Improved and Optimized Partitioning
Techniques in Database Query Processing

Kjell Bratbergsengen and Kjetil Ngrvag

Department of Computer Science
Norwegian University of Science and Technology,
7034 Trondheim, Norway
{kjellb,noervaag}@idt.unit.no

Abstract. In this paper we present two improvements to the partition-
ing process: 1) A new dynamic buffer management strategy is employed
to increase the average block size of I/O-transfers to temporary files,
and 2) An optimal switching between three different variants of the par-
titioning methods that ensures minimal partitioning cost. The expected
performance gain resulting from the new management strategy is about
30% for a reasonable resource configuration. The performance gain de-
creases with increasing available buffer space. The different partitioning
strategies (partial partitioning or hybrid hashing, one pass partitioning,
and multipass partitioning) are analyzed, and we present the optimal
working range for these, as a function of operand volume and available
memory.

Keywords: Relational algebra, partitioning methods, buffer management,
query processing

1 Introduction

Relational algebra operations are time and resource consuming, especially when
done on large operand volumes. In this paper, we present a new, dynamic, buffer
management strategy for partitioning which can significantly reduce the execu-
tion time: the circular track snow plow strategy. Our approach is motivated from
three observations:

1. When doing disk intensive operations, it is advantageous to process as large
blocks as possible when doing disk accesses. Our strategy uses an optimal
partitioning, which gives as large blocks as possible.

2. With the traditional fixed size block methods, only half the available memory
is actually holding records. Our strategy, with variable size blocks, will with
the same amount of available memory, double the average block size, and
thus make much better use of available memory resources.

3. While it might be true that main memory on computers are large, and getting
even larger, not all of this is available for one relational algebra operation.
Often, several programs are running concurrently, several users are running
queries concurrently, and queries can be quite complex, resulting in a large

tree of query operators. In this case, available memory for each operator can
be rather small. As the comparison between the methods will show later in
the paper, our method will be especially advantageous with small amounts
of memory available, but it will always perform better than the traditional
approach.

In the rest of the paper, we first present some related work in Sect. 2, and give
an introduction to partitioning strategies in Sect. 3. The circular track snow plow
strategy is introduced in Sect. 4. We present our cost model and assumptions
in Sect. 5, and derive cost functions for the partitioning strategies. Finally, we
compare these approaches in Sect. 6, and show a significant performance gain
by using the snow plow strategy.

2 Related Work

Optimal splitting of source relations is discussed by Nakayama et. al. in [9].
Their conclusion is to partition the relation into as many partitions as possible.
They say nothing about the block size, except that it is fixed. Their algorithms
is beneficial to use when we have heavy data skew, but in other situations the
small block size makes them expensive, as pointed out by Graefe [5]. Block size
(clusters) has usually been determined from experiments, simulations, or just
common sense, with Volcano [6] as an exception. Recently, the use of variable
block size has also been recognized and studied by Davidson and Graefe [3], and
Zeller and Gray [11], but these papers focuses on memory availability, rather
than a thorough analysis by the use of cost functions.

3 Partitioning Strategies

With smaller operand volumes, nested loop methods are superior, requiring only
one scan of the operands to create the resulting table. When the operand volume
increases, nested loop methods are still employed in the final stage, but now after
a hash partitioning stage, as described in [2, 1, 4].

Several partitioning strategies exists. They can be classified as no splitting,
partial, one pass, and multipass partitioning. This first one, no splitting, is used
when the smallest operand is less than or equal to available workspace. When
this is the case, the whole operation can be done in main memory.

When the smallest operand is larger than available memory, one can split in
one pass. All available workspace is used for splitting. We call this variant one
pass partitioning. The number of partitions, p, is so large that each partition can
be held in work space in the next stage.

When the smallest operand V' is larger than the memory M, but less than
some limit Vjp,, partial splitting (or hybrid hash) can be employed. Part of
the memory is used for partitioning, the other part is used for performing the
relational algebra operation. When the operand gets larger, more work space

area is needed for splitting. The upper limit V,,, is found when all available
memory is best used for splitting the operand.

As the smallest operand gets very large, a large number of partitions is nec-
essary when one pass partitioning is employed. The result is a small block size,
because the block size b = M/p (or, as we will see later, with our method,
b =2M/p). As this block size gets smaller, there is a limit where splitting is best
done in several passes, multipass partitioning.

It is useful to classify the (smallest) operand size, relative to available work-
space M, in four classes: small, medium, large, and huge operands. As is shown
in Table 3, partitioning strategy is determined from operand class. How to decide
the bounds for each class will be shown later in the paper. As pointed out in the
introduction, it is important to keep in mind that not all of the main memory
is available as workspace for the partitioning process.

Operand Class|Size of Smallest Operand |Strategy

Small V<M No partitioning
Medium M <V < Vipu Partial partitioning
Large Vopu <V < Vopu One pass partitioning
Huge Vopu <V Multipass partitioning

Table 1. Operand classes and corresponding partitioning strategies.

4 The Circular Track Snow Plow Strategy

With the traditional splitting strategy, as described in [2, 1, 7, 4, 10], we have a
fixed size of memory for each group. When a new tuple arrive, it is moved to its
block buffer. Whenever a block buffer is full, it is written to disk.

If we look closer at the fixed block size splitting, we see that only about half
the available memory is actually holding records. If we do not divide the memory
into fixed sized block buffers, but rather let work space be one common memory
pool, we do not have to write records to disks until all memory is taken. Then
we write the first group to disk. We now have a new period where all groups
(part of partitions in memory) are growing at approximately the same speed.
This holds if the hash partitioning formula gives an even distribution. Again
when there is no room left, the next group is written to disk. After all groups
have been written once to disk, we start over again with the first group. After a
transient start up phase, we can see that the average size of the groups written
to disk is approximately b = 2M /p. This method is analogous to the replacement
selection sort which is used for initial sorting in sort-merge programs. Why the
average block size is 2M/p, is well described by Knuth in [8]. The situation can
be compared to a snow plow on a circular track of length [. The plow is always
plowing full depth snow. Just behind the plow, the depth is zero, and the average
snow depth on the track is one half the full depth h. The total amount of snow
on the track is hl/2. In our case, the full snow depth h corresponds to the block

size b, and the track length [corresponds to the number of subfiles p. Then
bp/2 = M = b = 2M/p. This is illustrated in Fig. 1, which shows the groups
in memory during splitting. To the left we see the situation just before the first
group (0) is written to disk. To the right we see a steady state situation just
after group 3 has been written to disk. The next group to go is number 4, when
the lower limit of available space is reached.

=]
=]
N

Fig. 1. Groups in memory during splitting.

4.1 Memory management

The memory is now used as a heap, storing records. The records are logically
separated into p groups. This can be done using linked lists, pointer arrays,
linked lists with pointers, etc. The group is determined using a hash formula on
the operand key. Records are read and stored in memory until the amount of
free memory reaches a lower limit. In the stationary situation, the amount of
memory used is the same as the amount released. The addresses of the free space
slots could be stored on a small stack. Memory management is especially simple
if all records have the same size, however, if there are variable length records,
more elaborate schemes should be used. Memory management at this level is
important, because it could take a lions share of CPU time.

4.2 Writing Blocks to Disk

To take full advantage of this method, each group should be written to the disk
as one block. Because of the stochastic nature of the group size, groups do not
in general have the same size. Also, in the initialization phase, the average group
size is rapidly growing from M /p to 2M /p.

Despite the groups in memory are of different sizes, each group could be
stored as a chain of fixed sized blocks on the disk. We should set aside two
buffers to allow for double buffering. Each buffer should be 2M /p bytes. When
a group is ready for output, its records are moved to the free output buffer. In
the startup transient phase, we would not be able to fill the buffer before we

have to write it, but in the stationary phase most of the time it will be nearly
full. Sometimes we have to leave some records of the group behind, they will
have to go to the next block for that group. To better fill the output buffer, we
could change the round robin sequence strategy for writing groups to disk, to
a largest group first strategy (LGF). This strategy might even lead to a larger
average block size than 2M /p.

It would be even better if we could get user level functionality enabling us
directly to write to, and read from, the SCSI port. This requires some redesign of
the ASPI interface. The current ASPI interface provides only a traditional block
transfer I/O command. The command specifies a block address, buffer address
and block length. No constructive interaction is possible until the command has
finished, i.e. transferred a complete block. We would need new functionality, like
moving single words or smaller blocks between SCSI port and user memory. This
is effectively a gather write function available at the user level. This could save
a lot of unnecessary copying.

4.3 Disk Layout

File start

b—— 1stround ———+— 2nd round

lofef2]afa |5 [el o s]2 f3]4 [s]
} 3rdround ——

[l 6 Jol 1] 2]s3] 456 [Fe |

Fig. 2. The disk image after all groups have been emptied three times.

If we write the disk with fixed sized blocks, there is no problem finding all
blocks of one group, they are chained together. The following is about disk layout
when the disk is written with variable sized blocks (groups). When the groups
are written to disk, we will get a pattern similar to that shown in Fig. 2, if
neighboring groups are written contiguously onto disk. A Round in the figure
is one round around the circular track, processing each group once. The num-
bers are group numbers. Writing groups contiguously gives a bonus when we
flush all groups at end of input. This can be done in one operation. It is also
necessary if we want to create supergroups, by joining neighboring groups into
one supergroup. This is useful when the operand(s) has been over-partitioned
(the operand has been partitioned into a larger number of partitions than nec-
essary). This can happen if we are uncertain about the number of subfiles we
need, and choose to overpartition to err on the right side. The overpartitioning
causes more disk accesses than necessary during the splitting phase. The extra
cost of overpartitioning should be removed from the reading phase, and we can

[[Round[[Address[g0[g1[g2][g3][g4]g5]s6]]

0 0 10|12|14|15|17|18|21
1 107 19(23|22(20(21|22|22
2 256 21|21|18|20|21|20|21
3 398 22(19(23(17|15|12|9
4 515 7 (3 |1 [0 |0 O |O
Size 526 T9(78|78|72|74|72|73

Table 2. Index table, where the last row holds accumulated values (the size) for each
group in number of address units.

do so by joining neighboring groups into supergroups. This is easy as long as all
groups are written contiguously onto the same disk.

Because of the variable block size, we need an index to efficiently retrieve
blocks when we read back one or more groups. The index is a table with one
column for each group (subfile), and one row for each round in the Round Robin
output process. The corresponding table element would then contain the size of
each block. The size of the index table depends on the number of groups and
the number of rounds. To speed up address calculations, it would be useful to
add one column to the index table, holding the address of the first block in each
round. It is shown in Table 4.3 how an index table might look like.

The size of each block could be in bytes, sectors or some other unit. The
total size of each subfile after partitioning is found by adding the numbers in
each column. This information will tell how many subfiles can be read together,
or how much space is needed to hold the largest subfile during the final algebra
operation.

Even for large data volumes, the index table should be stored in memory
without eating up to much space: Suppose that for every round, approximately
2M data is written to disk. The size of the index table, in number of variable
sized blocks is s = ;—A’}. If V =1GB, p =100 and M = 50 MB, the size s is
1000 integers.

4.4 Estimation of the Free Space Limit

The free space limit should be as small as possible, however there are some
constraints. If we have only one SCSI bus, we have no real I/O overlapping.
An initiated I/O operation must be completed until another operation could be
started. If we started a read operation and could not complete it because of lack
of input buffer space, we would have a deadlock. Then we would not be able to
free space by writing a group to disk. Before we start a read, we should make
sure that we have enough free space to accommodate all data read.

4.5 The Minimum Block Size

Writing a group should be skipped if it is below a minimum size. This will happen
only when the hashing formula works poorly, producing uneven sized groups, or

we try to stress the system, having uncoordinated parameters. The minimum
block size should be in the vicinity of 4 KB, and this should be far below the
normal group size when M has some reasonable value (above 100 KB, at least).
If we use the LGF strategy there will be no minimum block size problem.

4.6 Multiuser Environments

It is also worth noting that the size of M can change dynamically, this only affects
the size of the groups. Partitioning strategy, however, is done at operation startup
time. Thus, if available memory decreases, an extra pass might be needed.

5 Cost Functions

Our cost model is based on I/O transfer only. This is the most significant cost
factor, and in reasonable implementations, the CPU processing should go in
parallel with I/O transfer making the CPU cost “invisible”. Our disk model is
traditional. Disk transfers are done blockwise. One block is the amount of data
transferred in one I/O command. The main cost comes from two contributors:
the start up cost and transfer cost. Start up cost comes from command software
and hardware overhead, disk positioning time, and disk rotational delay.

In our model, the average start up cost is fixed, and is set equivalent to t,., the
time it takes to do one disk revolution. The transfer cost is directly proportional
to the block size, and is equivalent to reading disk tracks contiguously, e.g.,
transfer cost is equal to Vistr, where V; is the amount of data on one track and b
is the block size to be transferred. For very large blocks, it is likely that several
tracks and also tracks in different cylinders are read contiguously. This implies
positioning, but we assume that the times used for this is insignificant compared
to transfer time. The time it takes to transfer one block is ¢, = ¢,(1 + Vi) The
time to transfer a data volume V using block size b is:

Vi, Vi, 11
Tr=—r+ —Vtr<b+vs> (1)

Our emphasis is to find optimal parameters and the best working range for
each method. To be able to handle the different equations mathematically we
regard them as continuous functions rather than discontinuous functions result-
ing from applying ceiling and floor functions. This approximation gives a better
overall view, but could cause small errors compared to the exact mathematical
description.

To get smooth input and output streams, double buffering can be employed.
However, to simplify the computations, the space for input buffers and extra
output buffers is not counted within the memory M in our cost functions. Thus,
the memory M, can be thought of as the available memory after reservation of
memory for the extra input and output buffers.

The splitting is based on a hash formula applied to the operation key. The
subtables will vary in size due to statistical variations and the “goodness” of the

selected hash formula, in a real system it would be beneficial to let the average
subtable be slightly smaller than the workspace. With good approximation we
can ignore this and we are also ignoring space needed for structural data.

5.1 One Pass Partitioning

We will start with a simple partitioning strategy. If the input table is larger than
available work space, we will split the table in subtables, such that each subtable
fits into work space M. The subtables are are written to temporary files. The
necessary split factor is: p = f%], and the time used is:

1 1 1% 1

The actual block size with fixed block size, assuming we are free to select the

block size, is b = L%J R MVZ, which gives:

1% 1
T = 2Vtr<— + —)

M2V
and with variable block size, we get on the average b = % ~ %, which gives:
Vv 1
vV _
Tlp = 2Vt7- (m + Vs>

For operand volumes slightly larger than M, we see that it would probably be
better to let some of the work space be used for holding records participating in
the final algebra stage, and use only a portion of the work space for split buffer.
This leads us to the partial partitioning or hybrid hash algorithm. At the other
end, we see that when operand volumes are very large, the split factor increases
and the block size goes down. Small I/O blocks are severely slowing down the
I/O process. It may be better to split the data repeatedly, using larger blocks,
rather than using smaller blocks and reaching the correct subfile size in one pass.
This leads us to the multipass splitting method.

5.2 Partial Partition

Partial partitioning is especially advantageous for operand volumes larger than
M, but so small that we do not need all available memory for efficient splitting.
A part of the memory is used for holding a number of complete groups, to avoid
the unnecessary I/O caused by the splitting. If the operand volume V' is known
in advance, we can compute the optimum memory size z, not used for splitting.
x is thus also the amount of data which is not split. We ignore floor and ceiling
functions to keep the equations mathematically tractable.

Fixed Block Size. The number of subfiles is N = (V — x)/M. The complete
split is done in one pass, hence N = p, the split factor. The average block size
using fixed block size splitting is:

(M —z) MM —x)

b= =
p V -z

which gives the split time by substitution of b into Eq. 1 is:

o) a3

The time will vary with z, a large x reduces transferred volume, however, the
average block size is decreased, and the time spent may increase. To find a
minimal value for T}, we have to find the value of & that will give the minimum
value of T},,. This can be done by solving:

dT,,(z) —2(V—-2)M(M —2)+ MV —2)> 1Y\ _
dx _Qt’“< M?(M — x)? Vs> =0

To solve this equation we substitute A = M/V; and

V-
M—x

z =
Then we obtain the following equation in z giving;:
22—22-A=0=>2=1xV1+2X

Back substitution of z into Eq. 2 gives:

zM -V

r= z—1

x should never be negative, which implies: z > 0 and zM — V > 0. This sets
a restriction on V', which must be less than zM. It does not make sense to use
partial partitioning when operand volumes are greater than zM. When V <
M , splitting is not at all employed. This limits the working range of partial
partitioning to: M <V < zM.

Variable Block Size. Derivation in the case of variable block size is done the
same way as for fixed block size. The only difference is that we are doubling the
effective block size, which gives:

1 1 V- 1
vV _ — — —_— = — —_— _—
TV = 2(V x)tr<b+vs> 2,V m)tr<2M(M_x)+Vs>

5.3 Multipass Partitioning

Data are read from an input file and hashed into a number of subfiles. The
actual block size with fixed size blocks is: b = L%J R %. The necessary number

of subfiles at the end is N = [17] & 7. Depending on the operand volume, it
may be beneficial to partition the operand in several passes. This is equivalent
to the merging used in sort-merge processing, and the approximate number of
operand passes is w = log,, N. When we substitute for IV, we get w = log, %
The total amount of data read and written to disk to complete a partitioning and
the final relational algebra step is V7 = 2Vw, which gives a total partitioning
time of:

V /1 1
Tmp = VrTr = 2Vit, logp M (— + —>

b Vs
Substituting for log, % - IHIKQM.
In V/M P 1
Trp =2 tol — + —
b v Inp (M + Vs> (3)

An optimum block size exist because when we split into many subfiles in
one pass, each subfile need an output buffer, hence they get smaller. We can
minimize Eq. 3 by noting that the variable part of this expression is:

1 /1 1
0=+)

To find a minimum value for f(p), we derive f(p) with respect to p, and the
optimum value for p is when f'(p) = 0:

M
Inp—1)— = =0
pllnp—1) ==

It is easily seen that p is a function of the quotient A = %

p(lnp—1)—A=0

This equation can be solved numerically, to find the value for p. Thus, the func-
tion for multipass partitioning with fixed block size is given by:

Vv 1
T}, =2Vt log, - <% + 7)
s

With the same method, we can find an optimum value for p in the case of

variable block size (where b = 2T):

V[ip 1
vV o_
Tmp =2Vt, lng M <m + ﬁ)
As an example, Table 5.3 shows optimal split factors, block size, and number
of passes for different sizes of memory, with operand volume held constant on
V =1000 MB and Vs = 50 KB.

A= M/V,: 1 ‘ 2 ‘ 5 ‘ 10 ‘ 20 ‘ 50 | 100 | 200 ‘ 500 {1000
(M in MB:) (0.05)((0.1)[(0.25)[(0.5)|(1.0)|(2.5)| (5) |(10)|(25)] (50)
Fixed block size:

Optimal p 3 4 6 12 | 23 | 37 | 63 |129 | 226
b 17 25 42 62 | 83 | 109 (135|159 |194 | 226
w 9.01 |6.64| 4.63 [3.66|2.78(1.91(1.47(1.11(1.00|1.00
Var. block size:

Optimal p 4 5 8 12 | 20 | 37 | 63 | 108|226 | 400
b 25 40 62 83 | 100 | 135 [159|185 |221 | 250
w 7.14 |5.72| 3.99 |2.31|1.66|1.28|1.00{1.00|1.00(1.00

Table 3. Optimal split factors, block size and number of passes for different sizes of

memory.
Strategy: Partial One Pass Multipass
Range: M<V < zM 2M <V < pmpM |V > pmpM

(medium operands)

(large operands)

(huge operands)

Fixed Size, TT:

2(V — z)t, <%

+V%>

2Vt, log, 3

z=14+V1+ X
p(lnp—1)—A=0

Variable size TV :

z=1+V1+2X
p(lnp —1) —2Xx =0

+

o

+VL3>

2(V — z)t, <% 2Vt, log, ¥ (ﬁ

)

InV/M
Tnp

Supporting values: w = maz | 1.0,

N\
N~

A= M/V,

Table 4. Cost functions for splitting.

5.4 Summary and Application of the Cost Functions

The cost functions and their working areas are summarized in Table 5.4. To
demonstrate the relationship between the three variants, we have computed
the partitioning times for different operand volumes. By using V; = 50 KB,
t, = 11ms, and M = 1 MB, we get the partitioning times as shown in Ta-
ble 5.4.

From the table, we can see that for fixed size blocks, partial partitioning is
best for volumes from 2 to 5 MB. Multipass is better when operands are larger
than 12 MB. For variable blocks, partial partitioning is best for the volumes
from 2 to 7 MB. Then one pass takes over, multipass partitioning is better when
operands are larger than 20 MB. The different working areas for the variants of
partitioning is illustrated in Fig. 3.

Fixed sized blocks Variable sized blocks

A=20,2=5.6,ppnp =12 A=20,2=7.4,pmp =20
[V (in MB)[Tpp [Tip [Tonp [Tor [Tip [Tonp
2 0.69 0.98 1.39 0.61 0.93 1.33
3 1.39 1.53 2.19 1.22 1.43 2.00
4 2.08 2.13 2.92 1.83 1.96 2.37
5 2.77 2.78 3.65 2.44 2.50 3.33
6 - 3.47 4.38 3.04 3.07 4.00
7 - 4.20 5.11 3.65 3.66 3.67
8 - 4.98 5.84 - 4.27 5.34
16 - 12.8 12.7 - 9.96 10.7
32 - 37.0 31.7 - 25.6 24.7
64 - 119.5 76.1 - 74.0 59.2
128 - 421.0 177.6 - 238.9 138.2
256 - 1570.0 405.9 - 842.0 315.9

Table 5. Partitioning times for different operand volumes and different basic parti-
tioning methods.

Fig. 3. Working areas for different algebra methods, with numbers from variable block

size.

65\5;‘ n
32768
16384
8192 éi;ﬁ‘
4096 Q\:g‘\ Partial
2048 D Partitioning
1024
512
256 |.. * Multi pass
128 Partitioning
64
32
16
8
4 Nested loop,
2 no splitting
1.0
0.5
0.25
0.125
0-0625 0.125 0.5 2 8 32 128 512 2048 81;’2 M
0.0625 0.25 1.0 4 16 64 256 1024 4096 MB

1000. + === Fixed block size

+—— Variable block size

100. +

Time/s®t

1. 10. 100. 1000.
DataVolume/MB

Fig. 4. Execution time with snow plow splitting.

6 Comparison

To compare the effect of increased average block size, we compare the traditional
and new methods for three representative cases: M =1 MB, M = 10 MB, and
M =100 MB. In Fig. 4 we have plotted the functions for variable and fixed block
size. We have for each value of V' used the partitioning strategy (no/partial/one
pass/multipass) that gives the best time. It is important to keep in mind that
this is a log-log-plot, and therefore the difference in execution time between fixed
and variable block size is not large in the figure. The improvement can be better
illustrated by looking at the performance gain, which is computed in Table 6
and illustrated in Fig. 5. In the table, blank fields denotes no splitting.

As expected, the improvements are most noticeable for smaller work space
areas. For larger work spaces, the number of blocks is relatively small, and the
block access time is negligible compared to the transfer time.

M =1 MB, A= 20 M — 10 MB, A = 200 M = 100 MB, X = 2000
V (in MB) |fixed var imp % |fixed var imp % |fixed var imp %
1
2 0.7 0.6 14
4 2.1 1.8 14
8 5.0 4.3 17
16 12.7 10.0 27 3.1 2.9 4.2
32 31.7 24.7 29 11.3 10.8 4.2
64 76.1 59.2 29 27.6 26.5 4.2
128 177.6 138.2 29 60.4 58.0 4.2 13.0 12.8 1.3
256 405.9 315.9 29 128.3 121.1 6.0 72.5 71.6 1.3
512 913.2 710.8 29 285.8 256.7 11.3 191.5 189.2 1.3
1024 2029 1580 29 668.6 571.6 17.0 429.4 423.6 1.3
2048 4464 3475 29 1538 1314 17.0 905.4 893.2 1.3

Table 6. Performance improvement as a function of operand volume and workspace
size.

7 Conclusions and Future Work

We have described a novel method for partitioning, the circular track snow plow
buffer management strategy. This strategy makes more efficient use of memory
compared to traditional methods, and effectively doubles the average block size.
Doubling the effective block size can give substantial reductions in I/O transfer
time, and by the use of cost models we have shown that performance gains of
10-20% can be expected for reasonable resource configurations.

In this paper we have made the assumption that the operand volume is
known. This is not always true, and we are now investigating a dynamic or
adaptive strategy, based on the snow plow principle, which is applicable when
the operand volume is unknown. We are also working with the new buffer man-
agement strategy employed in other areas as file loading and transaction log.

In the development og this methods, we have also discovered how a more
efficient set of routines for communication with the SCSI buss system could be
used to avoid the unnecessary transfer of data to an internal block buffer. Direct
transfer to the user program area can save the internal bus from considerable
traffic. This is clearly interesting, and should be studied further.

References

1. K. Bratbergsengen. Hashing Methods and Relational Algebra Operations. In Pro-
ceedings of the 10th International Conference on VLDB, 1984.

2. K. Bratbergsengen, R. Larsen, O. Risnes, and T. Aandalen. A Neighbor Con-
nected Processor Network for Performing Relational Algebra Operations. In Fifth
Workshop on Computer Architecture for Non-Numeric Processing, March 11-1/,
1980 (SIGIR Vol. XV No. 2, SIGMOD Vol.X No. /), 1980.

3. D. L. Davidson and G. Graefe. Memory-Contention Responsive Hash Joins. In
Proceedings of the 20th International Conference on VLDB, 1994.

M=1MB

15 M=10 MB

Gain/%

M=100 MB

0% 260 4&!0 660 560 10‘&)0 12‘b0 1450
Data Volume/MB

Fig. 5. Performance gain by using the snow plow strategy.

4. D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Im-
plementation Techniques for Main Memory Database Systems. In Proc. ACM
SIGMOD Conf., 1984.

5. G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing
Surveys, 25(2), 1993.

6. G. Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE
Transactions on Knowledge and Data Engineering, 6(1), 1994.

7. M. Kitsuregawa, H. Tanaka, and T. Motooka. Application of Hash to Data Base
Machine and its Architecture. New Generation Computing, 1(1), 1983.

8. D. Knuth. The Art of Computer Programming. Sorting and Searching. Addison-
Wesley Publishing Company Inc., 1973.

9. M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-Partitioned Join Method
Using Dynamic Destaging Strategy. In Proceedings of the 14th International Con-
ference on VLDB, 1988.

10. L. D. Shapiro. Join Processing in Database Systems with Large Main Memories.
ACM Transactions on Database Systems, 11(3), 1986.

11. H. Zeller and J. Gray. An Adaptive Hash Join Algorithm for Multiuser Environ-
ments. In Proceedings of the 16th International Conference on VLDB, 1990.

This article was processed using the BTEX macro package with LLNCS style

