
Improved and Optimized Partitioning

Techniques in Database Query Processing

Kjell Bratbergsengen and Kjetil N�rv�ag

Department of Computer Science
Norwegian University of Science and Technology�

���� Trondheim� Norway
fkjellb�noervaagg�idt�unit�no

Abstract� In this paper we present two improvements to the partition�
ing process	
� A new dynamic bu�er management strategy is employed
to increase the average block size of IO�transfers to temporary �les�
and �� An optimal switching between three di�erent variants of the par�
titioning methods that ensures minimal partitioning cost� The expected
performance gain resulting from the new management strategy is about
��� for a reasonable resource con�guration� The performance gain de�
creases with increasing available bu�er space� The di�erent partitioning
strategies �partial partitioning or hybrid hashing� one pass partitioning�
and multipass partitioning� are analyzed� and we present the optimal
working range for these� as a function of operand volume and available
memory�

Keywords	 Relational algebra� partitioning methods� bu�er management�
query processing

� Introduction

Relational algebra operations are time and resource consuming� especially when
done on large operand volumes� In this paper� we present a new� dynamic� bu�er
management strategy for partitioning which can signi�cantly reduce the execu�
tion time� the circular track snow plow strategy� Our approach is motivated from
three observations�

	� When doing disk intensive operations� it is advantageous to process as large
blocks as possible when doing disk accesses� Our strategy uses an optimal
partitioning� which gives as large blocks as possible�

� With the traditional �xed size block methods� only half the available memory
is actually holding records� Our strategy� with variable size blocks� will with
the same amount of available memory� double the average block size� and
thus make much better use of available memory resources�

�� While it might be true that main memory on computers are large� and getting
even larger� not all of this is available for one relational algebra operation�
Often� several programs are running concurrently� several users are running
queries concurrently� and queries can be quite complex� resulting in a large

tree of query operators� In this case� available memory for each operator can
be rather small� As the comparison between the methods will show later in
the paper� our method will be especially advantageous with small amounts
of memory available� but it will always perform better than the traditional
approach�

In the rest of the paper� we �rst present some related work in Sect�
� and give
an introduction to partitioning strategies in Sect� �� The circular track snow plow
strategy is introduced in Sect� �� We present our cost model and assumptions
in Sect� � and derive cost functions for the partitioning strategies� Finally� we
compare these approaches in Sect� �� and show a signi�cant performance gain
by using the snow plow strategy�

� Related Work

Optimal splitting of source relations is discussed by Nakayama et� al� in ����
Their conclusion is to partition the relation into as many partitions as possible�
They say nothing about the block size� except that it is �xed� Their algorithms
is bene�cial to use when we have heavy data skew� but in other situations the
small block size makes them expensive� as pointed out by Graefe ��� Block size
�clusters� has usually been determined from experiments� simulations� or just
common sense� with Volcano ��� as an exception� Recently� the use of variable
block size has also been recognized and studied by Davidson and Graefe ���� and
Zeller and Gray �		�� but these papers focuses on memory availability� rather
than a thorough analysis by the use of cost functions�

� Partitioning Strategies

With smaller operand volumes� nested loop methods are superior� requiring only
one scan of the operands to create the resulting table� When the operand volume
increases� nested loop methods are still employed in the �nal stage� but now after
a hash partitioning stage� as described in �
� 	� ���

Several partitioning strategies exists� They can be classi�ed as no splitting�
partial� one pass� and multipass partitioning� This �rst one� no splitting� is used
when the smallest operand is less than or equal to available workspace� When
this is the case� the whole operation can be done in main memory�

When the smallest operand is larger than available memory� one can split in
one pass� All available workspace is used for splitting� We call this variant one
pass partitioning� The number of partitions� p� is so large that each partition can
be held in work space in the next stage�

When the smallest operand V is larger than the memory M � but less than
some limit Vppu� partial splitting �or hybrid hash� can be employed� Part of
the memory is used for partitioning� the other part is used for performing the
relational algebra operation� When the operand gets larger� more work space

area is needed for splitting� The upper limit Vppu is found when all available
memory is best used for splitting the operand�

As the smallest operand gets very large� a large number of partitions is nec�
essary when one pass partitioning is employed� The result is a small block size�
because the block size b � M�p �or� as we will see later� with our method�
b �
M�p�� As this block size gets smaller� there is a limit where splitting is best
done in several passes� multipass partitioning�

It is useful to classify the �smallest� operand size� relative to available work�
space M � in four classes� small� medium� large� and huge operands� As is shown
in Table �� partitioning strategy is determined from operand class� How to decide
the bounds for each class will be shown later in the paper� As pointed out in the
introduction� it is important to keep in mind that not all of the main memory
is available as workspace for the partitioning process�

Operand Class Size of Smallest Operand Strategy
Small V � M No partitioning
Medium M � V � Vppu Partial partitioning
Large Vppu � V � Vopu One pass partitioning
Huge Vopu � V Multipass partitioning

Table �� Operand classes and corresponding partitioning strategies�

� The Circular Track Snow Plow Strategy

With the traditional splitting strategy� as described in �
� 	� �� �� 	��� we have a
�xed size of memory for each group� When a new tuple arrive� it is moved to its
block bu�er� Whenever a block bu�er is full� it is written to disk�

If we look closer at the �xed block size splitting� we see that only about half
the available memory is actually holding records� If we do not divide the memory
into �xed sized block bu�ers� but rather let work space be one common memory
pool� we do not have to write records to disks until all memory is taken� Then
we write the �rst group to disk� We now have a new period where all groups
�part of partitions in memory� are growing at approximately the same speed�
This holds if the hash partitioning formula gives an even distribution� Again
when there is no room left� the next group is written to disk� After all groups
have been written once to disk� we start over again with the �rst group� After a
transient start up phase� we can see that the average size of the groups written
to disk is approximately b �
M�p� This method is analogous to the replacement
selection sort which is used for initial sorting in sort�merge programs� Why the
average block size is
M�p� is well described by Knuth in ���� The situation can
be compared to a snow plow on a circular track of length l� The plow is always
plowing full depth snow� Just behind the plow� the depth is zero� and the average
snow depth on the track is one half the full depth h� The total amount of snow
on the track is hl�
� In our case� the full snow depth h corresponds to the block

size b� and the track length l corresponds to the number of sub�les p� Then
bp�
 � M � b �
M�p� This is illustrated in Fig� 	� which shows the groups
in memory during splitting� To the left we see the situation just before the �rst
group ��� is written to disk� To the right we see a steady state situation just
after group � has been written to disk� The next group to go is number �� when
the lower limit of available space is reached�

2 3 4 5 6 70 1 2 3 4 5 6 70 1

Fig� �� Groups in memory during splitting�

��� Memory management

The memory is now used as a heap� storing records� The records are logically
separated into p groups� This can be done using linked lists� pointer arrays�
linked lists with pointers� etc� The group is determined using a hash formula on
the operand key� Records are read and stored in memory until the amount of
free memory reaches a lower limit� In the stationary situation� the amount of
memory used is the same as the amount released� The addresses of the free space
slots could be stored on a small stack� Memory management is especially simple
if all records have the same size� however� if there are variable length records�
more elaborate schemes should be used� Memory management at this level is
important� because it could take a lions share of CPU time�

��� Writing Blocks to Disk

To take full advantage of this method� each group should be written to the disk
as one block� Because of the stochastic nature of the group size� groups do not
in general have the same size� Also� in the initialization phase� the average group
size is rapidly growing from M�p to
M�p�

Despite the groups in memory are of di�erent sizes� each group could be
stored as a chain of �xed sized blocks on the disk� We should set aside two
bu�ers to allow for double bu�ering� Each bu�er should be
M�p bytes� When
a group is ready for output� its records are moved to the free output bu�er� In
the startup transient phase� we would not be able to �ll the bu�er before we

have to write it� but in the stationary phase most of the time it will be nearly
full� Sometimes we have to leave some records of the group behind� they will
have to go to the next block for that group� To better �ll the output bu�er� we
could change the round robin sequence strategy for writing groups to disk� to
a largest group �rst strategy �LGF�� This strategy might even lead to a larger
average block size than
M�p�

It would be even better if we could get user level functionality enabling us
directly to write to� and read from� the SCSI port� This requires some redesign of
the ASPI interface� The current ASPI interface provides only a traditional block
transfer I�O command� The command speci�es a block address� bu�er address
and block length� No constructive interaction is possible until the command has
�nished� i�e� transferred a complete block� We would need new functionality� like
moving single words or smaller blocks between SCSI port and user memory� This
is e�ectively a gather write function available at the user level� This could save
a lot of unnecessary copying�

��� Disk Layout

53 41 2 24 5 60 3

File start

10

1st round 2nd round

6 2 510 3 4 6 Free
3rd round

Fig� �� The disk image after all groups have been emptied three times�

If we write the disk with �xed sized blocks� there is no problem �nding all
blocks of one group� they are chained together� The following is about disk layout
when the disk is written with variable sized blocks �groups�� When the groups
are written to disk� we will get a pattern similar to that shown in Fig�
� if
neighboring groups are written contiguously onto disk� A Round in the �gure
is one round around the circular track� processing each group once� The num�
bers are group numbers� Writing groups contiguously gives a bonus when we
�ush all groups at end of input� This can be done in one operation� It is also
necessary if we want to create supergroups� by joining neighboring groups into
one supergroup� This is useful when the operand�s� has been over�partitioned
�the operand has been partitioned into a larger number of partitions than nec�
essary�� This can happen if we are uncertain about the number of sub�les we
need� and choose to overpartition to err on the right side� The overpartitioning
causes more disk accesses than necessary during the splitting phase� The extra
cost of overpartitioning should be removed from the reading phase� and we can

Round Address g� g� g� g� g� g� g�

� � �� �� �� �� �� �	 ��

� ��� �
 �� �� �� �� �� ��
� ��� �� �� �	 �� �� �� ��
� �
	 �� �
 �� �� �� ��

� ��� � � � � � � �
Size ��� �
 �	 �	 �� �� �� ��

Table �� Index table� where the last row holds accumulated values �the size� for each
group in number of address units�

do so by joining neighboring groups into supergroups� This is easy as long as all
groups are written contiguously onto the same disk�

Because of the variable block size� we need an index to e�ciently retrieve
blocks when we read back one or more groups� The index is a table with one
column for each group �sub�le�� and one row for each round in the Round Robin
output process� The corresponding table element would then contain the size of
each block� The size of the index table depends on the number of groups and
the number of rounds� To speed up address calculations� it would be useful to
add one column to the index table� holding the address of the �rst block in each
round� It is shown in Table ��� how an index table might look like�

The size of each block could be in bytes� sectors or some other unit� The
total size of each sub�le after partitioning is found by adding the numbers in
each column� This information will tell how many sub�les can be read together�
or how much space is needed to hold the largest sub�le during the �nal algebra
operation�

Even for large data volumes� the index table should be stored in memory
without eating up to much space� Suppose that for every round� approximately

M data is written to disk� The size of the index table� in number of variable
sized blocks is s � V p

�M � If V � 	 GB� p � 	�� and M � � MB� the size s is
	��� integers�

��� Estimation of the Free Space Limit

The free space limit should be as small as possible� however there are some
constraints� If we have only one SCSI bus� we have no real I�O overlapping�
An initiated I�O operation must be completed until another operation could be
started� If we started a read operation and could not complete it because of lack
of input bu�er space� we would have a deadlock� Then we would not be able to
free space by writing a group to disk� Before we start a read� we should make
sure that we have enough free space to accommodate all data read�

��� The Minimum Block Size

Writing a group should be skipped if it is below a minimum size� This will happen
only when the hashing formula works poorly� producing uneven sized groups� or

we try to stress the system� having uncoordinated parameters� The minimum
block size should be in the vicinity of � KB� and this should be far below the
normal group size when M has some reasonable value �above 	�� KB� at least��
If we use the LGF strategy there will be no minimum block size problem�

��� Multiuser Environments

It is also worth noting that the size ofM can change dynamically� this only a�ects
the size of the groups� Partitioning strategy� however� is done at operation startup
time� Thus� if available memory decreases� an extra pass might be needed�

� Cost Functions

Our cost model is based on I�O transfer only� This is the most signi�cant cost
factor� and in reasonable implementations� the CPU processing should go in
parallel with I�O transfer making the CPU cost �invisible�� Our disk model is
traditional� Disk transfers are done blockwise� One block is the amount of data
transferred in one I�O command� The main cost comes from two contributors�
the start up cost and transfer cost� Start up cost comes from command software
and hardware overhead� disk positioning time� and disk rotational delay�

In our model� the average start up cost is �xed� and is set equivalent to tr� the
time it takes to do one disk revolution� The transfer cost is directly proportional
to the block size� and is equivalent to reading disk tracks contiguously� e�g��
transfer cost is equal to b

Vs
tr� where Vs is the amount of data on one track and b

is the block size to be transferred� For very large blocks� it is likely that several
tracks and also tracks in di�erent cylinders are read contiguously� This implies
positioning� but we assume that the times used for this is insigni�cant compared
to transfer time� The time it takes to transfer one block is tb � tr�	 �

b
Vs
�� The

time to transfer a data volume V using block size b is�

TT �
V tr
b

�
V tr
Vs

� V tr

�
	

b
�

	

Vs

�
�	�

Our emphasis is to �nd optimal parameters and the best working range for
each method� To be able to handle the di�erent equations mathematically we
regard them as continuous functions rather than discontinuous functions result�
ing from applying ceiling and �oor functions� This approximation gives a better
overall view� but could cause small errors compared to the exact mathematical
description�

To get smooth input and output streams� double bu�ering can be employed�
However� to simplify the computations� the space for input bu�ers and extra
output bu�ers is not counted within the memory M in our cost functions� Thus�
the memory M � can be thought of as the available memory after reservation of

memory for the extra input and output bu�ers�
The splitting is based on a hash formula applied to the operation key� The

subtables will vary in size due to statistical variations and the �goodness� of the

selected hash formula� in a real system it would be bene�cial to let the average
subtable be slightly smaller than the workspace� With good approximation we
can ignore this and we are also ignoring space needed for structural data�

��� One Pass Partitioning

We will start with a simple partitioning strategy� If the input table is larger than
available work space� we will split the table in subtables� such that each subtable
�ts into work space M � The subtables are are written to temporary �les� The
necessary split factor is� p � d VM e� and the time used is�

T�p �
TT �
V tr

�
	

b
�

	

Vs

�
�
V tr

�
V

M�
�

	

Vs

�

The actual block size with �xed block size� assuming we are free to select the

block size� is b � bMp c � M�

V � which gives�

TF
�p �
V tr

�
V

M�
�

	

Vs

�

and with variable block size� we get on the average b � �M
p � �M�

V � which gives�

T V
�p �
V tr

�
V

M�
�

	

Vs

�

For operand volumes slightly larger than M � we see that it would probably be
better to let some of the work space be used for holding records participating in
the �nal algebra stage� and use only a portion of the work space for split bu�er�
This leads us to the partial partitioning or hybrid hash algorithm� At the other
end� we see that when operand volumes are very large� the split factor increases
and the block size goes down� Small I�O blocks are severely slowing down the
I�O process� It may be better to split the data repeatedly� using larger blocks�
rather than using smaller blocks and reaching the correct sub�le size in one pass�
This leads us to the multipass splitting method�

��� Partial Partition

Partial partitioning is especially advantageous for operand volumes larger than
M � but so small that we do not need all available memory for e�cient splitting�
A part of the memory is used for holding a number of complete groups� to avoid
the unnecessary I�O caused by the splitting� If the operand volume V is known
in advance� we can compute the optimum memory size x� not used for splitting�
x is thus also the amount of data which is not split� We ignore �oor and ceiling
functions to keep the equations mathematically tractable�

Fixed Block Size� The number of sub�les is N � �V � x��M � The complete
split is done in one pass� hence N � p� the split factor� The average block size
using �xed block size splitting is�

b �
�M � x�

p
�

M�M � x�

V � x

which gives the split time by substitution of b into Eq� 	 is�

TF
pp �
�V � x�tr

�
	

b
�

	

Vs

�
�
�V � x�tr

�
V � x

M�M � x�
�

	

Vs

�

The time will vary with x� a large x reduces transferred volume� however� the
average block size is decreased� and the time spent may increase� To �nd a
minimal value for Tpp� we have to �nd the value of x that will give the minimum
value of Tpp� This can be done by solving�

dTF
pp�x�

dx
�
tr

��
�V � x�M�M � x� �M�V � x��

M��M � x��
� 	

Vs

�
� �

To solve this equation we substitute � �M�Vs and

z �
V � x

M � x
�
�

Then we obtain the following equation in z giving�

z� �
z � � � �� z � 	�p	 � �

Back substitution of z into Eq�
 gives�

x �
zM � V

z � 	

x should never be negative� which implies� z � � and zM � V � �� This sets
a restriction on V � which must be less than zM � It does not make sense to use
partial partitioning when operand volumes are greater than zM � When V �
M � splitting is not at all employed� This limits the working range of partial
partitioning to� M � V � zM �

Variable Block Size� Derivation in the case of variable block size is done the
same way as for �xed block size� The only di�erence is that we are doubling the
e�ective block size� which gives�

T V
pp �
�V � x�tr

�
	

b
�

	

Vs

�
�
�V � x�tr

�
V � x

M�M � x�
�

	

Vs

�

��� Multipass Partitioning

Data are read from an input �le and hashed into a number of sub�les� The
actual block size with �xed size blocks is� b � bMp c � M

p � The necessary number

of sub�les at the end is N � d VM e � V
M � Depending on the operand volume� it

may be bene�cial to partition the operand in several passes� This is equivalent
to the merging used in sort�merge processing� and the approximate number of
operand passes is w � logpN � When we substitute for N � we get w � logp

V
M �

The total amount of data read and written to disk to complete a partitioning and
the �nal relational algebra step is VT �
V w� which gives a total partitioning
time of�

Tmp � VTTT �
V tr logp
V

M

�
	

b
�

	

Vs

�

Substituting for logp
V
M � lnV�M

ln p �

Tmp �
V
lnV�M

ln p
tr

�
p

M
�

	

Vs

�
���

An optimum block size exist because when we split into many sub�les in
one pass� each sub�le need an output bu�er� hence they get smaller� We can
minimize Eq� � by noting that the variable part of this expression is�

f�p� �
	

ln p

�
	

b
�

	

Vs

�

To �nd a minimum value for f�p�� we derive f�p� with respect to p� and the
optimum value for p is when f ��p� � ��

p�ln p� 	�� M

Vs
� �

It is easily seen that p is a function of the quotient � � M
Vs
�

p�lnp� 	�� � � �

This equation can be solved numerically� to �nd the value for p� Thus� the func�
tion for multipass partitioning with �xed block size is given by�

TF
mp �
V tr logp

V

M

�
p

M
�

	

Vs

�

With the same method� we can �nd an optimum value for p in the case of
variable block size �where b � �M

p ��

T V
mp �
V tr logp

V

M

�
p

M
�

	

Vs

�

As an example� Table �� shows optimal split factors� block size� and number
of passes for di�erent sizes of memory� with operand volume held constant on
V � 	��� MB and Vs � � KB�

� � M�Vs� � � � �� �� �� ��� ��� ��� ����
M in MB�� ����� ���� ����� ���� ���� ���� �� ��� ��� ���
Fixed block size�
Optimal p � � � 	 �� �� �� �� ��
 ���
b �� �� �� �� 	� ��
 ��� ��
 �
� ���
w
��� ���� ���� ���� ���	 ��
� ���� ���� ���� ����

Var� block size�
Optimal p � � 	 �� �� �� �� ��	 ��� ���
b �� �� �� 	� ��� ��� ��
 �	� ��� ���
w ���� ���� ��

 ���� ���� ���	 ���� ���� ���� ����

Table �� Optimal split factors� block size and number of passes for di�erent sizes of
memory�

Strategy� Partial One Pass Multipass
Range� M � V � zM zM � V � pmpM V � pmpM

medium operands� large operands� huge operands�

Fixed Size� TF � �V � x�tr

�
V�x

M�M�x�
� �

Vs

�
�V tr

�
V

M� � �
Vs

�
�V tr logp

V
M

�
p
M � �

Vs

�

z � � �
p
� � �

pln p � ��� � � �

Variable size TV � �V � x�tr

�
V�x

�M�M�x�
� �

Vs

�
�V tr

�
V

�M� � �
Vs

�
�V tr logp

V
M

�
p

�M � �
Vs

�

z � � �
p
� � ��

pln p � ��� �� � �

Supporting values� x � zM�V
z�� w � max

�
����

lnV�M
ln p

�
� �M�Vs

Table �� Cost functions for splitting�

��� Summary and Application of the Cost Functions

The cost functions and their working areas are summarized in Table ��� To
demonstrate the relationship between the three variants� we have computed
the partitioning times for di�erent operand volumes� By using Vs � � KB�
tr � 		 ms� and M � 	 MB� we get the partitioning times as shown in Ta�
ble ���

From the table� we can see that for �xed size blocks� partial partitioning is
best for volumes from
 to MB� Multipass is better when operands are larger
than 	
 MB� For variable blocks� partial partitioning is best for the volumes
from
 to � MB� Then one pass takes over� multipass partitioning is better when
operands are larger than
� MB� The di�erent working areas for the variants of
partitioning is illustrated in Fig� ��

Fixed sized blocks Variable sized blocks
� � ��� z � ���� pmp � �� � � ��� z � ���� pmp � ��

V in MB� Tpp T�p Tmp Tpp T�p Tmp

� ���
 ��
	 ���
 ���� ��
� ����
� ���
 ���� ���
 ���� ���� ����
� ���	 ���� ��
� ��	� ��
� ����
� ���� ���	 ���� ���� ���� ����
� � ���� ���	 ���� ���� ����
� � ���� ���� ���� ���� ����
	 � ��
	 ��	� � ���� ����
�� � ���	 ���� �
�
� ����
�� � ���� ���� � ���� ����
�� � ��
�� ���� � ���� �
��
��	 � ����� ����� � ��	�
 ��	��
��� � ������ ����
 � 	���� ����

Table �� Partitioning times for di�erent operand volumes and di�erent basic parti�
tioning methods�

Fig� �� Working areas for di�erent algebra methods� with numbers from variable block
size�

M=100 MB

M=1 MB

Variable block size

Fixed block size

M=10 MB
1.

10.

100.

1000.

Time/s

1. 10. 100. 1000.

Data Volume/MB

Fig� �� Execution time with snow plow splitting�

� Comparison

To compare the e�ect of increased average block size� we compare the traditional
and new methods for three representative cases� M � 	 MB� M � 	� MB� and
M � 	�� MB� In Fig� � we have plotted the functions for variable and �xed block
size� We have for each value of V used the partitioning strategy �no�partial�one
pass�multipass� that gives the best time� It is important to keep in mind that
this is a log�log�plot� and therefore the di�erence in execution time between �xed
and variable block size is not large in the �gure� The improvement can be better
illustrated by looking at the performance gain� which is computed in Table �
and illustrated in Fig� � In the table� blank �elds denotes no splitting�

As expected� the improvements are most noticeable for smaller work space
areas� For larger work spaces� the number of blocks is relatively small� and the
block access time is negligible compared to the transfer time�

M � � MB� � � �� M � �� MB� � � ��� M � ��� MB� � � ����
V in MB� �xed var imp � �xed var imp � �xed var imp �
�
� ��� ��� ��
� ��� ��	 ��
	 ��� ��� ��
�� ���� ���� �� ��� ��
 ���
�� ���� ���� �
 ���� ���	 ���
�� ���� �
�� �
 ���� ���� ���
��	 ����� ��	�� �
 ���� �	�� ��� ���� ���	 ���
��� ����
 ����
 �
 ��	�� ����� ��� ���� ���� ���
���
���� ����	 �
 �	��	 ����� ���� �
��� �	
�� ���
���� ���
 ��	� �
 ��	�� ����� ���� ��
�� ����� ���
���	 ���� ���� �
 ���	 ���� ����
���� 	
��� ���

Table �� Performance improvement as a function of operand volume and workspace
size�

� Conclusions and Future Work

We have described a novel method for partitioning� the circular track snow plow
bu�er management strategy� This strategy makes more e�cient use of memory
compared to traditional methods� and e�ectively doubles the average block size�
Doubling the e�ective block size can give substantial reductions in I�O transfer
time� and by the use of cost models we have shown that performance gains of
	��
�� can be expected for reasonable resource con�gurations�

In this paper we have made the assumption that the operand volume is
known� This is not always true� and we are now investigating a dynamic or
adaptive strategy� based on the snow plow principle� which is applicable when
the operand volume is unknown� We are also working with the new bu�er man�
agement strategy employed in other areas as �le loading and transaction log�

In the development og this methods� we have also discovered how a more
e�cient set of routines for communication with the SCSI buss system could be
used to avoid the unnecessary transfer of data to an internal block bu�er� Direct
transfer to the user program area can save the internal bus from considerable
tra�c� This is clearly interesting� and should be studied further�

References

� K� Bratbergsengen� Hashing Methods and Relational Algebra Operations� In Pro�
ceedings of the ��th International Conference on VLDB�
����

�� K� Bratbergsengen� R� Larsen� O� Risnes� and T� Aandalen� A Neighbor Con�
nected Processor Network for Performing Relational Algebra Operations� In Fifth
Workshop on Computer Architecture for Non�Numeric Processing� March ������
���� �SIGIR Vol	 XV No	
� SIGMOD Vol	X No	 ���
����

�� D� L� Davidson and G� Graefe� Memory�Contention Responsive Hash Joins� In
Proceedings of the
�th International Conference on VLDB�
����

M=100 MB

M=1 MB

M=10 MB

0

5

10

15

20

25

Gain/%

0 200 400 600 800 1000 1200 1400

Data Volume/MB

Fig� �� Performance gain by using the snow plow strategy�

�� D� DeWitt� R� Katz� F� Olken� L� Shapiro� M� Stonebraker� and D� Wood� Im�
plementation Techniques for Main Memory Database Systems� In Proc	 ACM
SIGMOD Conf	�
����

�� G� Graefe� Query Evaluation Techniques for Large Databases� ACM Computing
Surveys� ������
����

�� G� Graefe� Volcano � An Extensible and Parallel Query Evaluation System� IEEE
Transactions on Knowledge and Data Engineering� ��
��
����

�� M� Kitsuregawa� H� Tanaka� and T� Motooka� Application of Hash to Data Base
Machine and its Architecture� New Generation Computing�
�
��
����

�� D� Knuth� The Art of Computer Programming	 Sorting and Searching� Addison�
Wesley Publishing Company Inc��
����

�� M� Nakayama� M� Kitsuregawa� and M� Takagi� Hash�Partitioned Join Method
Using Dynamic Destaging Strategy� In Proceedings of the ��th International Con�
ference on VLDB�
����

�� L� D� Shapiro� Join Processing in Database Systems with Large Main Memories�
ACM Transactions on Database Systems�

����
����

� H� Zeller and J� Gray� An Adaptive Hash Join Algorithm for Multiuser Environ�
ments� In Proceedings of the ��th International Conference on VLDB�
����

This article was processed using the LATEX macro package with LLNCS style

