

MobiShare: Sharing Context-Dependent Data & Services from Mobile Sources

Efstratios Valavanis
1
 , Christopher Ververidis

2
, Michalis Vazirgianis

1
, George C. Polyzos

2
, Kjetil Nørvåg

1
DB-net Research Group

2
Mobile Multimedia Laboratory

Department of Informatics

Athens University of Economics and Business

 Athens 104 34, Greece

{valavani, chris, mvazirg, polyzos}@aueb.gr, Kjetil.Norvag@idi.ntnu.no

http://www.db-net.aueb.gr, http://mm.aueb.gr

 This research is partially supported by EU IST project DBGlobe (IST-

2001-32645) under the FET Proactive Initiative on Global Computing

for the co-operation of autonomous and mobile entities in dynamic

environments.

Abstract
The rapid advances in wireless communications

technology and mobile computing have enabled personal

mobile devices that we use in everyday life to become

information and services providers by complementing or

replacing fixed-location hosts connected to the wireline

network. Such mobile resources can be highly important

for other moving users, creating significant opportunities

for many interesting and novel applications. The

MobiShare architecture outlined in this paper provides

the infrastructure for ubiquitous mobile access and

mechanisms for publishing, discovering and accessing

heterogeneous mobile resources in a large area, taking

into account the context of both sources and requestors.

Any wireless communication technology could be used

between a device and the system. Furthermore, the use of

XML-related languages and protocols for describing and

exchanging metadata gives the system a uniform and

easily adaptable interface, allowing a variety of devices

to use it. The overall approach is data-centric and

service-oriented, implying that all the devices are treated

as producers or requestors of data wrapped as

information services.

1. Introduction

The recent wave of innovations in computing, wireless

communications, networking and electronics has

embedded processing power, storage space and

communication capabilities in electronic devices of

everyday use (―information appliances‖[3]), leading to the

era of ubiquitous computing [1]. The main characteristics

of this change is the relationship ―one user – many

computers‖ [2] as well as pervasiveness [5], invisibility

[3] and mobility of computing nodes. For example,

notebook computers with wireless Internet connectivity

can carry mobile Web sites or Web-enabled databases. A

wide variety of handheld devices and gadgets such as

Pocket PCs, Palmtops, PDAs or cellular phones with

built-in cameras can capture, store and transmit

multimedia content (via MMS or email), run java

applications and will soon support videoconferencing.

Finally, computers with portable GPS receivers are

embedded in vehicles providing location information,

navigation capabilities and maps, smart rooms and

buildings offer Internet connectivity and location-specific

services to their users. In the vision of interconnecting

diverse resources and their potential consumers under a

common framework, many research challenges arise, such

as uniform ubiquitous connectivity, heterogeneity of

sources, effective and precise resource discovery [15].

Context-awareness has also been elevated to an

essential system feature in environments where objects are

constantly moving and demonstrate unpredictable

behavior and volatile characteristics. Context can be

defined as the properties of a system that make it aware of

its (user‘s) state and surroundings and help it adapt its

behavior accordingly [20]. Ideally systems should sense

dynamic information in real-time from the user‘s

environment, such as position, orientation, temperature,

lighting conditions, people‘s identity, user‘s emotional

state and many more. Due to advances in relevant

technologies [22] and the low cost of many sensor

components, the main issues concentrate around providing

a universal context representation, selecting the

appropriate context for each type of application, and

utilizing this information in order to add value.

The focus of our work is on optimizing a solution for

data that are not only requested, but also shared by

moving nodes (or peers) of relatively small computing

power and storage space, interconnected via an unreliable

wireless network. These computing nodes have two roles:

they can work as sources of services (similar to a server),

as requestors of services (similar to a client), or both. We

employ a service-oriented approach: data is made publicly

available through services [7]. Services provide a well-

defined and published interface that allows access to data

in a universally understandable and customizable manner.

Therefore, we use the concept of a request instead of a

query, although the expected result is usually data.

Services also have the advantage of being machine

understandable, allowing the existence of a centralized

mechanism that automatically categorizes the resources

and refines the requests semantically while minimizing

user intervention.

The goal of MobiShare is to provide a middleware

system and an infrastructure architecture that will act as a

distribution network for the middleware by offering

ubiquitous connectivity to mobile devices. This system

will offer them an enhanced publishing and discovery

mechanism and a way to capture context and use it for

optimizing the functionality of the system and refining

responses. Access to the system is provided through

access points, tied to administration servers (CAS) that

manage the area of coverage of each access point.

Wherever the device might be it can access the nearest

CAS using some wireless communication technology (see

Figure 1). If the device is an active source it has to submit

the description of the services it provides. If it is simply a

requestor, it can submit requests. The CAS is responsible

for maintaining a list of services available inside its area

of authority. Furthermore, it provides a semantic

discovery capability to assist the users locating the

services that can fulfill their needs and performs context-

based filtering of request results. Having located the

appropriate service and the device that provides it, the

requestor-device can communicate directly with the

source-device.

CAS

CAS

CAS

Distribution

Network

wireless connection

mobile device
wired connection

e.g. Internet

Figure 1: Device connectivity

The rest of this paper is organized as follows: Section

2 gives an overview of related work, in Section 3 we

discuss system design decisions, in Section 4 we describe

important aspects of the systems functionality (service

discovery), Section 5 is dedicated to the testbed and

showcase implementation, in Section 6 we outline our

future plans and in Section 7 we conclude.

2. Related work

There are many areas relevant to MobiShare and

therefore numerous research efforts deal with several of

the aforementioned issues. We summarize the most

interesting ones with respect to our objectives.

Mobile Web research focuses mostly on mobile

browsers (i.e., clients only) that request data and services

hosted on fixed locations, dealing with the problems of

security, quality of service and content delivery in various

formats [4], [21], [24]. In particular, MobileIQ [21] is a

distributed proxy-based system that offers mobility

management, personalization and asynchronous operation

to mobile hosts. MobileIQ is dealing with the problems of

ubiquitous access and host disconnections. Regarding

context-awareness it tries to reduce the waste of wireless

bandwidth and constrain information overloading by

predicting and aggregating on the wired side the Web

content that the mobile user would probably ask for.

Personal preferences is a valuable type of context however

it is questionable whether the method of performing

clustering on collaborative filtering predictions is effective

in such an environment, since it assumes that the request

results are rated by the users and that there is a big enough

group of ratings for each possible user in order to produce

results. Furthermore, there is no direct support for

mobility of sources and the result of requests is assumed

to be static Web content rather than services thus not

dealing with heterogeneity of sources. Based on the

iMASH middleware, [24] examines issues related to the

scalability of middleware services and user mobility

(application session handoff). This approach proposes a

specialized load-balancing technique between multiple

middleware servers but does not address the issue of

mobile sources since all the content is aggregated on a

single application server.
 At the architectural level, the DBGlobe approach (as

described in [18]) is considering the use of chained

hierarchies of directories, where unsatisfied requests are

forwarded to a higher geographical authority and then

sequentially along a chain of global-scale authorities. Pure

p2p architectures do not consider authorities of any kind,

instead they consider all participating devices as equal and

requests are forwarded on a neighbor-to-neighbor basis.

We make use of regional authorities, which index local

resources and can respond to requests about their area

autonomously. Wider-scale requests are propagated on a

neighbor-to-neighbor basis.

Recent efforts in the area of mobile services are the

Centaurus framework from the university of Maryland

[10], the Konark middleware from the University of

Florida [11] and XMIDDLE [12] from UCL. Centaurus

provides a uniform infrastructure for a multitude of

devices to use heterogeneous services and is targeted to

serving the needs of smart rooms. The client connects to

the nearest CS (Centaurus System) and the CS is

responsible for maintaining a list of available services and

executing them on behalf of the client. Service discovery

of any kind is not available since a smart room would

never include more than a few services that could be

presented in a list. The CS cannot communicate with any

adjacent CS to retrieve services from other smart rooms.

Finally, mobility is supported but the position or the

orientation of the device is not used to offer added value.

The use of InfraRed for communications in the first

version of the prototype is also restrictive (eye-contact is

demanded and the range is short). Konark is a middleware

for service discovery and delivery of device independent

services in ad-hoc networks. This implies that Konark

assumes totally (or at least partially) ad-hoc networks

without fixed nodes that have additional capabilities,

functionality or offer more trust. No infrastructure or

centralized server is used. Every device maintains a tree-

based structure (written in XML) as registry of the

hierarchy of services to facilitate service management.

The tree is uniform and present across all devices

implementing the Konark Architecture. The obvious

advantage of this approach is the capability of devices to

communicate with each other without the need of a central

system. However, this would demand either a simplistic

taxonomy of services or an overwhelming computational

and storage-space overhead for small devices, like cellular

phones. Moreover, it would demand a bandwidth

overhead to keep the service list up-to-date. XMIDDLE is

a middleware that handles disconnections, low/expensive

bandwidth, scarce resources and faces replication and

synchronization problems and other mobility related

issues (location-aware services). Like Konark, XMIDDLE

is targeted to pure ad-hoc networks. No discovery services

are set-up and all hosts have the same capabilities

3. System design

In MobiShare geographic two-dimensional space is

divided into cells. A communication cell is actually the

area of coverage of a wireless network access point and

ideally it looks like a disk (see Figure 1). Every device

(mobile or fixed) is connected to exactly one access point

at any given time. Actually a device can possibly be in a

location where cells overlap. We assume that the device

requests handover if an access point with better signal is

available. The cell administration server (CAS) within the

cell keeps track of the devices that enter or leave the cell‘s

physical boundaries, locates their position, maintains

information (metadata) describing their status and the

resources they offer. It is possible for one CAS to manage

more than one cell. That is convenient if a cell is too

narrow due to wireless technology range limitations and

the maximum number of devices that appear in the cell at

peak-times is relatively small. For reasons of simplicity it

will be assumed in the rest of this paper that one CAS

manages one cell.

A certain infrastructure is assumed to support

MobiShare. The general concept of the architecture shares

some common features with cell-based networks trying to

imitate existing space models of area coverage. This

choice reflects our intention to effectively support

mobility and build a test bed that simulates real-world

environments using existing wireless technologies. We

decided not to use a pure ad-hoc approach, where all

mobile nodes have equal capabilities and functionality and

form spontaneous networks [17]. It was considered more

efficient and closer to real-world examples to assume an

infrastructure consisting of more powerful computers that

perform tasks like service discovery and indexing, while

the mobile devices simply provide the actual service

execution and issue requests.

3.1. Mobile devices

The mobile device that interacts with the system could

be any autonomous, portable, electronic device capable of

connecting to the access point and communicating with

the CAS of a cell. Another characteristic property of such

a device is that it can submit requests or produce data,

wrap it as a service, communicate with an administration

server and function as a source. Each mobile device has

Figure 2: CC/PP Device profile

some built-in, global identifier (i.e. IMEI on GSM mobile

phones) associated with a user identification during

registration. In the first stage of this research work we

assume a one-to-one relationship between users and

devices. Devices can be fixed (desktop computer, sensor

controller), mobile (PDA, notebook, cell phone). The

mobile device has a certain functionality that demands the

following components: Digital Compass (for capturing

orientation), GPS receiver (for capturing location),

wireless communication interface (i.e. WLAN card).

Software components include a request definition tool, a

service definition tool, an application server (only for

devices able to function as sources) and a set of viewers

like document pre-viewer, image pre-viewer, media pre-

viewer, etc. We use documents conforming to the CC/PP

standard [6] (see Figure 2) to store the static profile of

each device (containing the device capabilities) and a

dynamic profile in RDF to describe dynamic properties

(location, orientation, connection bandwidth, session

information).

CAS

Service M anager

Tem pora l P rofile

M anager

Service

Taxonom y

Service

D escrip tion

R epository

Taxonom y

D ictionary

Service

D irectory

Pattern

Analyser

Service

H istory

R epository

R equest

H andler

Server-2-Server C om m . C ontro ller

D evice

C ontro ller

Service Log

M anager

Service

Publisher

D evice

R epository

C AS

D irectory

CAS

D istribution N etw ork

CAS

CAS

Figure 3: Cell Administration Server (CAS)

3.2. Cell administration servers

Each CAS is an autonomous centralized system that

manages a cell and the devices that are online inside the

cell. Each cell can support large numbers of mobile

devices moving inside its area and acting as sources or

requestors. The CAS functionalities include: assigning

addresses and identifiers to these devices (i.e. IP

addresses by a DHCP server module), performing

authentication and access control, handling requests,

publishing the services offered by these devices, hosting

the service description files (e.g. WSDL files),

maintaining a list of the addresses of other CAS, etc.

The CAS are interconnected through a distribution

network, e.g. the Internet or a WAN. Although they can

function autonomously they are also aware of their

neighbors (that manage geographically adjacent cells) and

can cooperate to increase the range of requests. The

possible data flows between the CAS are: (a) extension of

requests to neighboring CAS, (b) forwarding the list of

neighbors (c) request/deliver device location information

(d) pushing service description files (proactively and on-

demand). When a device moves from cell A to cell B, all

the descriptions of the services the device provides should

also move from CASA to CASB. Service descriptions

remain in CASA as well, with an indication that the source

is off-line. The pattern analyzer calculates an estimation of

the probability of reappearance in cell A based on

statistics.

A CAS consists of (see Figure 3):

 A global service taxonomy of service categories,

which is specific to the context domain (i.e. travel and

tourism) and has a hierarchical structure (starting from

a universal concept). A taxonomy dictionary contains

all the terms in the taxonomy, ordered

lexicographically to allow fast search and matching.

 Service directory that lists all the services offered by

devices in the cell.

 Service description repository of the local services.

 CAS directory, containing addresses of other CAS.

 Device repository containing the list of devices in the

cell and their profiles, and

 Temporal profile manager for storing the appearance

of devices, discovering patterns and estimating

probabilities of next appearance. A server can also

keep historical data for a predefined amount of time

about the mobile devices that appeared in its cell and

make statistics about their habits concerning the next

cell of appearance to assist proactive behavior.

There is always one CAS responsible for maintaining

the master copy of a service description. This CAS is also

keeping a list of other CAS where this description has

moved to. The device is aware of the identifier and the

address of the CAS that holds the master copy. Each new

CAS receiving the service and holding the description

document (either because the device moved in the cell or

proactively) has to notify the initial CAS. If the user of the

device updates the service description, the CAS where this

update took place takes ownership of the master copy,

retrieves the list of description holders and notifies them

about the update. Keeping the service description of

every service everywhere would result in using

unnecessary storage space and bandwidth to keep them

up-to-date. Therefore, we use a specific advertisement

policy. When publishing the service the user has to 1)

declare an initial area where he wishes the service to be

available (user-defined policy) and 2) specify whether the

service is fixed (i.e. an on-site service giving information

about a monument) or mobile. In the case of a mobile

service (i.e. a picture sharing service on the phone of a

tourist) the user must decide if the service availability area

should be extended to the areas where the device moves

(mobility-based policy) or to the areas where it is

requested (request-based policy). This advertisement

profile of a service is part of the service description and

the CAS of the cells that publish the service are aware of

it, since it determines whether they should proactively

push the description to their neighbors.

3.4. Device location mechanism

The device location mechanism is part of a CAS and

determines the address of the CAS of the cell where a

specific device is currently on-line. Once a device enters a

cell it reports: its presence, the previous cell where it

comes from and receives a network address (Mobile IP),

which is valid for the session in the current cell. The

network address of the device is logged in the device

repository of the cell‘s CAS. The device also reports the

services it hosts, the CAS servers that hold the master

copies and retransmits their descriptions if necessary (if

their copies are stale). The CAS registers the device‘s

services in the service directory and requests their

descriptions from the holder of the master copy. If a

service hosted on the specific device is requested, the

CAS searches through its device repository and returns the

current network address of the host device and the service

description document. In case of failure to locate the

device the server will forward the request to its neighbors

(which might forward it further) until the device is

discovered or the request is explicitly cancelled. The final

response will contain the IP of the device inside the cell it

currently belongs to. To make this mechanism more

efficient the CAS keeps an extra attribute for each device

inside the device repository holding the next (and the

previous) cell it moved to. Whenever a device arrives in a

cell, the cell‘s CAS notifies the CAS of the previous cell

about the presence of the device. This optimizes the

process of locating a device since the CAS has to just

follow the chain of hosting servers to locate the device.

Only in the case of failure the CAS would start

broadcasting the request to the neighboring cells. The

overall process is significantly faster and saves the

network from unnecessary messages. [8]

4. Service discovery

Service discovery refers to a mechanism that allows

users to locate appropriate services on-demand and in

reasonable time [13]. It is crucial to retrieve all the

available resources and reduce or eliminate the results that

do not fit the user‘s needs, increasing the recall and the

precision [15] of the answer. The results are further

refined by context (i.e. location of the source and the

requestor) to avoid sending excessive results back to the

device.

4.1 Service request

The simplest scenario is that of a mobile user (a tourist

with a mobile device wandering around a city with a

network of CAS) who wishes to submit a specific request

to the system (i.e. wants to locate services that allow him

to find taxis inside his cell).

4.1.1 Request process. The initial search string ―book

taxi‖ is sent to the CAS of the user‘s current cell. A

request handler is initiated for the specific request and

stores the metadata of the request (time and location of

requestor). The request handler sends the search string to

the taxonomy module and receives a set of service

identifiers in return. These services semantically match the

request initiated by the user. The set of answers is

forwarded to the user, who selects one or more. The

selected services are then returned to the service handler.

The handler issues a request to the service and device

directories to find which service instances are available in

the cell and which devices offer them. Then the device

receives a list of devices refined by location along with

their IP addresses, the user selects the most appropriate

one and invokes it. We stress that only the currently active

services can be invoked (i.e the PMOs that offer them are

on-line in a cell).

In case the user is not satisfied with the results the

search can be extended to adjacent cells. This implies that

the local request handler retrieves the list of neighboring

CAS, re-issues the request and initiates child request

handlers on these servers. These request handlers collect

the results in their area and return them to the ―parent‖

request handler process.

4.1.2 Semantic matching. The user does not know in

advance which services are available at the moment of

request, or the necessary interfaces. Therefore the first

step in the request process (see above) is to understand

what the user is looking for and offer him a set of

alternative services that provide this kind of output. This

would not be possible by simply using the standardized

service description language WSDL [14] and the UDDI

mechanism for publishing/discovering service

descriptions. WSDL descriptions do not contain semantic

information and the search would perform exact matching

of words like ―taxi‖ and ―reservation‖ in the name and

short description of the service. Therefore, we provide the

device with a request definition tool that assists the user to

describe the request in a formal manner assisted by the

static global taxonomy of services accessed through the

local CAS.

The initial set of words sent by the user {w1,…,wk}, are

matched inside the dictionary of terms (thesaurus) to find

exact lexicographical matches. In case of no match at all,

the user is asked to issue a new request. The dictionary

works as a fast index to the taxonomy (to avoid traversing

the entire taxonomy for every request). The matches on

the dictionary lead to several points in the taxonomy

where different instances of the words are found (in the

case of homonyms). Using a distance measure [16], we

select the part of the taxonomy where the set of words

appear closer to each other (one as a higher level category

and the others as subcategories or relevant categories).

Thus we can expect that we located the right context in

which the user meant to use the set of words.

Assume that the user is issuing a request for ―travel,

book, taxi‖. One appearance of these words in the

taxonomy is related to the path ‗…travel--reservation

(synonym: bookings)—taxis…‘ and the other to the path

‗…--Books--travel—cityguides--(relevant-to)--mass

transportation information--taxi yellow pages‘.

Travel

R eservations

syn: Bookings
C ityguides

M ass

Transportation

Inform ation

Bus

Schedules

Taxi Yellow

Pages

Travel

R eservations

syn: Bookings

Taxis BusesA irp lanes

C ityguides

Figure 4: Taxonomy paths

The matching mechanism will prefer the first

appearance as more relevant. Having chosen one path in

the taxonomy we traverse the categorization down to the

leaves and select all the services that are categorized

there. In some cases there might be a big set of services

that fulfill these requirements. In that case we can exclude

the services that originate from devices that are not on-

line in that cell at the moment or the ones that should not

be expected soon to enter the cell.

This taxonomy is universal and static for our system

and stored in RDF format. A service can possibly belong

to more than one category. On top of all service classes

(or concepts or categories) lies the universal concept (i.e.

travel and tourism).

4.1.3 Context-awareness effect in requests. There are

two types of context that we are currently considering:

location (of requestor and source) and mobility parameters

(of the requestor). Whenever a user issues a request both

the location and the orientation of his device are appended

to the actual request. As described above the current cell

of the requestor is the default target of the request, unless

the user explicitly extends the request. However, if the

user is located at the border of the cell or moving fast

towards it, the CAS automatically forwards the request to

the appropriate CAS that manages the adjacent area.

The mobile user can also specify a request radius

around his position, along with the request. The request

handler on the CAS will refine the results of the request

by filtering out the services outside the defined area. This

is important in case the cell covers a large area and there

exist too many services that semantically match the

request. The CAS will reduce the result to include only

services located on devices around the user, before

returning it.

4.2 Service submission

 Assume that a specific mobile user wishes to publish a

new service (i.e. a cab driver is accepting reservations on

his mobile phone or a sports fan sharing pictures on his

PDA). A software tool called service definition tool

guides the user through the process of classifying his

newly published service in the fixed taxonomy of service

descriptions. The user has to define: the service name, a

short description of the service that includes important

keywords that help classifying the service, the position in

the taxonomy and a description of the input and output

parameters. The approach has to be compliant to existing

technologies and able to incorporate existing services.

Therefore, a WSDL service description is used to define

the user interface and the semantic based information is

stored in RDF format. Finally, the user has to select an

advertisement profile (see Section 3.2) for the new service

choosing between user-defined, mobility-based and

request-based advertisement policy.

5. Implementation status

A prototype of the MobiShare architecture, consisting

of the various software modules and a hardware

infrastructure, has been developed and is currently under

further refinement. We have chosen the IEEE 802.11b

WLAN standard for the wireless communication layer and

notebook computers equipped with WLAN cards as

mobile devices. Of course, any other wireless

communication technology could be used instead. WLAN

technology was chosen because it offers low cost (since it

operates in unlicensed frequency bands), reasonable range

(about 1 km diameter in open space and coverage of many

rooms or offices on one floor in a building), high

bandwidth (up to 11Mb/s for IEEE 802.11b and up to

54 Mb/s for IEEE 802.11a interfaces) and does not have

line-of-sight limitations. We used WLAN access points to

setup cells covering different areas and the cells are

managed by Microsoft Windows 2000 servers running the

MobiShare CAS module. The specific platforms in this

testbed were chosen based on availability and

convenience.

The mobile device software and the CAS modules for

the prototype were developed using C# for .NET. The

main reason for this choice was that the .NET framework

supports all the state-of-the-art standards related to

network programming and ensures interoperability and

platform independence. The developed modules can

potentially be installed on any desktop or notebook PC (a

Linux version of the .NET framework is also available),

as well as on many handheld devices. We based our

metadata description and information exchange on

standards such as XML, RDF, WSDL, CC/PP and SOAP

so that parts of the system can be developed using other

programming environments (e.g., Java).

The CAS modules that have been implemented are the

Device Repository, the Device Controller, the Service

Publisher, the Service Request Handler, the Service

Description Repository and the Service Directory. The

mobile device modules that have already been

implemented are the Request Definition Tool , the

Application Server (actually, a lightweight Web server),

the Viewer (in the form of an embedded Internet browser)

and the Service Definition Tool.

The development of a prototype system allows us to

investigate a number of key system parameters and we

believe it will permit us to refine our architecture and

extend the functionality of the middleware we are

developing. For example, we have been able to actually

measure the time needed for a mobile device to detect that

it has entered a cell and adapt to the new environment (get

a network address and the address of the CAS). This time

is about 2 seconds with line-of-sight between the mobile

device and the CAS and seems to not be affected by the

number of mobile devices. A second metric we

determined is the time between a service publication

request issued by a mobile device to its local CAS and the

activation of this service in the cell. This time is on

average 5 seconds for a (simple) service with a description

file of 14.7 Kbytes.

6. Future work

Our efforts are currently focused on improving and

extending the prototype and evaluating the architecture

based on experimental results. Future plans include the

extension of the framework‘s role to include centralized

service execution, i.e., the CAS could also act as a source

proxy, instead of simply suggesting to the user services

that fulfill his needs. This will help dealing with

disconnected resources, low-bandwidth connections and

increased popularity of certain resources leading to high

contention. Scalability and performance for such a system

can only realistically be tested through simulation and we

are working in this direction.

In the area of semantic service discovery we are

planning to introduce semantics for the service

input/output parameters (in addition to service semantics)

that should be taken into account for answering requests.

The most important restriction imposed by our current

communication technology is the fact that a single

interface cannot simultaneously work in both ―ad-hoc‖

and ―infrastructure‖ modes. Consequently, we cannot use

the prototype to investigate mechanisms that allow

devices to automatically look for nearby devices when a

CAS is not in range. We are considering the use of

multiple wireless protocols to test fallback techniques that

support ad-hoc system operation in isolated groups of

devices.

Security and privacy issues were not a top priority this

first implementation. Thus our prototype is exposed to

various risks. For example, plaintext password

authentication of users makes the framework vulnerable to

unauthorized access. The absence of a safe security

protocol for the communications facilitates man-in-the-

middle attacks between the device and the CAS. These

problems and security issues in general will be addressed

in the future.

7. Conclusion

This paper presented MobiShare, a middleware system

that supports publishing, advertising and semantic

discovery of mobile resources encapsulated in services.

We also described the architecture of a distribution

network that offers ubiquitous connectivity to mobile

devices and examined issues related to mobility of hosts

like source location, result delivery and disconnected

services. Furthermore, we have taken advantage of context

to refine requests and reduce result flooding. We have

also described a testbed that is implemented in an attempt

to evaluate this framework. The issues discussed in the

previous section will be used to improve this architecture.

Acknowledgements

We would like to thank C. Doulkeridis for his helpful

discussions on various topics related to this paper.

References

[1] M. Weiser, ―Ubiquitous Computing‖, IEEE Computer "Hot

Topics", October 1993.

[2] M. Weiser, and J.S. Brown, ―The Coming Age of Calm

Technology‖, P J. Denning, R. M. Metcalfe (Eds.), ―Beyond

Calculation: The Next Fifty Years of Computing‖,

Copernicus/Springer, New York, 1998, pp 75-85.

[3] D. Norman, ―The Invisible Computer: Why Good Products

Can Fail, The Personal Computer is So Complex, and

Information Appliances are the Solution‖, MIT Press,

Cambridge, 1998.

[4] A.C. Snoeren, and H. Balakrishnan, ―An End-to-End

Approach to Host Mobility‖, Proc. 6th International Conference

on Mobile Computing and Networking (MobiCom), 2000.

[5] M.Satyanarayanan, ―Pervasive Computing: Vision and

Challenges‖, IEEE Personal Communications, August 2001.

[6] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, and M. H.

Butler, Composite Capability/Preference Profiles (CC/PP):

Structure and Vocabularies, W3C Working Draft, 2002

http://www.w3.org/TR/CCPP-struct-vocab/

[7] Web Services Activity, http://www.w3.org/2002/ws/

[8] Ι. Akyildiz, J. McNair, J. S. M. Ho, H. Uzunalioglu, and W.

Wang, ―Mobility Management in Next Generation Wireless

Systems‖, Proceedings of IEEE, Vol. 87, No. 8, August 1999.

[9] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara,

―Importing the Semantic Web in UDDI", in Proceedings of

Web Services, E-business and Semantic Web Workshop,

CAiSE 2002, pp 225-236, Toronto, Canada, 2002.

[10] L. Kagal, V. Korolev, H. Chen, A. Joshi, and T. Finin,

―Centaurus: A framework for intelligent services in a mobile

environment‖, In Proceedings of the International Workshop on

Smart Appliances and Wearable Computing (IWSAWC),

Scottsdale, Arizona, USA, April 2001.

[11] S. Helal, N. Desai, C.Lee, and V. Verma, "Konark – A

Service Discovery and Delivery Protocol for Ad-hoc Networks",

Proceedings of the 3rd IEEE Conference on Wireless

Communication Networks (WCNC), New Orleans, Louisiana,

March 2003.

[12] C. Mascolo, L. Capra, and W. Emmerich, "An XML based

Middleware for Peer-to-Peer Computing", 1st IEEE

International Conference of Peer-to-Peer Computing, August

2001.

[13] S.A.McIlraith, T.C.Son, and H.Zeng, Semantic Web

Services, In IEEE Intelligent Systems. Special Issue on the

Semantic Web, Feb. 16(2):46--53, March/April, 2001.

[14] E. Christensen, F. Curbera, G. Meredith, and S.

Weerawarana, Web Services Description Language (WSDL)

1.1, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl

[15] A. Bernstein, and M. Klein, ―Towards High-Precision

Service Retrieval‖, International Semantic Web Conference

(ISWC 2002), Sardinia, Italy, June, 2002.

[16] P. Resnik, ―Semantic Similarity in a Taxonomy: An

Information-Based Measure and its Application to Problems of

Ambiguity and Natural Language‖, Journal of Artificial

Intelligence Research, 1999. 11: p. 95-130.

[17] C. Ververidis, S. Valavanis, M. Vazirgiannis, and G.C.

Polyzos, ―An Architecture for Sharing, Discovering and

Accessing Mobile Data and Services: Location and Mobility

Issues‖, LOBSTER workshop, Myconos, Greece, 2002.

[18] A. Karakasidis, and E. Pitoura, ―DBGlobe: A Data-Centric

Approach to Global Computing‖, 22nd International Conference

on Distributed Computing Systems Workshops (ICDCSW '02),

July 02 - 05, 2002.

[19] J. Xu, and D.L. Lee, ―Querying Location-dependent

Data in Wireless Cellular Environment,‖ WAP

Forum/W3C Workshop on Position Dependent

Information Services, Sophia Antipolis, France, February,

2000.

[20] M. Satyanarayanan, ―Challenges in Implementing a

Context-Aware System,‖ IEEE Pervasive Computing

(Context-Aware Computing), July-September 2002.

[21] P. Chandrasekaran, and A. Joshi ―MobileIQ: A

Framework for Mobile Information Access,‖ Third

International Conference on Mobile Data Management,

January 08-11, Singapore, 2002.

[22] C.S. Jensen, ―Research Challenges in Location-

Enabled M-Services,‖ Third International Conference on

Mobile Data Management, Singapore, January, 2002.

[23] B. Yang, and H. Garcia-Molina, ―Comparing Hybrid

Peer-To-Peer Systems,‖ Proceedings of the 27th VLDB

Conference, Rome, Italy, 2001.

[24] T. Phan, R. G. Guy, and R. Bagrodia, ―A Scalable,

Distributed Middleware Service Architecture To Support

Mobile Internet Applications‖, Proceedings of the 1
st

Workshop on Wireless Mobile Internet, Rome, Italy,

2001, pp.27-33, ACM Press.

http://www.w3.org/2002/ws/

