Log-Only Temporal Object Storage

*

Kjetil Ngrvag and Kjell Bratbergsengen
Department of Computer and Information Science
Norwegian University of Science and Technology
7034 Trondheim, Norway
{noervaag kjellb}@idi.ntnu.no

Abstract

As main memory capacity increases, more of the
database read requests will be satisfied from the buffer
system. Consequently, the amount of disk write oper-
ations relative to disk read operations will increase.
This calls for a focus on write optimized storage
managers. In this paper we show how the Vagabond
object storage manager uses no-overwrite sequential
writing of long blocks to achieve high write perfor-
mance. Vagabond also supports versioned/temporal
objects, with the no-overwrite policy used, this does
not imply any extra cost. Large objects, e.g., video and
matrizes, are divided into large chunks. This makes it
easy to achieve high read and write bandwidth. This
is important, since in many application areas, high
data bandwidth is just as important as high transac-
tion throughput. The buffer system in Vagabond is
object based, rather than page based. This gives better
utilization of main memory. Transparent compression
of objects on disk is supported.

1 Introduction

The main bottleneck in a well designed database
system is usually secondary storage access. In a
database system, most accesses to data are read op-
erations. Consequently, database systems have been
read optimized. However, as main memory capacity
increases, the amount of disk write operations relative
to disk read operations will increase. This calls for a
focus on write optimized database systems. Another
aspect that gives this issue increased importance, is
database systems which also needs high performance

*Copyright 1997 IEEE. Published in the Proceedings of
DEXA’97, September 1-2, 1997 in Toulouse, France. Per-
sonal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis-
tribution to servers or lists, or to reuse any copyrighted com-
ponent of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE
Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,
NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

in terms of data bandwidth, and not only in transac-
tion throughput (although these points are related).
This is especially important for new emerging appli-
cation areas, like video database systems and super
computing applications, which have earlier used file
systems. These applications will have a need for high
data bandwidth.

Increasing the effective bandwidth can be done in
three ways: 1) by reducing seek time, 2) by reduc-
ing the amount of time spent in rotational delay, and
3) parallel I/O. This can be achieved by sequential
writes, large blocks [2], and the use of RAID. In
current database systems, the first two are partially
achieved by the use of write ahead logging (WAL),
which defers the non-sequential writing. However,
sooner or later, the data has to be written to the
database. This involves the writing of lots of small
objects, almost always one access for each individual
object. Our solution to this problem, is to eliminate
the current database completely, and use a log-only ap-
proach. The log is written contiguously to the disk, in
a no-overwrite way, in large blocks. It is obvious that
this gives optimal write performance, but possibly at
the expense of read performance. The question is: is
it possible to design such a system, which is able to
operate within database constraints, using a log writ-
ten this way? We will in the following show that this
is indeed possible, in our description of our temporal
object storage manager Vagabond'.

The rest of the paper is organized as follows. In
Section 2, we discuss related work. Section 3 gives
an overview of the Vagabond storage manager, and
in Section 4 we present some of the advantages that
motivated the design of Vagabond. In Section 5 we de-
scribe the object index structures used. In Section 6
we describe how objects are stored in Vagabond, and

'From Webster’s Encyclopedic Unabridged Dictionary:
Vagabond: “a person, usually without a permanent home, who
wanders from place to place; nomad”. Quite similar to our
objects!

in Section 7 we describe the physical storage struc-
tures. In Section 8 to 11 we describe briefly transac-
tion and recovery related issues. Finally, in Section 12,
we present, future work and conclude the paper.

2 Related Work

A no-overwrite strategy has been used in shadow-
paging recovery schemes earlier, e.g., in System R [1].
Log-only database techniques are used in Postgres [6],
an object-relational database system. Because of the
high cost of commit in Postgres, the techniques did not
gain any success at that time. The ideas from Postgres
were borrowed and used in log structured file systems
(LFS), first presented by Rosenblum and Ousterhout
[4], later refined by Seltzer [5]. In a LFS, file and direc-
tory information are interleaved in a log. Our object
storage management is based on LFS techniques, but
with some major differences: support for a wide range
of data granularities (very small as well as very large
objects), transactional ACID properties, efficient sup-
port for distributed transactions, various access meth-
ods, and indexes. Other major differences are the
number of objects in an object-oriented database sys-
tem (OODB), which will usually be much larger than
the number of files in a file system. While it is possi-
ble to have most of the file directory cached, this will
not be possible for the object directory. Also, access
patterns are radically different.

3 Overview of Vagabond

Most current database systems have a current
database, and a log. The buffer system is page based,
and data is read and written pagewise to the cur-
rent database. The systems employ WAL, redo/undo-
records are written in the log before data is modified
in the database. By doing this, only log records have
to be flushed at commit time. This saves a lot of
disk bandwidth, since the WAL-data is usually much
smaller than a page. Writing to the log also helps in
getting a sequential write pattern. The drawback is
that during recovery, possibly large parts of the log
has to be read to make the database consistent. Also,
when the buffer is full, and pages have to be replaced,
random writes are necessary to write these back at
their positions in the database.

Our storage manager takes this to the extreme: we
do not have the current database, we have only got
the log. Interleaved in the log is also the index struc-
tures necessary to retrieve data efficiently (but they
are not necessarily clustered). Already written data
is never modified, new versions of the objects are just
appended to the log. Writes are always done sequen-
tially, with large write block sizes. This is done by

writing many objects and index entries, possibly from
many transactions, in one write operation. Logically,
the log is an infinite length resource, but the physi-
cal disk size is, of course, not infinite. We solve this
problem by dividing the disk into large, equal sized,
physical segments. When one segment is full, we con-
tinue writing in the next available segment. As data is
deleted or migrated to tertiary storage, old segments
can be reused. Deleted data will leave behind a lot of
partially filled segments, the data in these near empty
segments can be collected and moved to a new seg-
ment. This process, which is called cleaning, makes
the old segments available for reuse. By combining
cleaning with reclustering, we can get well clustered
segments.

Instead of using a page buffer as is common in other
systems, we use an object buffer, which is more effi-
cient when data is not guaranteed to be well clustered.
As the buffer fills up, it might be necessary to write
dirty objects to disk. This is done according to some
replacement strategy, usually a variant of LRU. Ob-
jects can be written before the transaction commits
(steal strategy), this avoids force of large amounts of
data at commit time. Index blocks, however, are never
updated before the transaction commits. Commit of a
transaction is done by writing the index entries atom-
ically to disk. The index blocks themselves, which
consists of many possibly unrelated entries in each,
can be written later, since they can be reconstructed
at recovery time from the written index entries. This
simplifies abort, and is especially important in a client-
server environment. It is also useful to exploit opti-
mistic concurrency control.

Recovery in a log-only database like Vagabond can
be done very fast. At regular times, a checkpoint op-
eration is performed, and at recovery time we just do
an analysis pass from the last known checkpoint to the
end of the log (where the crash occurred).

In a traditional system with in-place updating,
keeping old versions of objects usually means that
the previous version have to be copied to a new
place before update. This doubles the write cost. In
Vagabond, this is not necessary. Keeping old versions
come for free (except for the extra disk space), only an
additional index is needed. Thus, our system supports
temporal database systems in an efficient way.

4 Advantages and New Opportunities
Because the log-only, no-overwrite approach, is rad-
ically different from the techniques used in current sys-
tems, it is appropriate to describe the advantages of
such an approach. In the rest of this section, we will
take a closer look on some issues which are affected.

Objects vs. Pages. Most current storage man-
agers are page servers. We can liberate ourselves from
the page server based earlier approaches. There is no
inherent reason why pages would be better suited. It
is also easier to guarantee larger segment sizes on large
objects. This is important in, e.g., video server appli-
cations.

Transparent Compression of Data. Since ob-
jects are not written to the same physical disk block(s)
every time, the compression ratio and storage size
might change.

Easier On-Line Backup. The written segments
are time stamped, and with a no overwrite strategy,
it is enough to know the last time of backup to know
where backup should be started now. Backup could
also be done on-line, and again, even if we stop backup
when the load is high, we know where to continue in
less busy periods.

Flash Memory. Very high performance can be
achieved if we use fast non-volatile memory instead
of disk. One example of such an storage technology
is flash memory. Flash memory is byte readable, and
fast, but write/erase has to be done blockwise. This
facilitates a storage strategy with no in-data modifi-
cations.

Write-Once Memory. With write-once storage,
there is a need for a no-overwrite strategy.

RAID Technology. Disk access times and band-
width improves at a much lower rate than main mem-
ory, and parallel disk systems are necessary to get high
performance. To benefit from RAID technology, the
write blocks has to be much larger than those used in
traditional systems. In addition, in normal systems,
sequential writes are only about 3-5 times faster than
random writes, while in RAID, sequential writes can
be up to 20 times faster [7].

Super Computing Applications. In many super
computing applications, computations are done on
large matrixes and arrays. To be able to do opera-
tions on these large structures, it is often necessary to
break them into chunks which can be processed inde-
pendently. It is necessary to retrieve and store these
chunks efficiently. Until now, only file systems have
been able to offer the performance necessary. How-
ever, there is a demand for some of the services of-
fered by database systems in these areas: access con-

trol, concurrency control, and recovery. Performance
close to file system performance is necessary to be ap-
plicable.

Non-Set-Based Access Patterns. Current rela-
tional database systems are optimized for operations
on large sets of objects (tuples). As soon as the access
pattern differs from this, or is navigational, it is dif-
ficult to get good performance, since applications can
not benefit from automatic storage clustering. With
our approach, we have more flexibility in reorganizing
data. Reorganization can, e.g., be based on previous
access patterns to the objects. This is especially inter-
esting for applications with complex data structures,
as is common in typical OODB applications.

Group Commit. Group commit, in addition to giv-
ing us larger writes, also gives opportunity for more
intelligent clustering of objects from different transac-
tions.

Fast Crash Recovery. The log-only approach is
really a refined form of shadow storage. While this has
its deficiencies, it also has a very nice and interesting
feature: very fast crash recovery. By never updating
in-place, recovery issues can be solved much easier.

Temporal Database Systems. Realizing a tempo-
ral database system is easy with our approach. Ver-
sioning comes at virtually no extra cost, while in a
conventional database system versioning doubles the
amount of data that has to be written.

Cache Coherence. Versioning/timestamping can
be exploited in cache coherence in client-server envi-
ronments, as is done in BOSS [3].

With all the advantages listed above, one might
wonder why the idea of a log-only database system
has not been brought into reality. All the nice features
listed should have made them the preferred system
type. The most important reason for this, is proba-
bly some problems encountered in the System R and
Postgres projects.

The shadow paging scheme in System R, and the
log in Postgres, both held the risk of declustering re-
lations. Clearly, this can also be the case with our
approach. However, we expect that the increased
amount of main memory will compensate for the lack
of clustering. Important is also that the access pattern
is supposed to be quite different in our applications:
more direct, navigational, and temporal accesses.

5 Object Identifier Index Structure

An object in an OODB is uniquely identified by
an object identifier (OID). OIDs can be physical or
logical (surrogate). If physical OIDs are used, the disk
blocks where the objects resides is given directly from
the OID, if logical OIDs are used, it is necessary to
use a map to convert from logical OID to physical
location. In our system, logical OIDs are necessary,
since the objects are never written back to the same
place. This might seem like an disadvantage, but even
though a physical OID has a potential performance
benefit, it also has a major drawback: relocation and
migration of objects is difficult. Therefore, a logical
OID is generally the preferred choice.

The data structure containing the necessary infor-
mation to map from a logical OID to a physical lo-
cation is in Vagabond called a object descriptor (OD).
Each version of an object has its own OD, and the OD
also contains other object specific information like cre-
ate time, object size, and a class tag. Create timeis the
commit time of the transaction creating this version.
The class tag identifies the class the object belongs
to. This is necessary to efficiently support hierarchical
concurrency control techniques. In Vagabond, collec-
tions and indexes are also stored as objects. In this
case, the class tag is used as an index class identifier
as well. This make the system very extensible, new
index classes can be added to the system as needed.

The number of ODs can be very large, and a fast
and efficient index structure is needed, an OID index
(OIDX). In the OIDX, the ODs are stored in the leaf
nodes. The OIDX is stored in the segments, inter-
leaved with the data.

Efficient indexing in a log-only system is not trivial.
Consider a tree-like index structure: if we update an
index node, this will be written to a new location. The
pointer in its parent node becomes invalid. The parent
node needs to be updated, and this cascades up to the
root. We also have another problem. Index blocks as
well as objects may be relocated during cleaning or
migration. In this case, structures having pointers to
this data needs to be updated. To avoid inefficient
structures, and reduce cascading updates, design of
the index structure needs careful attention.

Fortunately, an OID index has some special prop-
erties that can be employed to make it more efficient.
The keys in the index, the OIDs, are not uniformly
distributed over a domain as keys commonly are sup-
posed to be. If we assume the unique part of an OID to
be an integer, new OIDs will always be assigned mono-
tonic increasing values. If an object is deleted, the
OID will never be reused. The access pattern is also

important, it will always be a perfect match search,
range search of OIDs is not interesting.

Each version of an object has its own OD, and this
versioning complicates the index considerably, access
to current as well as old versions of objects has to be
supported by the index. However, for most applica-
tions, most queries will be against the current data. It
is important that this access is as efficient as possible.
The index structure in Vagabond is an ISAM variant,
with extensions for the OD versioning.

6 Object Storage in Vagabond

In Vagabond, all objects smaller than a certain
threshold are written as one contiguous object (not
segmented into pages as is done in other systems).
This threshold is configurable, but it should at least
be in the order of 64 KB. Objects larger than this
threshold, are segmented into subobjects. There are
several reasons for doing it this way: 1) to avoid large
objects blocking all other transactions when they are
written to disk, 2) a segmented object is useful later,
when only a small part of the object is to be read
or modified, and 3) subobjects can reside on differ-
ent physical devices, possibly on different levels in the
storage hierarchy.

Often, only a small part of an object is changed
when a new version is written. In this case, much can
be gained if only the changes are written. This is es-
pecially the case if an object is a hot spot. A version
which only contains the changes from last version, is
called a delta object. The delta object itself can be
made at low cost by the use of XOR between the new
and the old version, and run-length encoding the re-
sult. At buffer replacement time, we should write the
complete objects to disk. If we do not do this, object
retrieval will be inefficient. We would have to retrieve
the last written complete version, in addition to all
delta objects written since the last complete write, to
reconstruct the object.

To further reduce storage space, and disk band-
width, objects can be compressed before they are writ-
ten. In many application areas, e.g., statistical and
scientific databases, a large number of NULL-fields
exists in the records/objects. Without even knowing
the structure of the objects, it is easy to run-length
encode these objects. Compression/decompression is
transparent to the applications, and a retrieved object
will be decompressed before it is delivered.

Large objects in Vagabond are actually temporal
index structures, where the segments of the objects
are indexed on position range and time. The size of a
subobject is always an integral number of disk sectors.

Vol. | Seg.| Seg. Seg.| Seg.
info| 0 [1 |***|CPRl***[N-2 N-1

Figure 1: Volume structure.

7 Storage Structures

The log is stored on a volume. One volume is a con-
figuration of one or more storage devices. The storage
devices are typically disk partitions or volume files. A
volume consists of a volume information block, a num-
ber of equal sized segments, and two or more check-
point regions (CPR), as shown on Figure 1. The seg-
ment size has to be a tradeoff between different, partly
conflicting, goals: to improve write efficiency, it is de-
sirable that the segments written are as large as pos-
sible. On the other hand, large segments can make
response time longer, since we have to wait for trans-
actions during group commit, or, alternatively, result
in a larger number of subsegments,writing a segment
is done by writing one or more subsegment. Based
on experiences from LFS, we expect that the segment
size should be in the order of 1 MB for a single disk
volume, but larger for parallel disk systems.

The volume information block holds static volume
information, and is only read when the system is
started. It is written when the volume is formatted,
and when new devices are chained to the volume. De-
vices can be added to the volume while the system is
running. Each device has its own volume information
block. The volume information blocks are identical,
except for the pointers to previous and next device,
and contains information like segment size, number of
segments, large object threshold, and location of seg-
ment status blocks.

The segments contains the objects and the index.
We do not always have a full segment of data to write,
and therefore we write data as subsegments. Subseg-
ments are a number of fixed size disk sectors, and con-
sist of a subsegment header, followed by the objects,
ODs, index blocks, and transaction control informa-
tion (e.g., prepare, commit and abort). For every ob-
ject written to a segment, the corresponding OD is
also always written in the same segment. The index
blocks themselves can be written lazily to disk. In
this way, we avoid having to flush all index blocks at
commit time. If the system crashes, dirty index blocks
that had not been written before the crash can be re-
constructed from the ODs in the log. Having the ODs
together with the objects also makes cleaning more ef-

ficient, we do not have to search an index to find out
which objects are stored in a particular segment.

Information about the segments’ status is kept in
main memory during normal operation, in the segment
status table (SST). A segment can be in the states
clean, dirty, alive, or current. The segment we cur-
rently write to, is in the current state, segments con-
taining non-deleted data (objects and OIDX blocks)
are dirty. Segments written after the last checkpoint
are alive. Segments with no data are clean. This
means that data has never been written to it, all data
previously residing on it has been deleted, or the seg-
ment has been cleaned (data moved to another seg-
ment, implicitly deleted from the old segment). We
keep some statistics for each segment, the number of
live bytes, number of read accesses, and last access
time, to help us decide which segments to clean.

A checkpoint is finished by writing the SST and
the location of the last written OIDX root block, to a
checkpoint region. There are (at least) two checkpoint
regions in a volume. These regions contain times-
tamps, so that during recovery, the last successfully
written regions will be used. If the system crashes
during the update of one of the regions, the two times-
tamps in the region will differ, and we use the previous
region.

8 Segment Cleaning.

A segment starts in a clean state, it contains no
data. A segment has to be clean before we can write to
it, to maintain the no-overwrite policy. During writing
of subsegments to a segment, the segment is current.
When the segment is full, we start writing to a new
segment. The new segment now goes from a clean
state, to current. The previous segment is now alive,
it contains valid data. When checkpoint is done, all
previous segments in the alive state changes state to
dirty.

As times go by, non-versioned objects gets deleted,
and versioned objects are modified. The result is that
more and more of the space in the segments is occupied
by data which can be removed in its entirety (deleted
non-versioned objects), or moved to tertiary storage
(old versions). The disk will eventually fill up, and we
do not have any clean segments left to write to. Before
this happens, we have to move non-deleted objects in
(almost empty) old segments, to the current (alive)
segment, and if desired, old versions to tertiary stor-
age. This process, which results in a segment going
back to a clean state, is called cleaning. This pro-
cess is also an excellent opportunity to recluster the
database. Related data can be clustered together.

9 Transaction Management

When a transaction commits, it is necessary to
write enough information in the log to be able to do
recovery in case of crash. We have two options here:
write the dirty object in its entirety, or only write a
delta object. In Vagabond, we write delta objects if
some given criteria is satisfied, e.g., based on the dif-
ference between the size of the object and the delta
object, or storage format. In this way, we should be
guaranteed that delta objects will only be written if
it is beneficial. During normal operation, transactions
will usually be able to commit much faster. This is
especially important for objects that are hot spots.

Objects can be written to disk before a transaction
commits, e.g., due to insufficient buffer space. How-
ever, it does not become visible before commit, which
is done by updating the indexes. To avoid having to
force the OIDX blocks to disk, only the index entries
(in this case, the object descriptors), are forced to disk.

10 Checkpointing.

Efficient checkpointing is important. Currently, we
have only sharp checkpointing in our design, but other
strategies appropriate for our system will be consid-
ered. In general, sharp checkpointing is not a good al-
ternative, since the system has to stop the normal pro-
cessing while doing the checkpoint, but in Vagabond,
the only restriction is that ongoing commit operations
have to finish before the checkpointing starts, and new
commit operations have to be delayed until the check-
pointing finishes. Unlike conventional systems, the
checkpoint operation does not involve lots of random
writes. Data and index blocks are written to the log as
usual, and the checkpointing is finished by writing the
status information to one of the checkpoint regions.

11 Recovery

Crash recovery can be done fast and efficient in
Vagabond. If crash recovery is needed, we start read-
ing from the last checkpoint, and build the relevant
structures in memory in one forward analysis pass. If
writing has to be done because of insufficient buffer ca-
pacity, this is done in a new, clean, segment. Since we
do not do any in-place update, it is easy to guarantee
recovery idempotence. When we read a subsegment
that was only partially written, we have come to the
place where the system crashed. We do a checkpoint,
and only after the checkpoint process is finished, the
checkpoint regions are updated. Media failure in a
log-only system can be handled using RAID or disk
shadowing.

12 Conclusions and Future Work

In this paper, we have described the principles be-
hind Vagabond, a write optimized storage manager.
This system is log-based, with indexes embedded into
the log. This will give very good write performance.
We also expect that the read performance will be ac-
ceptable, even in the case where most of the data is
not in main memory. This is especially true for ap-
plications with navigational access patterns, or many
accesses to large objects.

The design of Vagabond is now finished, and we are
currently in the implementation phase. In addition to
implementing the storage manager as described in this
paper, we will pursue issues related to super comput-
ing database applications (especially storage of ma-
trixes), geographical information systems (which can
exploit our support for temporal/versioned objects),
and efficient buffer structures in the context of the
object buffer in Vagabond. Vagabond is intended to
be part of a parallel OODB, and we plan to exploit
the features in this system.

References

[1] M. M. Astrahan et.al. System R: Relational Ap-
proach to Database Management. ACM Transac-
tions on Database Systems, 1(2), 1976.

[2] K. Bratbergsengen and K. Ngrvag. Improved and
Optimized Partitioning Techniques in Database
Query Processing. In Proceedings of the Fif-
teenth British National Conference on Databases,
BNCOD15, 1997 (to appear).

[3] D. E. Langworthy and S. B. Zdonik. Extensibility
and Asynchrony in the Brown-Object Storage Sys-
tem. In V. Kumar, editor, Performance of Concur-
rency Control Mechanisms in Centralized Database
Systems. Prentice Hall, 1996.

[4] M. Rosenblum and J. K. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. In Proceedings of the Thirteenth ACM Sym-
posium on Operating System Principles, 1991.

[5] M. Selzer, K. Bostic, M. K. McKusick, and
C. Staelin. An Implementation of a Log-Structured
File System for UNIX. 1In Proceedings of the
USENIX Winter 1993 Conference, 1993.

[6] M. Stonebraker. The Design of the POSTGRES
Storage System. In Proceedings of the 13th Con-
ference on Very Large Databases, 1987.

[7] M. Stonebraker. Readings in Database Systems
(2nd edition). Morgan Kaufmann, 1994.

