
Log�Only Temporal Object Storage�

Kjetil N�rv�ag and Kjell Bratbergsengen

Department of Computer and Information Science

Norwegian University of Science and Technology

���� Trondheim� Norway

fnoervaag�kjellbg�idi	ntnu	no

Abstract

As main memory capacity increases� more of the
database read requests will be satis�ed from the bu�er
system� Consequently� the amount of disk write oper�
ations relative to disk read operations will increase�
This calls for a focus on write optimized storage
managers� In this paper we show how the Vagabond
object storage manager uses no�overwrite sequential
writing of long blocks to achieve high write perfor�
mance� Vagabond also supports versioned�temporal
objects� with the no�overwrite policy used� this does
not imply any extra cost� Large objects� e�g�� video and
matrixes� are divided into large chunks� This makes it
easy to achieve high read and write bandwidth� This
is important� since in many application areas� high
data bandwidth is just as important as high transac�
tion throughput� The bu�er system in Vagabond is
object based� rather than page based� This gives better
utilization of main memory� Transparent compression
of objects on disk is supported�

� Introduction
The main bottleneck in a well designed database

system is usually secondary storage access� In a
database system� most accesses to data are read op�
erations� Consequently� database systems have been
read optimized� However� as main memory capacity
increases� the amount of disk write operations relative
to disk read operations will increase� This calls for a
focus on write optimized database systems� Another
aspect that gives this issue increased importance� is
database systems which also needs high performance

�Copyright ���� IEEE� Published in the Proceedings of
DEXA���� September ���� ���� in Toulouse� France� Per�
sonal use of this material is permitted� However� permission to
reprint	republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis�
tribution to servers or lists� or to reuse any copyrighted com�
ponent of this work in other works� must be obtained from the
IEEE� Contact
 Manager� Copyrights and Permissions 	 IEEE
Service Center 	 ��� Hoes Lane 	 P�O� Box �

� 	 Piscataway�
NJ �������

�� USA� Telephone
 � Intl� ��������
����

in terms of data bandwidth� and not only in transac�
tion throughput �although these points are related��
This is especially important for new emerging appli�
cation areas� like video database systems and super
computing applications� which have earlier used �le
systems� These applications will have a need for high
data bandwidth�

Increasing the e�ective bandwidth can be done in
three ways� 	� by reducing seek time�
� by reduc�
ing the amount of time spent in rotational delay� and
�� parallel I�O� This can be achieved by sequential
writes� large blocks

�� and the use of RAID� In
current database systems� the �rst two are partially
achieved by the use of write ahead logging �WAL��
which defers the non�sequential writing� However�
sooner or later� the data has to be written to the
database� This involves the writing of lots of small
objects� almost always one access for each individual
object� Our solution to this problem� is to eliminate
the current database completely� and use a log�only ap�
proach� The log is written contiguously to the disk� in
a no�overwrite way� in large blocks� It is obvious that
this gives optimal write performance� but possibly at
the expense of read performance� The question is� is
it possible to design such a system� which is able to
operate within database constraints� using a log writ�
ten this way� We will in the following show that this
is indeed possible� in our description of our temporal
object storage manager Vagabond��

The rest of the paper is organized as follows� In
Section
� we discuss related work� Section � gives
an overview of the Vagabond storage manager� and
in Section � we present some of the advantages that
motivated the design of Vagabond� In Section � we de�
scribe the object index structures used� In Section �
we describe how objects are stored in Vagabond� and

�From Webster�s Encyclopedic Unabridged Dictionary

Vagabond
 �a person� usually without a permanent home� who
wanders from place to place� nomad�� Quite similar to our
objects�

in Section � we describe the physical storage struc�
tures� In Section � to 		 we describe brie�y transac�
tion and recovery related issues� Finally� in Section 	
�
we present future work and conclude the paper�

� Related Work

A no�overwrite strategy has been used in shadow�
paging recovery schemes earlier� e�g�� in System R
	��
Log�only database techniques are used in Postgres
���
an object�relational database system� Because of the
high cost of commit in Postgres� the techniques did not
gain any success at that time� The ideas from Postgres
were borrowed and used in log structured �le systems
�LFS�� �rst presented by Rosenblum and Ousterhout

��� later re�ned by Seltzer
��� In a LFS� �le and direc�
tory information are interleaved in a log� Our object
storage management is based on LFS techniques� but
with some major di�erences� support for a wide range
of data granularities �very small as well as very large
objects�� transactional ACID properties� e�cient sup�
port for distributed transactions� various access meth�
ods� and indexes� Other major di�erences are the
number of objects in an object�oriented database sys�
tem �OODB�� which will usually be much larger than
the number of �les in a �le system� While it is possi�
ble to have most of the �le directory cached� this will
not be possible for the object directory� Also� access
patterns are radically di�erent�

� Overview of Vagabond

Most current database systems have a current
database� and a log� The bu�er system is page based�
and data is read and written pagewise to the cur�
rent database� The systems employ WAL� redo�undo�
records are written in the log before data is modi�ed
in the database� By doing this� only log records have
to be �ushed at commit time� This saves a lot of
disk bandwidth� since the WAL�data is usually much
smaller than a page� Writing to the log also helps in
getting a sequential write pattern� The drawback is
that during recovery� possibly large parts of the log
has to be read to make the database consistent� Also�
when the bu�er is full� and pages have to be replaced�
random writes are necessary to write these back at
their positions in the database�

Our storage manager takes this to the extreme� we
do not have the current database� we have only got
the log� Interleaved in the log is also the index struc�
tures necessary to retrieve data e�ciently �but they
are not necessarily clustered�� Already written data
is never modi�ed� new versions of the objects are just
appended to the log� Writes are always done sequen�
tially� with large write block sizes� This is done by

writing many objects and index entries� possibly from
many transactions� in one write operation� Logically�
the log is an in�nite length resource� but the physi�
cal disk size is� of course� not in�nite� We solve this
problem by dividing the disk into large� equal sized�
physical segments� When one segment is full� we con�
tinue writing in the next available segment� As data is
deleted or migrated to tertiary storage� old segments
can be reused� Deleted data will leave behind a lot of
partially �lled segments� the data in these near empty
segments can be collected and moved to a new seg�
ment� This process� which is called cleaning� makes
the old segments available for reuse� By combining
cleaning with reclustering� we can get well clustered
segments�

Instead of using a page bu�er as is common in other
systems� we use an object bu�er� which is more e��
cient when data is not guaranteed to be well clustered�
As the bu�er �lls up� it might be necessary to write
dirty objects to disk� This is done according to some
replacement strategy� usually a variant of LRU� Ob�
jects can be written before the transaction commits
�steal strategy�� this avoids force of large amounts of
data at commit time� Index blocks� however� are never
updated before the transaction commits� Commit of a
transaction is done by writing the index entries atom�
ically to disk� The index blocks themselves� which
consists of many possibly unrelated entries in each�
can be written later� since they can be reconstructed
at recovery time from the written index entries� This
simpli�es abort� and is especially important in a client�
server environment� It is also useful to exploit opti�
mistic concurrency control�

Recovery in a log�only database like Vagabond can
be done very fast� At regular times� a checkpoint op�
eration is performed� and at recovery time we just do
an analysis pass from the last known checkpoint to the
end of the log �where the crash occurred��

In a traditional system with in�place updating�
keeping old versions of objects usually means that
the previous version have to be copied to a new
place before update� This doubles the write cost� In
Vagabond� this is not necessary� Keeping old versions
come for free �except for the extra disk space�� only an
additional index is needed� Thus� our system supports
temporal database systems in an e�cient way�

� Advantages and New Opportunities
Because the log�only� no�overwrite approach� is rad�

ically di�erent from the techniques used in current sys�
tems� it is appropriate to describe the advantages of
such an approach� In the rest of this section� we will
take a closer look on some issues which are a�ected�

Objects vs� Pages� Most current storage man�
agers are page servers� We can liberate ourselves from
the page server based earlier approaches� There is no
inherent reason why pages would be better suited� It
is also easier to guarantee larger segment sizes on large
objects� This is important in� e�g�� video server appli�
cations�

Transparent Compression of Data� Since ob�
jects are not written to the same physical disk block�s�
every time� the compression ratio and storage size
might change�

Easier On�Line Backup� The written segments
are time stamped� and with a no overwrite strategy�
it is enough to know the last time of backup to know
where backup should be started now� Backup could
also be done on�line� and again� even if we stop backup
when the load is high� we know where to continue in
less busy periods�

Flash Memory� Very high performance can be
achieved if we use fast non�volatile memory instead
of disk� One example of such an storage technology
is �ash memory� Flash memory is byte readable� and
fast� but write�erase has to be done blockwise� This
facilitates a storage strategy with no in�data modi��
cations�

Write�Once Memory� With write�once storage�
there is a need for a no�overwrite strategy�

RAID Technology� Disk access times and band�
width improves at a much lower rate than main mem�
ory� and parallel disk systems are necessary to get high
performance� To bene�t from RAID technology� the
write blocks has to be much larger than those used in
traditional systems� In addition� in normal systems�
sequential writes are only about ��� times faster than
random writes� while in RAID� sequential writes can
be up to
� times faster
���

Super Computing Applications� In many super
computing applications� computations are done on
large matrixes and arrays� To be able to do opera�
tions on these large structures� it is often necessary to
break them into chunks which can be processed inde�
pendently� It is necessary to retrieve and store these
chunks e�ciently� Until now� only �le systems have
been able to o�er the performance necessary� How�
ever� there is a demand for some of the services of�
fered by database systems in these areas� access con�

trol� concurrency control� and recovery� Performance
close to �le system performance is necessary to be ap�
plicable�

Non�Set�Based Access Patterns� Current rela�
tional database systems are optimized for operations
on large sets of objects �tuples�� As soon as the access
pattern di�ers from this� or is navigational� it is dif�
�cult to get good performance� since applications can
not bene�t from automatic storage clustering� With
our approach� we have more �exibility in reorganizing
data� Reorganization can� e�g�� be based on previous
access patterns to the objects� This is especially inter�
esting for applications with complex data structures�
as is common in typical OODB applications�

Group Commit� Group commit� in addition to giv�
ing us larger writes� also gives opportunity for more
intelligent clustering of objects from di�erent transac�
tions�

Fast Crash Recovery� The log�only approach is
really a re�ned form of shadow storage� While this has
its de�ciencies� it also has a very nice and interesting
feature� very fast crash recovery� By never updating
in�place� recovery issues can be solved much easier�

Temporal Database Systems� Realizing a tempo�
ral database system is easy with our approach� Ver�
sioning comes at virtually no extra cost� while in a
conventional database system versioning doubles the
amount of data that has to be written�

Cache Coherence� Versioning�timestamping can
be exploited in cache coherence in client�server envi�
ronments� as is done in BOSS
���

With all the advantages listed above� one might
wonder why the idea of a log�only database system
has not been brought into reality� All the nice features
listed should have made them the preferred system
type� The most important reason for this� is proba�
bly some problems encountered in the System R and
Postgres projects�

The shadow paging scheme in System R� and the
log in Postgres� both held the risk of declustering re�
lations� Clearly� this can also be the case with our
approach� However� we expect that the increased
amount of main memory will compensate for the lack
of clustering� Important is also that the access pattern
is supposed to be quite di�erent in our applications�
more direct� navigational� and temporal accesses�

� Object Identi�er Index Structure

An object in an OODB is uniquely identi�ed by
an object identi�er �OID�� OIDs can be physical or
logical �surrogate�� If physical OIDs are used� the disk
blocks where the objects resides is given directly from
the OID� if logical OIDs are used� it is necessary to
use a map to convert from logical OID to physical
location� In our system� logical OIDs are necessary�
since the objects are never written back to the same
place� This might seem like an disadvantage� but even
though a physical OID has a potential performance
bene�t� it also has a major drawback� relocation and
migration of objects is di�cult� Therefore� a logical
OID is generally the preferred choice�

The data structure containing the necessary infor�
mation to map from a logical OID to a physical lo�
cation is in Vagabond called a object descriptor �OD��
Each version of an object has its own OD� and the OD
also contains other object speci�c information like cre�
ate time� object size� and a class tag� Create time is the
commit time of the transaction creating this version�
The class tag identi�es the class the object belongs
to� This is necessary to e�ciently support hierarchical
concurrency control techniques� In Vagabond� collec�
tions and indexes are also stored as objects� In this
case� the class tag is used as an index class identi�er
as well� This make the system very extensible� new
index classes can be added to the system as needed�

The number of ODs can be very large� and a fast
and e�cient index structure is needed� an OID index
�OIDX�� In the OIDX� the ODs are stored in the leaf
nodes� The OIDX is stored in the segments� inter�
leaved with the data�

E�cient indexing in a log�only system is not trivial�
Consider a tree�like index structure� if we update an
index node� this will be written to a new location� The
pointer in its parent node becomes invalid� The parent
node needs to be updated� and this cascades up to the
root� We also have another problem� Index blocks as
well as objects may be relocated during cleaning or
migration� In this case� structures having pointers to
this data needs to be updated� To avoid ine�cient
structures� and reduce cascading updates� design of
the index structure needs careful attention�

Fortunately� an OID index has some special prop�
erties that can be employed to make it more e�cient�
The keys in the index� the OIDs� are not uniformly
distributed over a domain as keys commonly are sup�
posed to be� If we assume the unique part of an OID to
be an integer� new OIDs will always be assigned mono�
tonic increasing values� If an object is deleted� the
OID will never be reused� The access pattern is also

important� it will always be a perfect match search�
range search of OIDs is not interesting�

Each version of an object has its own OD� and this
versioning complicates the index considerably� access
to current as well as old versions of objects has to be
supported by the index� However� for most applica�
tions� most queries will be against the current data� It
is important that this access is as e�cient as possible�
The index structure in Vagabond is an ISAM variant�
with extensions for the OD versioning�

� Object Storage in Vagabond

In Vagabond� all objects smaller than a certain
threshold are written as one contiguous object �not
segmented into pages as is done in other systems��
This threshold is con�gurable� but it should at least
be in the order of �� KB� Objects larger than this
threshold� are segmented into subobjects� There are
several reasons for doing it this way� 	� to avoid large
objects blocking all other transactions when they are
written to disk�
� a segmented object is useful later�
when only a small part of the object is to be read
or modi�ed� and �� subobjects can reside on di�er�
ent physical devices� possibly on di�erent levels in the
storage hierarchy�

Often� only a small part of an object is changed
when a new version is written� In this case� much can
be gained if only the changes are written� This is es�
pecially the case if an object is a hot spot� A version
which only contains the changes from last version� is
called a delta object� The delta object itself can be
made at low cost by the use of XOR between the new
and the old version� and run�length encoding the re�
sult� At bu�er replacement time� we should write the
complete objects to disk� If we do not do this� object
retrieval will be ine�cient� We would have to retrieve
the last written complete version� in addition to all
delta objects written since the last complete write� to
reconstruct the object�

To further reduce storage space� and disk band�
width� objects can be compressed before they are writ�
ten� In many application areas� e�g�� statistical and
scienti�c databases� a large number of NULL��elds
exists in the records�objects� Without even knowing
the structure of the objects� it is easy to run�length
encode these objects� Compression�decompression is
transparent to the applications� and a retrieved object
will be decompressed before it is delivered�

Large objects in Vagabond are actually temporal
index structures� where the segments of the objects
are indexed on position range and time� The size of a
subobject is always an integral number of disk sectors�

...Vol.
info ...Seg.

 0
Seg.
 1

Seg.
N−1

Seg.
N−2CPR

Figure 	� Volume structure�

� Storage Structures
The log is stored on a volume� One volume is a con�

�guration of one or more storage devices� The storage
devices are typically disk partitions or volume �les� A
volume consists of a volume information block� a num�
ber of equal sized segments� and two or more check�
point regions �CPR�� as shown on Figure 	� The seg�
ment size has to be a tradeo� between di�erent� partly
con�icting� goals� to improve write e�ciency� it is de�
sirable that the segments written are as large as pos�
sible� On the other hand� large segments can make
response time longer� since we have to wait for trans�
actions during group commit� or� alternatively� result
in a larger number of subsegments�writing a segment
is done by writing one or more subsegment� Based
on experiences from LFS� we expect that the segment
size should be in the order of 	 MB for a single disk
volume� but larger for parallel disk systems�

The volume information block holds static volume
information� and is only read when the system is
started� It is written when the volume is formatted�
and when new devices are chained to the volume� De�
vices can be added to the volume while the system is
running� Each device has its own volume information
block� The volume information blocks are identical�
except for the pointers to previous and next device�
and contains information like segment size� number of
segments� large object threshold� and location of seg�
ment status blocks�

The segments contains the objects and the index�
We do not always have a full segment of data to write�
and therefore we write data as subsegments� Subseg�
ments are a number of �xed size disk sectors� and con�
sist of a subsegment header� followed by the objects�
ODs� index blocks� and transaction control informa�
tion �e�g�� prepare� commit and abort�� For every ob�
ject written to a segment� the corresponding OD is
also always written in the same segment� The index
blocks themselves can be written lazily to disk� In
this way� we avoid having to �ush all index blocks at
commit time� If the system crashes� dirty index blocks
that had not been written before the crash can be re�
constructed from the ODs in the log� Having the ODs
together with the objects also makes cleaning more ef�

�cient� we do not have to search an index to �nd out
which objects are stored in a particular segment�

Information about the segments� status is kept in
main memory during normal operation� in the segment
status table �SST�� A segment can be in the states
clean� dirty� alive� or current� The segment we cur�
rently write to� is in the current state� segments con�
taining non�deleted data �objects and OIDX blocks�
are dirty� Segments written after the last checkpoint
are alive� Segments with no data are clean� This
means that data has never been written to it� all data
previously residing on it has been deleted� or the seg�
ment has been cleaned �data moved to another seg�
ment� implicitly deleted from the old segment�� We
keep some statistics for each segment� the number of
live bytes� number of read accesses� and last access
time� to help us decide which segments to clean�

A checkpoint is �nished by writing the SST and
the location of the last written OIDX root block� to a
checkpoint region� There are �at least� two checkpoint
regions in a volume� These regions contain times�
tamps� so that during recovery� the last successfully
written regions will be used� If the system crashes
during the update of one of the regions� the two times�
tamps in the region will di�er� and we use the previous
region�

	 Segment Cleaning

A segment starts in a clean state� it contains no
data� A segment has to be clean before we can write to
it� to maintain the no�overwrite policy� During writing
of subsegments to a segment� the segment is current�
When the segment is full� we start writing to a new
segment� The new segment now goes from a clean
state� to current� The previous segment is now alive�
it contains valid data� When checkpoint is done� all
previous segments in the alive state changes state to
dirty�

As times go by� non�versioned objects gets deleted�
and versioned objects are modi�ed� The result is that
more and more of the space in the segments is occupied
by data which can be removed in its entirety �deleted
non�versioned objects�� or moved to tertiary storage
�old versions�� The disk will eventually �ll up� and we
do not have any clean segments left to write to� Before
this happens� we have to move non�deleted objects in
�almost empty� old segments� to the current �alive�
segment� and if desired� old versions to tertiary stor�
age� This process� which results in a segment going
back to a clean state� is called cleaning� This pro�
cess is also an excellent opportunity to recluster the
database� Related data can be clustered together�

� Transaction Management

When a transaction commits� it is necessary to
write enough information in the log to be able to do
recovery in case of crash� We have two options here�
write the dirty object in its entirety� or only write a
delta object� In Vagabond� we write delta objects if
some given criteria is satis�ed� e�g�� based on the dif�
ference between the size of the object and the delta
object� or storage format� In this way� we should be
guaranteed that delta objects will only be written if
it is bene�cial� During normal operation� transactions
will usually be able to commit much faster� This is
especially important for objects that are hot spots�

Objects can be written to disk before a transaction
commits� e�g�� due to insu�cient bu�er space� How�
ever� it does not become visible before commit� which
is done by updating the indexes� To avoid having to
force the OIDX blocks to disk� only the index entries
�in this case� the object descriptors�� are forced to disk�

�� Checkpointing

E�cient checkpointing is important� Currently� we
have only sharp checkpointing in our design� but other
strategies appropriate for our system will be consid�
ered� In general� sharp checkpointing is not a good al�
ternative� since the system has to stop the normal pro�
cessing while doing the checkpoint� but in Vagabond�
the only restriction is that ongoing commit operations
have to �nish before the checkpointing starts� and new
commit operations have to be delayed until the check�
pointing �nishes� Unlike conventional systems� the
checkpoint operation does not involve lots of random
writes� Data and index blocks are written to the log as
usual� and the checkpointing is �nished by writing the
status information to one of the checkpoint regions�

�� Recovery

Crash recovery can be done fast and e�cient in
Vagabond� If crash recovery is needed� we start read�
ing from the last checkpoint� and build the relevant
structures in memory in one forward analysis pass� If
writing has to be done because of insu�cient bu�er ca�
pacity� this is done in a new� clean� segment� Since we
do not do any in�place update� it is easy to guarantee
recovery idempotence� When we read a subsegment
that was only partially written� we have come to the
place where the system crashed� We do a checkpoint�
and only after the checkpoint process is �nished� the
checkpoint regions are updated� Media failure in a
log�only system can be handled using RAID or disk
shadowing�

�� Conclusions and Future Work
In this paper� we have described the principles be�

hind Vagabond� a write optimized storage manager�
This system is log�based� with indexes embedded into
the log� This will give very good write performance�
We also expect that the read performance will be ac�
ceptable� even in the case where most of the data is
not in main memory� This is especially true for ap�
plications with navigational access patterns� or many
accesses to large objects�

The design of Vagabond is now �nished� and we are
currently in the implementation phase� In addition to
implementing the storage manager as described in this
paper� we will pursue issues related to super comput�
ing database applications �especially storage of ma�
trixes�� geographical information systems �which can
exploit our support for temporal�versioned objects��
and e�cient bu�er structures in the context of the
object bu�er in Vagabond� Vagabond is intended to
be part of a parallel OODB� and we plan to exploit
the features in this system�

References

	� M� M� Astrahan et�al� System R� Relational Ap�

proach to Database Management� ACM Transac�
tions on Database Systems� 	�
�� 	����

� K� Bratbergsengen and K� N�rv�ag� Improved and
Optimized Partitioning Techniques in Database
Query Processing� In Proceedings of the Fif�
teenth British National Conference on Databases�
BNCOD��� 	��� �to appear��

�� D� E� Langworthy and S� B� Zdonik� Extensibility
and Asynchrony in the Brown�Object Storage Sys�
tem� In V� Kumar� editor� Performance of Concur�
rency Control Mechanisms in Centralized Database
Systems� Prentice Hall� 	����

�� M� Rosenblum and J� K� Ousterhout� The Design
and Implementation of a Log�Structured File Sys�
tem� In Proceedings of the Thirteenth ACM Sym�
posium on Operating System Principles� 	��	�

�� M� Selzer� K� Bostic� M� K� McKusick� and
C� Staelin� An Implementation of a Log�Structured
File System for UNIX� In Proceedings of the
USENIX Winter �		
 Conference� 	����

�� M� Stonebraker� The Design of the POSTGRES
Storage System� In Proceedings of the �
th Con�
ference on Very Large Databases� 	����

�� M� Stonebraker� Readings in Database Systems
��nd edition
� Morgan Kaufmann� 	����

