three different levels over time: time of day, day of week and time of week
with domain values {“morning”, “afternoon”, “evening”, “night”}, {“Mon”,
“Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”} and {“Weekday”, “Weekend”}, re-
spectively. It is easy to derive such kind of information from the time value tu,i
that is associated with each user rating by using SQL or other programming
languages. More elaborate information can be extracted by using the WordNet
or other ontologies.

Let Θ be the current temporal context of a user u. We define the context-
based relevance of an item i for u under a query Q expressed at Θ based on the
ratings of the peers of u for i that are defined for the same context Θ. Formally:

relevancec(u, i,Q) =

∑
u′∈(Pu,Q∩Yi)

contribution(u, u′)× rating(u′, i)∑
u′∈(Pu,Q∩Yi)

contribution(u, u′)



where Yi is the set of users in Zi, such that, ∀u′ ∈ Yi, tu′,i 7→ Θ, that is, the user
rating has been expressed for a context equal to Θ. For example, if the temporal
context of a user query is “Weekend”, only the user ratings given for the context
“Weekend” would be considered.

The context-based support of i for u under Q is defined with respect to the
number of peers of u that have expressed ratings for i under the same temporal
context as the query context. That is:

supportc(u, i,Q) = |Pu,Q ∩ Yi|/|Pu,Q|

Similar to the fresh-based recommendations, the context-based value of i for
u under Q is calculated taking into account the context-based relevance and
support. For σ ∈ [0, 1]:

valuec(u, i,Q) = σ × relevancec(u, i,Q) + (1− σ)× supportc(u, i,Q)

3.3 Top-k Time-aware Recommendations

Next, we define the time-aware variation of the top-k recommendation problem
(c.f., Sec 2.2) applicable to both fresh-based and context-based approaches.

Definition 6 (Top-k Time-aware Recommendations). Let U be a set of
users and I be a set of items. Given a query Q posed by a user u ∈ U at time
t mapped to a temporal context Θ, recommend to u a list of k items Iu =<
i1, . . . , ik >, Iu ⊆ I, such that:

(i) ∀ij ∈ Iu, @rating(u, ij), for the fresh-based recommendations, and ∀ij ∈ Iu,
@rating(u, ij) that is associated with context equal to Θ, for the context-based
recommendations,

(ii) valueo(u, ij , Q) ≥ valueo(u, ij+1, Q), 1 ≤ j ≤ k − 1, ∀ij ∈ Iu, and
(iii) valueo(u, ij , Q) ≥ valueo(u, xy, Q), ∀ij ∈ Iu, xy ∈ I\Iu,

where o corresponds to either d (for the damped window model), s (for the sliding
window model) or c (for the context-based model).

The first condition ensures that the suggested items do not include already
evaluated items by the user either in general or under a specific context, while
the second and the third conditions resemble those of Def. 5.

4 Presentation of Time-aware Recommendations based
on User Preferences

Depending on the value of k and the recommendation application per se, the
top-k recommendations for a user u might result in a lot of information for u.
To facilitate the user selection, we propose to organize the results in a compact
yet intuitive and representative way. To achieve this goal, we employ, apart from
ratings, preferences expressed by users over items. These user preferences might



be either qualitative (e.g., the director is more important than the genre of the
movie) or quantitative (e.g., the preference scores for the directors Q. Tarantino,
F. F. Coppola are 0.9, 0.5, respectively).

In the following, we discuss in more details how preferences can be given
(Sect. 4.1) and we present a formal model for the effective presentation of user
top-k recommendations based on his/her preferences (Sect. 4.2).

4.1 User Preferences

In general, preferences can be expressed either in a qualitative or in a quantitative
way. Following a qualitative preference model, users employ binary relations to
directly define preferences between data items (e.g., [13, 20]). Following a quan-
titative preference model, users provide numeric scores via scoring functions to
indicate their degree of interest (e.g., [6, 22, 35]). We use a qualitative preference
model [13], since this model is more general than the quantitative one and also
closer to the users intuition. Specifically:

Definition 7 (Preference Model). Let U be a set of users and I be a set of
items with relational schema R(A1, . . . , Ad). For a user u ∈ U , assume a set of
values Pu of an attribute Aj, 1 ≤ j ≤ d, such that, Pu ⊆ dom(Aj). The user u
specifies a binary preference relation prefu on Pu, prefu = {(p1 � p2)|p1, p2 ∈
Pu}, where p1 � p2 denotes that u prefers p1 over p2.

For example, a user might prefer A. Hitchcock over S. Spielberg, i.e., (A.
Hitchcock � S. Spielberg), and S. Spielberg over Q. Tarantino, i.e., (S. Spielberg �
Q. Tarantino).

Alternatively, instead of providing comparative relationships, users could pro-
vide explicit preference scores for the values in Pu. This would correspond to a
quantitative approach, with higher preference scores indicating more important
preferences. For example, a user might assign to A. Hitchcock, S. Spielberg and
Q. Tarantino the preference scores 0.9, 0.7 and 0.6, respectively. The transi-
tion from the quantitative to the qualitative approach is straightforward. For
the aforementioned example, the qualitative equivalent is: (A. Hitchcock � S.
Spielberg), (A. Hitchcock � Q. Tarantino), and (S. Spielberg � Q. Tarantino).

Irrespectively of their qualitative or quantitative formulation, preferences
may also be expressed at different levels of granularity. We distinguish be-
tween value-based and attribute-based preferences. Value-based preferences are
expressed between individual values of item attributes. Typically, they are for-
mulated over the items of a relation based on the values of their attributes. An
example of a value-based preference for the item attribute director could be (A.
Hitchcock � Q. Tarantino). Attribute preferences express preferences between
the different attributes of R, i.e., they evaluate how important for the end user
each attribute or feature of the item description is. For example, a user might
consider the attribute director more important than the attribute genre, i.e.,
(director � genre). Attribute preferences might be also expressed either quali-
tatively (e.g., [19]) or quantitatively (e.g., [26]). In what follows, we will use the



term prefu to denote the whole set of value-based and attribute-based prefer-
ences of a user u.

Clearly, preferences may be collected using various ways. Specifically, prefer-
ences can be provided explicitly by the users, as above, or constructed automat-
ically, for instance, based on the past behavior of the user or of similar users.
Such methods for the automatic construction of preferences have been the focus
of much current research (e.g., [27]) and are beyond the scope of this paper. For
our study, we assume that the set of preferences is provided for each user.

4.2 Time-aware Recommendations Presentation

A user in a recommendation application might express both value-based and
attribute-based preferences. To combine these different types, we use attribute-
based preferences to set priorities among value-based preferences based on the
attributes involved in the preferences, similarly to [19]. For example, assume a
user with value-based preference (A. Hitchcock � S. Spielberg) over the attribute
director and (horror � drama) over the attribute genre. Assume also that our
user considers the director of a movie to be more important than its genre which
is expressed through the attribute-based preference (director � genre).

Given the above set of preferences, the following combined preferences can
be drawn: our user prefers the set of values or keywords {A. Hitchcock, horror}
over the set of values {A. Hitchcock, drama}. The latter set is preferred over the
set {S. Spielberg, horror}, which in turn is preferred over the set {S. Spielberg,
drama}.

The combined preferences of a user can be directly exploited for ranking
the top-k recommendations of the user. The idea is to first extract the combined
preferences and then use them to rank and present the top-k recommended items
to the user.

This ranking could be also enhanced by exploiting the different attributes of
the item description and building summaries upon these descriptions. We start
with the brick of this concept, which is, the keyword-based summary.

Definition 8 (Keyword-based summary). Let M be a set of keywords and
I ′, I ′ ⊆ I, be a set of items. A keyword-based summary, key-sum, is a pair (M :
I ′M ), I ′M ⊆ I ′, such that, all items in I ′M contain all keywords in M .

For example, the keyword-based summary ({A. Hitchcock, horror}: {Psycho,
Vertigo}) consists of a set of two keywords (A. Hitchcock and horror) that is
associated with a set of movies (Psycho and Vertigo) that contain (or are re-
lated with) the keywords. In this example, the keywords {A. Hitchcock, horror}
derived from user preferences are extended by the titles of the movies which are
directed by A. Hitchcock and belong to the horror genre type. Other extension
options could be employed as well, e.g., information about the production year
or the duration of the movies. Also, the extension might refer to more than
one attributes, e.g., both title and production year of a movie could be consid-
ered. Such a summary offers more information to the end user regarding the
recommended item and facilitates his/her selection.



So far, we focus on the summary of a single combined preference. Our goal
is to construct a summary for the top-k recommendations based on user pref-
erences. This summary consists of an ordered set of keyword-based summaries,
such that, a keyword-based summary key-sumi = (Mi, I ′Mi

) appears before a
keyword-based summary key-sumj = (Mj , I ′Mj

), if the keywords of Mi are pre-
ferred over the keywords of Mj with respect to the available value-based and
attribute-based preferences. Considering our previous example and using only
the titles of the movies for the extension, the corresponding ordering would
be: the summary ({A. Hitchcock, horror}: {Psycho, Vertigo}) is preferred over
the summary ({A. Hitchcock, drama}: {The Farmer’s Wife, Suspicion}), which
is preferred over the summary ({S. Spielberg, horror}: {Twilight Zone: The
Movie, Arachnophobia}), which in turn is preferred over ({S. Spielberg, drama}:
{Lincoln, Schindler’s List}).

Note also that there might be cases where the preferences may be equivalent,
e.g., {M. Curtiz, horror} is equally preferred to {S. Spielberg, horror}, and con-
sequently, the corresponding keyword-based summaries would be equivalent. To
accommodate such cases, we propose to summarize the equivalent keyword-based
summaries in the so called keyword-based class summaries.

Definition 9 (Keyword-based class summary). A keyword-based class sum-
mary, class-sum, is a set of keyword-based summaries {key-sum1, . . . , key-
sumn}, such that, the keywords in M1, . . ., Mn are considered equally preferable
with respect to a given set of value and attribute preferences.

For example, given that the sets of keywords {M. Curtiz, horror} and {S.
Spielberg, horror} are equally preferable with respect to a specific set of prefer-
ences, then their keyword-based summaries, e.g., {({M. Curtiz, horror}: {The
Walking Dead}) and ({S. Spielberg, horror}: {Twilight Zone: The Movie, Arachno-
phobia})}, constitute a keyword-based class summary.

Based on the keyword-based class summaries, we define formally the time-
aware recommendations summary as follows:

Definition 10 (Time-aware recommendations summary). Let U be a set
of users, I be a set of items, Q be a query posed by a user u ∈ U at time t
mapped to the temporal context Θ and prefu be the set of value and attribute
preferences of u. Let also Iu be the top-k time-aware recommendations for u.
The time-aware recommendation summary for u is a list of keyword-based class
summaries tar-sum = <class-sum1, . . ., class-sumx>, such that:

(i) all sets of keywords in class-sumi are preferred over all sets of keywords in
class-sumi+1, 1 ≤ i ≤ x− 1, with respect to prefu,

(ii) all keywords of the value preferences of prefu appear in an M set of tar-sum
and

(iii) only the keywords of the M sets of tar-sum appear in the value preferences
of prefu.

So, given that the set of keywords {A. Hitchcock, horror} is preferred over
the sets {M. Curtiz, horror} and {S. Spielberg, horror}, with the last two being



({A. Hitchcock, horror}: {Psycho, Vertigo})

{({M. Curtiz, horror}: {The Walking Dead}), ({S. Spielberg, horror}: {Twilight Zone: 
The Movie, Arachnophobia})}

Fig. 3. A presentation example.

equally preferred, then the keyword-based summary for {A. Hitchcock, horror}
will be first displayed. The keyword-based class summary for {M. Curtiz, horror}
and {S. Spielberg, horror} will follow. Schematically, this would look as in Fig. 3.

5 Time-aware Recommendations Computation

A high level representation of the main components of the architecture of our
system is depicted in Fig. 4. Assume a user that submits a query presenting
his information needs. Each query is enhanced with a contextual specification
expressing some temporal information. This temporal information of the query
may be postulated by the application or be explicitly provided by the user as part
of his query. Typically, in the first case, the context implicitly associated with
a query corresponds to the current context, that is, the time of the submission
of the query. As a query example, for a restaurant recommendation application,
consider a user looking for restaurants serving chinese cuisine during the week-
end. As part of his/her query, the user should also provide the aging schema
that will be used.

Then, we locate the peers of the user (Sect. 5.1) and employ their ratings
for estimating the time-aware recommendations (Sect. 5.2). Finally, recommen-
dations are summarized and presented to the user (Sect. 5.3). In following, we
overview the details of each step.

5.1 Selecting Peers

Our model assumes three different kinds of peers, namely close friends, area
experts and similar users. For each submitted query Q of a user u, u specifies the
peers that will be used for producing his/her recommendations. This selection
step of the peers is, in general, application dependent. For example, when a user
is asking for advice for a personal computer, the area experts may fit well to
the user needs, while when asking for a suggestion about a movie, the user’s
close friends may provide good answers. In a similar manner, when using a trip
advisor, the choice of users with similar tastes seems appropriate.

For the close friends case, the set of peers of u consists of the close friends of
u, while for the area experts case, the set of peers of u consists of the users that
are considered to be experts for Q. We assume that this information is already
known. For the similar users case, we need to calculate all similarity measures
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Fig. 4. System architecture.

simU(u, u′) for all users u′ ∈ U . Those users u′ with similarity simU(u, u′)
greater than or equal to the threshold δ represent the similar users of u (Algo-
rithm 1).

5.2 Computing Recommendations

Having established the methodology for finding the peers of a user, we focus next
on how to generate valued recommendations for him/her. Given a user u ∈ U
and his/her peers Pu,Q, the procedure for estimating the value score of an item
i for u requires the computation of the relevance and support of i. Note that
we do not compute value scores for all items in I, but only for the items I ′,
I ′ ⊆ I, that satisfy the query selection conditions. To do this, we perform a
pre-processing step to select the relevant to the query data by running a typical
database query. For example, for a query about destinations in Greece posed to
a travel recommendation system, we ignore all the rest destinations.

Algorithm 2 presents the general procedure for computing the value scores
of the items in I ′. Pairs of the form (i, valueo(u, i,Q)) are maintained in a set
Vu, where o corresponds to d, s or c for the damped window, sliding window and
context-based approach, respectively. As a post-processing step, we rank all pairs
in Vu on the basis of their value score. To provide the top-k recommendations
to u, we report the k items with the highest scores, i.e., the k first items in Vu.

Next, we discuss separately the particulars of each time-aware recommenda-
tion approach. For the damped window approach, all the ratings of the peers of
u are employed for computing recommendations. However, this is not the case
for the other two approaches, where only a subset of the peers ratings are taken



Algorithm 1 Finding Similar Users Algorithm

Input: A set of users U , a user u ∈ U and a threshold similarity value δ.
Output: The peers of u, Pu,Q.

1: begin
2: Pu,Q = ∅;
3: for each user u′ ∈ U\{u} do
4: compute simU(u, u′);
5: if simU(u, u′) ≥ δ then
6: add u′ to Pu,Q;
7: end if
8: end for
9: return Pu,Q;

10: end

Algorithm 2 Value Computation Algorithm

Input: A user u ∈ U , a query Q, the peers Pu,Q along with their ratings, the aging
schema and the weight σ.

Output: A set Vu of pairs (i, valueo(u, i,Q)), ∀i ∈ I′.
1: begin
2: Vu = ∅;
3: for each item i ∈ I′ unrated by user u do
4: compute relevanceo(u, i,Q);
5: compute supporto(u, i,Q);
6: compute valueo(u, i,Q);
7: add (i, valueo(u, i,Q)) to Vu;
8: end for
9: return Vu;

10: end

into consideration. More specifically, for the sliding window approach, only the
most recent ratings are used, while for the context-based approach, the ratings
that are defined for a temporal context equal to the query context are employed.
This can be seen as a rating pre-filtering step. It is worth noting that, since some
ratings are ignored due to temporal specifications, some of the peers finally may
not contribute at all to the recommendation list construction.

Moreover, for the context-based approach, the associated set of ratings for
a specific query may be empty, that is, there may be no ratings for the query.
In this case, we can use for the recommendation process these ratings whose
context is more general than the query context. For example, for a query with
context “Sat”, we can use a rating given for context “Weekend”. The selection
of the appropriate ratings can be made more efficient by deploying indexes on
the context of the ratings. Such a data structure that exploits the hierarchical
nature of context, termed profile tree, is introduced in [35].

As a final note, the two approaches for computing time-aware recommenda-
tions can be combined. For instance, we can apply the context-based approach



 A. Hitchcock, horror                                        level 1

A. Hitchcock, drama   M. Curtiz, horror   S. Spielberg, horror    level 2

          M. Curtiz, drama      S. Spielberg, drama                          level 3

Fig. 5. A lattice example.

first. Then, we can apply the damped window approach. This way, the impor-
tance of the ratings that are defined for the query context decreases with time.

5.3 Presenting Recommendations

To facilitate users in item selection, we present the top-k time-aware recom-
mended items for a user u in a compact and intuitive way, by employing his/her
value-based and attribute-based preferences prefu.

The problem we deal with here can be stated as follows: Given a relation R
describing the items in a recommendation application and the preferences prefu
of u over R, how to produce ranked groups of items in R based on prefu. To this
end, a lattice is built where the nodes correspond to the combinations of values
appearing in prefu. For example, for the list of preferences: (i) A. Hitchcock is
preferred over M. Curtiz or S. Spielberg, (ii) horror movies are preferred over
drama movies and (iii) the director of a movie is as important as its genre, the
lattice of Fig. 5 is constructed. The top nodes are more important to the user
comparing to the bottom nodes, whereas nodes lying in the same level of the
lattice are of equal importance.

A query is formulated for each node in the lattice. Considering only the top-
k items for recommendations, all queries in a specific level are associated with
equally preferable items and each query is associated with the items that contain
the keywords of the query. The queries of each level are successively executed
starting from the queries of the top level and going down the lattice. For example,
for the lattice of Fig. 5, items with keywords {A. Hitchcock, horror}, i.e., items
in the result of the query of the first level, are preferred over the items with
keywords {S. Spielberg, horror}, i.e., the items in the results of a query of the
second level, and so on. Within the same level, items are ranked according to
their recommendation value score.

Then, we construct a keyword-based summary for each query in the lattice.
The set of queries in a level of the lattice corresponds to a keyword-based class
summary, while the total set of ordered queries in the lattice represents the
time-aware recommendation summary.



6 Experiments

In this section, we evaluate the effectiveness of our time-aware recommendation
system using a real movie ratings dataset [1], which consists of 100,000 ratings
given from September 1997 till April 1998 by 1,000 users for 1,700 items. The
monthly split is shown in Fig. 6(a), while the split per weekends and weekdays
is shown in Fig. 6(b).
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Fig. 6. (a) Ratings per month and (b) ratings per temporal context.

Since there is no information about actual friends and experts in the dataset,
we employ as the peers of a given user his/her similar users. To this end, the
notion of user similarity is important. We use here a simple variation; that is,
we use distance instead of similarity. More specifically, we define the distance
between two users as the Euclidean distance over the items rated by both. Let
u, u′ ∈ U be two users, Iu be the set of items for which ∃rating(u, i), ∀i ∈ Iu,
and Iu′ be the set of items for which ∃rating(u′, i), ∀i ∈ Iu′ . We denote by
Iu ∩ Iu′ the set of items for which both users have expressed preferences. Then,
the distance between u, u′ is:

distU(u, u′) =
√∑

i∈Iu∩Iu′ (rating(u, i)− rating(u′, i))2/|Iu ∩ Iu′ |
To evaluate the quality of the recommendations, we use a predictive accuracy

metric that directly compares the predicted ratings with the actual ones [25].
A commonly used metric in the literature is the Mean Absolute Error (MAE),
which is defined as the average absolute difference between predicted ratings and
actual ratings: MAE =

∑
u,i |rating(u, i) − valueo(u, i,Q)|/N , where N is the

total number of ratings in the employed dataset and o corresponds to d, s or c.
Clearly, the lower the MAE score, the better the predictions.

Next, we report on the results for the sliding window model, the damped
window model and the context-based model compared to the time-free model.

Sliding window model. To illustrate the effectiveness of the sliding window model,
we use windows of different sizes W . The window size W = 1 stands for the



most recent month, i.e., April 1998, the window size W = 2 stands for both
April 1998 and March 1998, and so forth. The window size W = 8 includes the
whole dataset, from April 1998 till September 1997. We denote the resulting
dataset as DW , where W = [1 − 8] is the window size. For each dataset DW ,
we compute the recommendations for each user by considering the user ratings
within the corresponding window W . We compare the predicted values with
the actual values given by the user within the same window W and report the
average results.

The results for different windows, distance thresholds and σ values are pre-
sented in Fig. 7(a) (for σ = 1.0), Fig. 7(b) (for σ = 0.95), Fig. 8(a) (for σ = 0.9),
Fig. 8(b) (for σ = 0.85), Fig. 9(a) (for σ = 0.8) and Fig. 9(b) (for σ = 0.75).
Regarding the effect of the different window sizes, in general, recommendations
present better quality for small windows (this is not the case for the smallest
window size W = 1 because of the small amount of ratings used for predic-
tions). For example, for a user distance threshold equal to 0.03 and W = 3,
the predictions are improved around 2.5% compared to W = 8 (i.e., compared
to the time-free recommendations model). Or, for a threshold equal to 0.06 and
W = 2, the predictions are improved around 4% compared to W = 8 (Fig. 7(a)).
Moreover, the larger the window, the smaller the improvement. As expected, for
larger user distance thresholds, the MAE scores increase for all window sizes,
since more dissimilar users are considered for the suggestions computation. Note
that the specific distance threshold values are selected with respect to the num-
bers of similar users they return; the experiment presents similar behavior for
different such values. Regarding the effect of σ, the best recommendation quality
is given when σ = 0.9. More specifically, the quality is improved from σ = 1.0 to
σ = 0.9, while we notice the opposite behavior for smaller σ values. That is, for
σ ∈ [0.9, 1.0], the lower the σ, the better the predictions, and, for σ < 0.9, the
higher the σ, the better the predictions. For example, for W = 2 and distance
equal to 0.06, the predictions for σ = 0.9 are improved around 7% compared to
the predictions for σ = 1.0 and 16% for σ = 0.8. The corresponding improve-
ments for distance equal to 0.09 are 4.5% and 12%, respectively. In overall, our
studies show that support has an effect on the recommendations quality and
could be used for improving the recommendation process. However, the choice
of an optimal value for σ to achieve the highest quality of recommendations is
application dependent, due to the different amounts of ratings given at specific
time instances, or periods.

Damped window model. Next, we evaluate the effect of the decay rate λ in the
recommendations accuracy. We use different values for λ; the higher the λ is,
the less the historical data count. The value λ = 0 corresponds to the time-free
model. We downgrade the original ratings based on the decay factor λ and the
time difference between the end of the observation period (22/04/1998) and the
ratings timestamp.

The results of this experiment for σ = 0.9, which is the optimal σ value
according to the previous analysis, are shown in Fig. 10. This aging model offers
a small improvement in this setting, i.e., for the employed dataset. In particular,
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Fig. 7. MAE scores for the sliding window model with (a) σ = 1.0 and (b) σ = 0.95.
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Fig. 8. MAE scores for the sliding window model with (a) σ = 0.9 and (b) σ = 0.85.

the best MAE scores are obtained when λ = 0.004. So, for λ = 0.004 and
distance equal to 0.03, the predictions are improved around 1.3% compared to
the time-free model. The improvements for distance equal to 0.06, 0.09 and 0.12
are 0.6%, 1.6% and 1%, respectively. Larger λ values lead to worst predictions
compared to the predictions of the time-free model. Practically, λ = 0.004 means
that the ratings loose 10% of their value after 10 years. As above, larger distance
thresholds lead to larger MAE scores and worst recommendations quality.

Context-based recommendations. In this set of experiments, we demonstrate the
effect of temporal context on producing recommendations. We consider two dif-
ferent temporal contexts “Weekends” and “Weekdays”. For the “Weekends” con-
text, we base our predictions only on ratings defined for weekends (Dweekends),
whereas for the “Weekdays” context, we consider ratings from Monday to Friday
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Fig. 9. MAE scores for the sliding window model with (a) σ = 0.8 and (b) σ = 0.75.
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Fig. 10. MAE scores for the damped window model.

(Dweekdays). The predicted values are compared to the actual values given by
the user within the same temporal context through the MAE metric.

Fig. 11 displays the results for σ = 0.9. Except for the two temporal con-
texts, “Weekends” and “Weekdays”, we also present the scores for the time-free
model, i.e., when the whole dataset is used. Generally speaking, the temporal
context affects the recommendations accuracy. In particular, for both contexts,
“Weekends” and “Weekdays”, the quality of the recommendations is improved
compared to the time-free approach that completely ignores the temporal infor-
mation of the ratings. For example, for a user distance threshold equal to 0.03,
the predictions for “Weekends” are improved on average 13% when using ratings
for “Weekends” instead of using the whole rating set. Similarly, for a distance
equal to 0.06, the predictions for “Weekdays” are improved around 11%. Also,
larger distance thresholds values result in larger MAE scores, that is, the quality
of the recommendations decreases with the user distance threshold.
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Fig. 11. MAE scores for the context-based approach.

Finally, we have performed t-tests to see if there are statistically significant
differences between the proposed approaches and the time-free model. The re-
sults of the tests demonstrate that the probability of the difference being due
to chance is less than 0.005, 0.0005 and 0.0005 for the sliding window, damped
window and temporal context model, respectively. So clearly, our approaches pro-
duce statistically significant recommendations compared to the time-free model.

To summarize, time plays an important role towards improving the quality of
the proposed recommendations. The sliding window and the context-based ap-
proaches increase the recommendations accuracy. However, a mere decay model
seems to be not adequate. In our current work, we aim at designing a more
elaborate aging scheme that considers not only the age of the ratings but also
other parameters, such as the recency and popularity of the recommended items
and the context under which the ratings were given.

7 Prototype Implementation: Movie Guide

To demonstrate the feasibility of our approach, we have developed a research
prototype for a movie recommendation application, called tRecs: A Time-aware
Movie Guide (Fig. 12). The overall system architecture of tRecs is the one de-
picted in Fig. 4. We maintain information about movies, users and ratings. The
movies database schema consists of a single relation with schema: Movies(mid,
title, year, director, genre, language, duration). The prototype is implemented
in Java and MySQL.

When a user joins the system, he/she registers his/her ratings for computing
recommendations and his/her value and attribute preferences for constructing
summaries and presenting the results (Fig. 13). Users express their ratings for
movies by providing a numerical score between 0.0 and 1.0. Furthermore, users
are allowed to define their value-based and attribute-based preferences following
either the qualitative or the quantitative preference model. For instance, a user



Fig. 12. tRecs: A Time-aware Movie Guide.

may define that A. Hitchcock � M. Scorsese or may give the score 0.8 to A.
Hitchcock and the score 0.6 to M. Scorsese. Similarly, for the attribute prefer-
ences. Clearly, a user can add, delete or modify ratings and preferences at any
time and not only at registration time.

Besides user registration, the other part of the application includes recom-
mendations computation, summary construction and presentation. Recommen-
dations computation runs in two modes: time-free and time-aware. In the time-
free mode, the temporal aspects of the user ratings are completely ignored. The
time-aware mode distinguishes between fresh-based and context-based recom-
mendations. In this mode, the user query is enhanced with some temporal infor-
mation which is provided by the user as part of his/her query or postulated by
the application. In the latter case, the information implicitly associated with the
query corresponds to the current temporal characteristics, that is, the context at
the time of the submission of the query. The user should also provide the exact
scheme that will be used (damped window, sliding window or temporal context).

Presentation summaries are produced with respect to the top-100 time-aware
recommendations. User preferences are employed for constructing ordered sets
of keywords, in the form of a lattice. Following this ordering, keyword-based
summaries, that is, keywords extended with movie titles and production years,
are presented to users. As a case study scenario, suppose that a user gave two
value-based preferences (A. Hitchcock is preferred over M. Scorsese and horror
movies are preferred over crime movies) and one attribute-based preference (the
director of a movie is as important as its genre). Suppose also that our user opts
to follow the damped window model and would like to know the recommended
movies according to his/her previously submitted ratings and preferences. The
results of this query example are depicted in Fig. 14. Note that the summary for
{A. Hitchcock, crime} does not appear in the results, since there are no crime
movies directed by A. Hitchcock in our database instance.



Fig. 13. tRecs configurations.

8 Related Work

The research literature on recommendations is extensive. Typically, recommen-
dation approaches are distinguished between: content-based, that recommend
items similar to those the user previously preferred (e.g., [33, 28]), collaborative
filtering, that recommend items that users with similar preferences liked (e.g.,
[21, 11]) and hybrid, that combine content-based and collaborative ones (e.g.,
[8]). Several extensions have been proposed, such as employing multi-criteria
ratings (e.g., [2]) and defining recommendations for groups (e.g., [7, 31, 30]).

Recently, there are also approaches focusing on enhancing recommendations
with further contextual information (e.g., [3, 32]). In these approaches, context
is defined as a set of dimensions, or attributes, such as location, companion and
time, with hierarchical structure. While a traditional recommendation system
considers only two dimensions that correspond to users and items, a context-
aware recommendation system considers one additional dimension for each con-
text attribute. In our approach, we focus on a particular case of this model,
that is, the three-dimensional recommendations space among users, items and
time, since our specific goal is to study how the time effects contribute to the
improvement of predictions.

Moreover, there are some approaches which incorporate temporal informa-
tion to improve recommendations effectiveness. [37] presents a graph-based rec-
ommendation system that mixes long-term and short-term user preferences to
improve predictions accuracy, while [36] considers how time can be used into
matrix factorization models by examining changes in user and society tastes and
habits, and items popularity. [15] uses a strategy, similar to our damped window
model, that decreases the importance of known ratings as time distance from
recommendation time increases. However, the proposed algorithm uses cluster-
ing to discriminate between different kinds of items. [10] introduces the idea of
micro-profiling, which splits the user preferences into several sets of preferences,
each representing the user in a particular temporal context. The predictions are



Fig. 14. tRecs: A Time-aware Movie Guide.

computed using these micro-profiles instead of a single user model. The main
focus of this work is on the identification of a meaningful partition of the user
preferences using implicit feedback. In our paper, the goal is to examine time
from different perspectives. This way, we use a general model for time, consid-
ering time either as specific time instances or specific temporal conditions, in
order to define a unified time-aware recommendation model.

The temporal aspect of the data has been also studied in different application
domains like time series [29] and temporal database queries [14]. Recently the
focus has been on huge amounts of data that are collected over time, the so
called data streams [4, 18]. Due to the theoretically infinite nature of these data,
it is impossible to consider them all for answering a query or for a data mining
task. So, the rationale is to use the temporal information in order to “reduce”
the dataset complexity, e.g., by focusing on a specific period of time instead of
the whole stream (e.g., [5]) or by considering the aging of the data (e.g., [12]).

Finally, the general concept of summaries resembles the notion of tag clouds.
A tag cloud is a visual representation for text data. Tags are usually single words,
alphabetically listed and in different font size and color in order to show their
importance4. Tag clouds have appeared on several Web sites, such as Flickr and
del.icio.us, while recently tag cloud drawing has also received attention (e.g.,
[24]). With regard to summaries for keyword queries, data clouds [23] are the
most relevant. This work proposes algorithms that try to discover good, not
necessarily popular, keywords within the query results. Our approach follows
a preference-based technique to locate important keywords. From a different
perspective, [16] introduces the notion of object summary for summarizing the
data in a relational database about a particular data subject, or keyword. An
object summary is a tree with a tuple containing the keyword as the root node

4 en.wikipedia.org/wiki/Tag cloud



and its neighboring tuples containing additional information as child nodes. [17]
extends this work by presenting a partial object summary of size l, composed of
only l representative tuples.

9 Conclusions

In this paper, we study different semantics to exploit the time information asso-
ciated with user ratings in order to improve the accuracy of recommendations.
We consider various types of time effects, and thus, propose different time-aware
recommendation models. Fresh-based recommendations care mainly for recent
and novel ratings, while context-based recommendations are computed with re-
spect to ratings with temporal context equal to the query context. To help users
receive a broader view of the recommended items, we add some structure to
the presentation of the results. In particular, we rank the recommended items
based on user preferences and organize equally important items through sum-
maries. Finally, we evaluate our approach using a real dataset of movie ratings
and demonstrate its feasibility through a prototype implementation of a movie
guide application.

There are several directions for future work. We envision to extend our frame-
work so as to support a novel mode of interaction between users and recommen-
dation systems; our goal is to exploit the whole rating history to produce valued
recommendations and, at the same time, use the fresh ratings to assist users in
database exploration.
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