
The V2 Temporal Document Database System

Kjetil Nørvåg
Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
Kjetil.Norvag@idi.ntnu.no

ABSTRACT
In this paper we present an overview of the V2 temporal document
database system, which supports storage, retrieval, and querying of
temporal documents.

1. INTRODUCTION AND MOTIVATION
One of the advantages of XML is that the document itself con-

tains information that is normally associated with a schema. This
makes it possible to do more precise queries, compared to what has
been previously possible with unstructured data. It also has advan-
tages for long-term storage of data: even though the schema has
changed, the data itself can contain sufficient information about the
contents, so that meaningful queries can be applied to the data. This
is of increasing importance as storage costs are rapidly decreasing
and it feasible to store larger amounts of data in databases, includ-
ing previous versions of data. If documents as well as DTDs/schemas
are stored in a suitable temporal database system, it is also possible
to make queries based on the actual DTD/schema that was valid at
the time a particular document was stored. In order to efficiently
manage the temporal versions, a temporal document database sys-
tem should be employed. In this paper, we describe an approach
to temporal document storage, which we have implemented in the
V2 temporal document database system. Important topics include
temporal document query processing, and control over what is tem-
poral, how many versions, vacuuming etc., something that is nec-
essary for practical use in order to be able to control the storage
requirements.

We have previously in the TeXOR project studied the realization
of a temporal XML database using a stratum approach, in which
a layer converts temporal query language statements into conven-
tional statements, executed by an underlying commercial object-
relational database system [3]. We could in this way rapidly make
a prototype that supported storage and querying of temporal XML
documents. However, we consider a stratum approach only as a
short-term solution. As a result of using a stratum approach, some
problems and bottlenecks are inevitable. For example, no efficient
time index for our purpose were available, and query optimiza-
tion can be a problem when part of the “knowledge” is outside the
database system. Retrieving data from the database and process it
in the TeXOR middleware would not be a good idea if we want
to benefit from the XML query features supported by the object-
relational database management system.

The TeXOR project demonstrated the usefulness of a temporal
XML databases in general, and gave us experience from actual use
of such systems. The next step is using an integrated approach, in

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

which the internal modules of a database management system are
modified or extended to support time-varying data. This is the topic
of this paper, which describes V2, a temporal document database
system. In V2, previous versions of data are kept, and it is possible
to search in the historical (old) versions, retrieve documents that
was valid at a certain time, query changes to documents, etc.

Although we believe temporal databases should be based on the
integrated approach, we do not think using special-purpose tem-
poral databases is the solution. Rather, we want the temporal fea-
tures integrated into existing general database systems. In order to
make this possible, the techniques used to support temporal fea-
tures should be compatible with existing architectures. As a result,
we put emphasis on techniques that can easily be integrated into
existing architectures, preferably using existing index structures
(history tells us that even though a large amount of “exotic” index
structures have been proposed for various purposes, database com-
panies are very reluctant to make their systems more complicated
by incorporating these into their systems, and still mostly support
the “traditional” structures, like B-trees, hash files, etc.) as well as
a query processing philosophy compatible with existing architec-
tures.

2. DATA AND TIME MODEL
A document version stored in V2 is uniquely identified by a ver-

sion identifier (VID). The VID of a version is persistent and never
reused, similar to the object identifier in an object database.

The aspect of time in V2 is transaction time, i.e., a document is
stored in the database at some point in time, and after it is stored,
it is current until logically deleted or updated. We call the non-
current versions historical versions. When a document is deleted, a
tombstone version is written to denote the logical delete operation.

The time model in V2 is a linear time model, and V2 also sup-
ports reincarnation, i.e., a (logically) deleted version can be up-
dated, thus creating a non-contiguous lifespan, with possibility of
more than one tombstone for each document. Support for rein-
carnation is particularly interesting in a document database system
because even though a document is deleted, a new document with
the same name can be created at a later time (in the case of a web
data warehouse this could also be the result of a server or service
being temporarily unavailable, but then reappear later).

3. FUNCTIONALITY
V2 provides support for storing, retrieving, and querying tempo-

ral documents. It is possible to retrieve a document stored at a par-
ticular time

�
, that was valid in a certain time period � , etc. V2 also

supports some basic operators. In contrast to many existing sys-
tems that support versioning of documents, time is an integrated
concept of V2, and is efficiently supported by the query operators.



Text Index
Document

Index
Version

Database

Text Indexing
Operations

Document Version
Management

API
Operators

External
Documents

Figure 1: The V2 prototype architecture.

Items in temporal and document databases have associated meta-
data that can be used during query processing to filter out a sub-
set of items for subsequent query processing (this metadata would
normally be stored as ordinary data in the tuples/objects in rela-
tional/object databases). The result of execution of the operators
(i.e., VIDs, document names, timestamps, periods, etc.), can ei-
ther be used in subsequent “traditional” query processing employ-
ing traditional operators like selection, projection etc., or the VIDs
can be used to retrieve the actual document versions from the ver-
sion database. V2 supports a number of operators, including opera-
tors for returning the document identifiers of all document versions
containing one or more particular words, selecting from a set of
versions those versions that were valid at a particular time or dur-
ing a particular periods, as well as the Allen operators, i.e., before,
after, meets, etc.

V2 supports automatic compression of documents if desired (this
typically reduces the size of the document database to only 25% of
the original size). In addition, space-reduction can be achieved by
traditional vacuuming (delete all non-current versions created be-
fore a certain time

�
) and granularity reduction (delete intermediate

versions).

4. DESIGN AND IMPLEMENTATION
The current prototype is essentially a library, where accesses to a

database are performed through a V2 object, using an API support-
ing the operations and operators described previously. The bottom
layers are built upon the Berkeley DB database toolkit [4], which
we employ to provide persistent storage using B-trees.

The architecture of V2 is illustrated in Figure 1, and the main
modules are the version database, document name index, document
version management, text index, API layer, operator layer, and op-
tionally extra structures for improving temporal queries. These
modules/structures will now be described in more detail.

Version database: The document versions are stored in the ver-
sion database. In order to support retrieval of parts of documents,
the documents are stored as a number of chunks (this is done trans-
parently to the user/application) in a tree structure, where the con-
catenated VID and chunk number is used as the search key. The
VID is essentially a counter, and given the fact that each new ver-
sion to be inserted is given a higher VID than the previous versions,
the document version tree index is append-only. This is interest-
ing, because is makes it easy to retrieve all versions inserted during
a certain VID interval (which can be mapped from a time inter-
val). One application of this feature is reconnect/synchronization
of mobile databases, which can retrieve all versions inserted into
the database after a certain VID (last time the mobile unit was con-
nected). In order to support reverse mapping from VID to doc-
ument name and time, this information, together with other low-

level metadata, is stored in a separate meta chunk together with the
document.

Document name index: A document is identified by a document
name, which can be a filename in the local case, or URL in the
more general case. Conceptually, the document name index has
for each document name some metadata related to all versions of
the document, followed by specific information for each particular
version. For each document, the document name and whether the
document is temporal or not (i.e., whether previous versions should
be kept when a new version of the document is inserted into the
database) is stored. For each document version, some metadata is
stored in structures called version descriptors: 1) timestamp and
2) whether the actual version is stored compressed or not.

Document version management: Store and retrieve documents,
employing the document name index and version database.

Text indexing: A text-index module based on variants of in-
verted lists is used in order to efficiently support text-containment
queries, i.e., queries for document versions that contain a particular
word (or set of words).

In our context, we consider it necessary to support dynamic up-
dates of the full-text index, so that all updates from a transaction
are persistent as well as immediately available. This contrasts to
many other systems that base the text indexing on bulk updates at
regular intervals, in order to keep the average update cost lower.

In order to support temporal text-containment queries we pro-
vide several time-indexing techniques, each suitable for particular
application domains (discussed in more detail in [2]), including the
TV index which is a summary time index mapping from time to
VID, and the VP index which indexes validity time for versions,
essentially mapping from VID to time period for every version.

5. CONCLUSIONS
We have in this paper described the V2 temporal document data-

base system, which supports storage, retrieval, and querying of
temporal documents. All of what has been described previously in
this paper is implemented and supported by the current prototype.
Such a system is useful in a number of application, and the pro-
totype has for example been used to manage a temporal XML/web
warehouse, storing the history of a set of selected web pages or web
sites.

For a more detailed study of the design, implementation and per-
formance of V2, we refer to [1].

6. REFERENCES
[1] K. Nørvåg. The design, implementation and performance

evaluation of the V2 temporal document database system.
Technical Report IDI 10/2002, Norwegian University of
Science and Technology, 2002. Available from
http://www.idi.ntnu.no/grupper/DB-grp/.

[2] K. Nørvåg. Supporting temporal text-containment queries.
Technical Report IDI 11/2002, Norwegian University of
Science and Technology, 2002. Available from
http://www.idi.ntnu.no/grupper/DB-grp/.

[3] K. Nørvåg, M. Limstrand, and L. Myklebust. TeXOR:
Temporal XML Database on an Object-Relational Database
System. In (submitted for publication), 2002.

[4] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In
Proceedings of the FREENIX Track: 1999 USENIX Annual
Technical Conference, 1999.


