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Abstract— Rank-aware query processing has become essentialdifferent versions: monochromatic and bichromatic resers
for many applications that return to the user only the top-k  top-k queries. In the former, there is no knowledge of user
objects based on the individual user’s preferences. Top-queries preferences and a manufacturer aims to estimate the impact

have been mainly studied from the perspective of the user, .
focusing primarily on efficient query processing. In this work, & potential product would have on the market. In the latter,

for the first time, we study top-k queries from the perspective a dataset with user preferences is given and a reversg top-
of the product manufacturer. Given a potential product, which query returns those preferences that rank a potential ptodu
are the user preferences for which this product is in the top- highly. To the best of our knowledge, this is the first workttha

k query result set? We identify a novel query type, namely addresses this problem
reverse top-k query, that is essential for manufacturers to assess )

the potential market and impact of their products based on age , user preferences

the competition. We formally define reverse topk queries and 10 - user| wlprice]| wl[age] top-1

introduce two versions of the query, namely monochromatic and 9 - . ® Py Bob| 0.9 0.1 |p(25)
bichromatic. We first provide a geometric interpretation of the 8 Ps op Tom| 0.2 08 | p,(2.2)
monochromatic reverse topk query in the solution space that 71 ep 9 Max| 0.5 05 | p,(3.0)
helps to understand the reverse topt query conceptually. Then, g ] . ep,

we study in more details the case of bichromatic reverse top- 4 Py

k query, which is more interesting for practical applications. 3 op; ®Pio

Such a query, if computed in a straightforward manner, requires 2 ®p,

evaluating a top+« query for each user preference in the database, 1 ®p,

which is prohibitively expensive even for moderate datasets. In L R R B R pri>ce

this paper, we present an efficient threshold-based algorithm tha 12345678910 17 s/6 1 wiprice]
eliminates candidate user preferences, without processing the

respective topk queries. Furthermore, we introduce an indexing Fig. 1. Example of reverse tap-query.

structure based on materialized reverse topk views in order to
speed up the computation of reverse toge queries. Matenallzed_ A linear top+ query is defined by assigning a weights]
reverse top+ views trade preprocessing cost for query speed up in 5 each of the attributes, expressing the importance of each

a controllable manner. Our experimental evaluation demonstrates . . .
the efficiency of our techniques, which reduce the required attribute to the user. Without loss of generality, we asstivaé

number of top-k computations by 1 to 3 orders of magnitude.  Weights are normalized in [0,1] anfl, w; = 1. This model
is in agreement with the notion of preference [6], [8] and is

. INTRODUCTION widely adopted in related work. In the example of Figlile 1,

Recently, the support of rank-aware query processing, hmsdatabase containing information about different cars is
attracted much attention in the database research commurdepicted. For each car, the price and the age are recorded and
Top-k queries [1]-[10] retrieve only thé objects that best minimum values on each dimension are preferable. Different
match the user preferences, thus avoiding huge and ovasers have different preferences about a potential car and
whelming result sets. Nowadays, most applications retarn Eigure[1 depicts also such a database of user preferenaes. Fo
the user only a limited set of data points that are intergstiexample, Bob prefers a cheap car, and does not care much
for the user, therefore it is very important for a manufaetur about the age of the car. Therefore, the best choice (top-
that its products are returned in the highest ranked positicl) for Bob is the camp; which has the minimum score for
for as many different user preferences as possible. Howewbe particular weights (nameB.5). On the other hand, Tom
existing work studies only tog-queries from the perspectiveprefers a newer car rather than a cheap car. Nevertheless, fo
of customers that seek products matching their preferencksth Tom and Max the best choice would be par
In this paper, we study top-queries for business analysis, A reverse topt query is defined by a given produgtand
i.e. from the perspective of manufacturers who are intetestreturns the weighting vectors for which p is in the topk
in the impact of their products to customers, compared $gt. For example in Figuld 1, the reverse topesult set of
their competitors existing products. The question thademri p; contains the weight§0.9,0.1) defined by Bob. Notice that
is "given a potential product, which are the user preferenctor the carp,, two weighting vectors belong to the reverse
for which this product is in the tog-query result set?”. To top-1 result set, namely the preferences of Tom and Max. In
this end, we proposeeverse topk queriesand study two fact, all weighting vectors withw[price] in the range o[%, %]



belong to the reverse topsesult set ofp,. This segment of tioning, which materializes reverse tépviews, in order

line wlprice] + wlage] = 1 corresponds to the result set of  to further improve reverse top-query processing. The
the monochromatic reverse tapeuery (for p=ps), whereas use of our index bounds the average cost of processing
the set{(0.5,0.5),(0.2,0.8)} is the result of the bichromatic a bichromatic reverse top-query in a straightforward
reverse topt query for the given dataset of user preferences. manner.

Conceptually, the solution space of reverse kopgueries « We conduct a thorough experimental evaluation that
is the space defined by the weighigprice] and wlage]. demonstrates the efficiency of our algorithms.
Monochromatic reverse top-queries return partitions of the  The rest of this paper is organized as follows: in Sedfibn II
solution space and are useful for business analysis and m@ge formally define reverse top-queries after providing the
particularly to estimate the impact of a product when no usgécessary preliminaries. In Sectiénl Ill, we study the geo-
preferences are given, but the distribution of them is knowmetrical properties of the two dimensional result set and
In our example, under assumption of uniform distribution giropose an algorithm for monochromatic reversekapseries.
user preferences, the impact in the market of the potentigdereafter, in Sectiof IV we present an efficient threshold-
productp, can be estimated &g — +) x 100% = 69%. On pased algorithm for processing bichromatic reverse itop-
the other hand, bichromatic reverse togtueries have even queries for arbitrary data dimensionality. We introduce an
wider applicability, as they identify users that are int¢eel indexing approach, based on materialized reverse:tojgws
in a particular product, given a known set of user preferencen Sectiof Y, and discuss construction, usage and maintenan
For instance, the best strategy for a profile-based madketmhe experimental evaluation is presented in Se¢fidn VInThe
service would be to advertise cai to Bob and camp; 0 Section[VI reviews the related work and finally, in Sec-

Tom and Max. Notice that an empty result set for a produgibn [VIIT] we conclude and discuss future research dirertio
(i.e. carps) indicates that it is not interesting for customers
based on their preferences. In practice, the bichromat&rse [l. PROBLEM STATEMENT

top-k query can be used in practical applications and is easielj, this section, we present the basics regardingitoperies

to incorporate into a database management system, Whergas then we proceed to define our problem statement.
the monochromatic mainly provides a geometric interpi@tat

and helps to intuitively understand the problem. A. Preliminaries

Reverse top: queries differ from reverse nearest neighbor ien a data spac® defined by a set off dimensions
(RNN) queries [11]. An RNN query retrieves the set of point dy,...,d;} and a dataseS on D with cardinality |S|, a
having the query point as their nearest neighbor and th?f@int p € S can be represented as = {p[1],...,pld]}
exists a monochromatic and a bichromatic version. In cehtrg,nere pli] is a value on dimension/;, We assume that
to RNN queries, the reverse tdpguery g finds the distance gach dimension represents a numerical scoring attribude an
functions (in terms of weights) for which would qualify herefore, the valueg[i] in any dimensiond; are numerical
as ak-nearest neighbor of the point positioned at the origifon_negative values that evaluate certain features obda¢a

of the data space. Therefore, existing reverse nearesib®ig gpjects. Furthermore, without loss of generality, we assum
algorithms cannot be applied for reverse topueries. Reverse ynat smaller score values are preferable.

skyline queries [12] aim at identifying customers that are 1o 1 queries are defined based on a scoring funcfionat
interested in a product, based on the dominance relationshiggregates the individual scores into an overall scorifigeva
Nevertheless, user preferences are expressed as pointhi&vit {4t in turn enables the ranking (ordering) of the data soint
same attributes as the products. In our case, user preé&eng,e most important and commonly used case of scoring
are modeled in a more generic way (only in terms of weightg)ctions is the weighted sum function, also called linEach
and they do not need to be uniquely mapped to a point in tﬂﬁnensiondi has an associated query-dependent weigit
data space. . o . indicating d;’s relative importance for the query. The aggre-
To summarize, the main contributions of this paper are: gated scoref,,(p) for data pointp is defined as a weighted
« We introduce a novel query type called reverse topsum of the individual scored,,(p) = Zlew[i] x p[i], where
query and present two versions, namely monochromatidi] > 0 (1 < ¢ < d) and 3; such thatw[j] > 0. The linear
and bichromatic. To the best of our knowledge, this iweighting function is increasingly monotone and it conveys
the first time that such queries are proposed. the meaning that whenever the score of all dimensions of the
« We analyze the geometrical properties for the two dimepoint p is at least as good as another pgiftthen we expect
sional case of the monochromatic reverse tapdery and that the overall score gf is at least as good as8. Notice that
provide an algorithmic solution. assigning a zero weight to some dimensions leads to & top-
« We present an efficient and progressive thresholduery referring only to a subset of the available features.
based algorithm for computing bichromatic reverse top- The result of a top: query is a ranked list of thg objects
k queries, which eagerly discards candidate user prefarith the best scoring valueg,. The weights indicate the user
ences, without the need to evaluate the associate@ topreferences and influence the ordering of the data objects an
queries. Our algorithm consistently outperforms the brutberefore the toge result set. Consider for example the dataset
force algorithm by 1 to 3 orders of magnitude. depicted in Figur€l2. By assigning a high weight to dimension
« We present an indexing structure based on space paitj-point p; is the topi object, while if a low weight is used,
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(a) Data Space (b) Solution Space.

Fig. 2. Top# query.

Fig. 3. Monochromatic reverse top-k query.

point p3 becomes the top-object. A linear topk query takes
two parameters and can be expresse@'@¥;(w), wherew
is a d-dimensional vectow = {wl1],...w[d]} that represents
preference values.

represents data points afid is a data set containing different
weighting vectors, a weighting vectar; € W belongs to the
bichromatic reverse top-(bRT'O Py (q)) result set ofg, if and
Definition (Top+ query) Given a positive integek and a only if 3p € TOP;(w;) such thatf,, (¢) < fuw, (D).
user-defined weighting vectar, the result sefl’"O P,

(w) o v -
the topk query, is a set of points such th&0 Py (w) For the sake of brevity, in the rest of this paper we denote
€

cSs : .
=" a query pointg € TOP;(w;), instead ofdp € TOP(w;)
gg}?(( )) ||t hofﬂd:?:aY??(pz) <p} e( T)Opk( whp2 € 5= gion thatf,, (q) < fu,(p). Consider for example the dataset
k w\P1 w\P2 depicted in Figuré]2. For a query poigtp,, the weighting

In the Euclidean space a linear tépguery can be repre- vector w belongs to the reverse tdp-if the query space
sented by a vectow. As discussed in [13] the magnitude ofH,(p2) of w defined byp, (depicted as shadowed triangle)
the query vector does not influence the query result, as loogntains less thark points. The challenge is to find all
as the direction remains the same, i.e. representing tagveel the weighting vectorsw; that define query spaceX.,,(q)
importance between different dimensions. Therefore, wkemacontaining less that points. For the bichromatic version of
the assumption thazZ Jwli] = 1. the reverse tof- query, the result set contains a finite number

There is a one-to-one correspondence between any weigiftweighting vectors, while the monochromatic version aims
ing vectorw and a hyperplané that crosses a point In ad- describe the parts of the solution space that satisfy theyque
dimensional space, we call thé-{)-dimensional hyperplane,
which is perpendicular to vectar and contains a point as
the query plane ofw crossingp, and denote it ag,,(p). All Given a datasef5, a monochromatic reverse tdpquery
points lying on the query plang,(p), have the same scoringreturns all weighting vectors, for which query pointg €
value equal to the scorg, (p) of point p. Figure[2 depicts an TOP;(w). Let us assume thatV denotes the set of all
example, where the query plane (equivalent to a query linevalid assignments ofs. Figure[3 shows the data and solution
2d) is perpendicular to the weighting vector = [0.5,0.5]. space of a 2d monochromatic reverse tomuery. Since
All points p; lying on the query line have a score valug _; _1w[ )] =1 andw[i] € [0, 1], all valid weighting vectors of
fw(Pi) = fuw(p2) = 4.5. Furthermore, poinp, is the top2 the reverse tog-query form the linew[1]+w|[2] = 1 in the 2d
object for the query).5 x = 4+ 0.5 x y. The ranking of a point solution space that is defined by the axid| andw][2]. Notice
p based on a weighting vectar is equal to the number of thethat it is not possible to enumerate all possible assignsnant
points enclosed in the half-space defined by the query line (@ € W, since the number of possible vectasds infinite. On
(d-1)-dimensional query plane) that contains the origin of thihe other hand, the solution spaldé can be split into a finite
data space. In the rest of the paper, we refer to this hatfespaet of partitionsi¥; (JW; = W, | W; = 0), such that query
asquery space ofv defined byp and denote it ag{,,(p). point ¢ has the same ranking position for all the weighting
vectorsw € W;. Then, the result set of the monochromatic

B. Definition of Reverse Top-k Queries
reverse topk is a set of partitiondV; of the solution space
In this section, we formally define the monochromatic angj;.

the bichromatic reverse tap-query.

Ill. M ONOCHROMATIC REVERSETOP-K QUERIES

mRTOPy(q) ={W; : Jw; € W; Aq € TOPy(w;)}
Definition (Monochromatic Reverse tdg: Given a pointg The main topic of this section is finding the partitions
and a positive numbe, as well as a datasét, the result set that form the result set of a monochromatic reverse iop-
of the monochromatic reverse tapémRTOPy(q)) query of query. In the following, we focus on thedimensional case.
point ¢ is the locud, i.e. a collection ofi-dimensional points First, an example is given in order to provide some intuition

wj, for which 3p € TOP;;(w;) such thatf,, (¢) < fu, (D). about the problem. Then, we provide an algorithm for the

_— . . . _ monochromatic reverse tdp-query.
Definition (Bichromatic Reverse top): Given a pointy and a

positive numbet, as well as two datasefsandV, whereS A. Interpretation of Solution Space

Consider for example the dataset depicted in Fidure] 3(a).

1In mathematics, locus is the set of points satisfying a pdaiatondition, )
Only three pointsp, ¢ and r belong to the top- result set

often forming a curve of some sort.
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Fig. 4. Examples o RTOP(q) queries. 13: ky < |R| /Inumber of points inR

for any weighting vector, since these are the only poinfg:

that belong to the convex hull [2]. There exists at least one

weighting vecton; for whichq € TOP; (w;), and therefore at 1?5

for (Vw; € W’) do
if (k. < k) then
RES «— RES U {(w;,wiy1)}

:end if
least one partitioV; € mRTOP;(g). In order to determine 1g:  if (p;41 € R) then
the boundaries of the partitiol’;, the line segmentpg and 19: kw — ko — 1
gr have to be examined. 20: else
Let w; be the weighting vector that is perpendicular télz kuw — kw41
. a 2:  endif
pq, then it holds thatf,, (p)=fu, (¢) and thereforep andq 53 anq for
have exactly the same rank for tH&OP;(w;). Recall that 24: return RES

the line /., (p) that is perpendicular to the weighting vector
and crosse®, defines the value of the scoring function and
also the rank of poinp according tow. For weighting vectors

with smaller and larger angles than, the relative order op
and ¢ changes. Ifp had a lower rank thag for vectors with

Algorithm [I describes the monochromatic reverse kop-
algorithm. Data points that are dominated byare always
ranked afterq for any weighting vectorv, while points that

smaller angle tham, then for vectors with larger angle thandominateq are ranked before for any weighting vectony.

w1, pointp has a higher rank. Since the relative order betwe
p and g changes only once, there exists exactly one partiti(wne

W;, such that for all the weighting vectois € W; it holds
thatqg € TOP; (w).

#r example in Figurg 4(bps is worse (ranked lower) thap

reagpg is better (ranked higher) thanfor any w. Points
of the dataset that are neither dominated by nor dominate
g are ranked higher than for some weighting vectors and

The boundaries of the partitionV; are defined by the |, e thang for other weighting vectors. Thus, our algorithm

weighting vectorsw;, w, that are perpendicular to the line

segmentgq and gr respectively. All weighting vectors) for

which the following inequality holds are in the reverse 0p- o tor 4.
K3

result set ofy:

Aq/\rqll < wll] < %
2]—p[2 r[2]=q[2
e, = 55 anor, —

examines only such incomparable poids} to ¢ (line 5),
because they alter the rank @f Fortunately, the weighting

for which the rank betweem and a data point

p; changes, can be easily determined as the vector that is
perpendicular to the linep; (I.,,(q)). Consequently, we have

are the slopes of to examine all liné&that pass througland any other poing;,

linespg andgr respectively. The above inequalities are deriveghich is incomparable tq. These lines define the boundaries

by using the properties that; | pq andw, L ¢r. The result
set of the monochromatic reverse tomuery mRTOP; (q)
is a segment (partition) of the line[1] + w[2] = 1 in the 2-
dimensional solution space defineddji] andw[2], as shown
in Figure[3(D).
B. Monochromatic Reverse Top-k Algorithm

In our previous example, the result setRT'OP;(¢q) con-

of the partitionsW;, therefore the corresponding weighting
vectors are kept in a list’ (line 7). Then, we identify the
partitions for whichg belongs to the togs, by processing?”’.

In Figure[4(D), after the sorting (line 10) the sBt’ is
{w1, we, ws, wy} corresponding to the linegp:, gp2, gps,
gp4 respectively. Then, vectors, andws are added tdV’.
For the first weighting vectoiv, all data points that lie in
H,,(q) are retrieved (line 12). Recall that the rakk of

tains at most one partitiol’; of 1. However, fo_r a reverse ;4 with respect tow, is determined by the number of points
top-k query withk > 1, the result set may contain more thaontained inH,, (¢q) (line 13). In our example, the s&t is
one non-adjacent partition®;. Consider for example the three{p%pﬁ,,pl} and therefore the rank af is 4. The rank ofg
data points in Figur¢ 4(g) and assume we are interestedcihnot change before;. If we assume thak=3, than for

compute then RT'O Py (q) for k=2. Query pointg is in the top-
2 result set for both weighting vectors; andws. However,

the first partitionWWy=[wy, w1] the rank ofq is higher thank
and the partitioni?, can be safely discarded. Therefore, the

when weighting vectoiv, is considered, with angle betweemext partition isWW, = [wy,ws]. Sincep; € R (line 18), this

wy andws, it is obvious thaty no longer belongs to the tdp-
Thus, in this small example, the monochromatic toguery
would return two non-adjacent partition;;.

2This is similar to the approach in [8], which is used to computelsust
layered index.



means that iV, the relative ordering of the poings, andg Algorithm 2 RTA: Reverse Tope Threshold Algorithm.

changes and now the rank gfis 3. Therefore,J/; is added 1
to mRTOPs(q) (line 16). Similarly, we can compute the rank 2

Input: S, W, q, k
Output: bRTOP:(q)

of ¢ for all W;. In our example}V; is the only partition that ~ W’ — {0}, buf fer — {0}

™ . 4: threshold <+ oo
qualifies for them RTOP;(q) result set. Thus, Algorithrill s for (eachw,; € W) do
returns the monochromatic reverse topesult set for any two 6:  if (fu,(¢q) < threshold) then
dimensional dataset. 7 buf fer «— TOPy(w;)
8 if (fu,(q) < maz{fu, (buffer)}) then
IV. BICHROMATIC REVERSETOP-K QUERIES 9: W' — W' U{w;}

For a bichromatic reverse tdp-query, two datasets and 12 engni? i
W are given, WhereS contains the data points ard” the (5. ;3eshold — maz{ fu; , (buf fer)}
different weighting vectors that represent user prefeenc13: end for
Then, the aim is to find all weighting vectots; € W such 14: return W’

that the query poing € TO Py (w;).

A brute force (naive) approach is to process a kop-
query for eachw; € W and examine whethey belongs to maz{fw,(P)} > fuw,(p;), Vp; € P. The scoref,,(q) of
TO P, (w;). Obviously, this approach induces high processimguery pointg based on vectow; is computed and compared
cost, as it requires one tdpeguery evaluation for each weight-against the maximuny,,, value of all points in the buffer,
ing vectorw;. As the number of potential weighting vectorglenoted asnax{ f,,, (buf fer)} (line 8). This maximum score
w; in the datasetV may be high (comparable to the size oflefines the threshold value. If the scgtg (¢) is not greater
the datasetS|), this approach is prohibitively expensive andhan max{ f.,, (buf fer)}, thenw; is added to the result set
does not scale. In the sequel, we present a threshold-bhasedliae 9). Before the next iteration of the algorithm, we take
gorithm (called RTA Reverse tope ThresholdAlgorithm) for next weighting vector; 1) and we set as threshold value the
bichromatic reverse top; which discards weighting vectorsmaximum score of any point in the buffer based on this new
that cannot contribute to the result 98870 P, (q), without vectorw; (line 12). Then the condition of line 7 is tested, so if
evaluating the corresponding tépgueries. the scoref,,, (¢) is larger than the threshold, then we can safely

. discardw;. Otherwise, we have to evaluate the topguery for
A. Threshold-based Algorithm (RTA) the vectorw;, in order to determine whether; belongs to the

Our algorithm exploits already computed tbpresults t0 reverse top: result. Therefore, we pose again a topuery
avoid evaluating weighting vectors that cannot be in them® on datases and we update the main memory buffer with the
top-k result set. The goal is to reduce the number of k0pnew result seT’O P, (w;). In each iteration, thé points of the
query evaluations, based on the observation thaktgperies previously processed topguery are kept in the buffer. Notice
defined by similar weighting vectors return similar resulhat the size of the bufferkj is limited, since queries with
sets [6]. Therefore, in each repetition a threshold is seétha small 1 values are commonly used in practice. The algorithm
on to previously computed top+esult sets, in order to discardterminates when all weighting vectors have been evaluated o
the next weighting vectors without tdpguery evaluation.  (discarded.

As the aim is to examine similar weighting vectors irCorrectness of the algorithmtet w € bRTOP;(q) be a
consecutive steps, the weighting vectdirsare ordered basedweighting vector that is falsely discarded without a fop-
on their pairwise similarity. We measure the similarityweén evaluation. Then, based on the definition of the reverse top-
two vectors using the cosine similarity and the goal is tg query, 3p € TOP,(w) such thatf,(q) < f.(p). Let p;,
maximize the cosine similarity of all consecutive weightiny < ; < & be the points in the buffer, then based on the
vector pairs. To achieve an acceptable solution without-0V@nhresholdvp:: fo (i) < fu(q). Therefore,fu(pi) < fu(q) <

whelming computational overhead, the weighting vectoes ay, (;), vp,. This means thap ¢ TO P, (w), which leads to a
ordered based a simple strategy. The first weighting veci@ntradiction..]

wy is the most similar vector to the diagonal vector of the |n worst case, the algorithm has to proce$g| top-k

space. Thereafter, the most similar weighting veator; t0 queries, hence the algorithm degenerates to the brute force

the previous vectoty; is examined. Notice that the orderinga|gorithm. However, in the average case the algorithm metur

of the weighting vectors takes place during the initialimat the correct result by evaluating much less tha¥| top-k

phase of the algorithm, and is not affected by the query poigfueries, which is verified also in the experimental evatnati
Algorithm [2 formally describes the RTA algorithm foron the other hand, RTA has to evaluate at |6BBTO P, (q)|

processing a bichromatic reverse toguery. Initially, RTA  top queries, since no weighting vectar; can be added in

computes the top-result TOP;.(w;) for the first weighting  the result set without evaluating the respective toguery.
vector (line 7). Notice that in the first iteration we cannot

avoid evaluating a top- query, as the threshold cannot bd- RTA Example

set yet. Thek data points that belong to the result set In order to provide an intuitive example of RTA, con-
TOP,(w;) are kept in a main memory buffer. Given a set dafider the dataset consisting of poings, a datasetW =
points P, we denote asnaz{f,,(P)} the maximum value {w;,ws, w3}, as well as two potential query poingsand ¢/,

of all score valuesf,,(p;), p; € P, which means that depicted in Figuré]5. Let us assume that2 and the first
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Fig. 5. Example of bichromatic algorithm (RTA). Fig. 6. Example of grid-based algorithm.

examined weighting vector ig;. As depicted in Figurg 5(p), for example for thi lower left corneﬁ;"iLUV\_/e def_me as.; -
RTA computes the top-query (O Ps(w:)) and finds that the W= € bRTOP(C)}. Analogously,L;” is defined. During
top-2 data point forw, is p;. Pointsp; and p, are enclosed the reverse toj- evaluation, egch grid corner is conS|dgred as
in the query spacé{,,, (p1) (depicted as gray triangle) ang? duery point and the_query is evaluateq (usmg .Algon[ﬂm 2)
those points are kept in the buffdips, pi}. If the query against tk;e dgtaseﬁ, ignoring the remamng gnd corners.
point is ¢/, then it would be enclosed ift,, (p1) and w; The l_'St Ly (L7) assoc_lat_ed with a corn@._?’i % ) of C; IS
would belong tobRTOP,(¢'). Now consider that the query con5|d§req as a materialized reverse kogiew, as it contains

is g, so it is not enclosed it (py), thereforew, does not ! WelghtlnLg vectors thatUwouId be the result of a query
belong to thehRTO P, (q). In the next step (Figuie 5{b)), thebRTOPk(C,; ) (BRTOP,(C;")). Henceforth, we refer to the

most similar weighting vector ta;;, namelyws, is examined lists of welghltmg vec_:jors ﬂf a ggl:jas.maée-nall-zed VIEWS.
and the threshold is set based on the query linewef For example, consider the grid depicted in Figure]6(a). Dur-

crossingp:, depicted as the gray trianglé((,, (p.)). Sinceq ing query processing we can egploit the information assedia

is not enclosed ifH., (p1), the weighting vectorss is safely with the corners of the cells, in order to r_estnct the number
discarded, without further processing. Notice tH, (p:) of welghtlng vectors that need to b(_a examined by our reverse
contains at leas? data points (in this example 3), and thid®P* algorithm. Given a query poing, the cell C; which
explains whyws can be safely discarded. When the next vect&closes query poin IS dgtermmgdz It IS.ObVIOUS that for
ws is consideredy is enclosed i, (p1), therefore the result any w; that does not exist in mgte.nallzed V'GWL’ We cgnnot
SetTOP; (w;) has to be retrieved, and the buffer now contairl2® In the reverse top-of ¢. This is because’; dominates

{ps,p3 ). Notice that the score value gfis not better than the ¢ tUS f%r anyw, query pointg has? higher score than the
score value ofp; that is the tof data point of this query, cornerC'j. Therefore, if the corne€;” does not qualify for

so the weighting vectomws is not added to the reverse tap- th_e top# result set, neitrler can point For example, consLider
result set ofg. Thus, none of the 3 weighting vectors belongg'gure@- Ifw, ¢ Lj, then the query spacet,,_ (C;")

to the result obRTOPs(q). defined by the query plarg,_ (CL), contains more thah da_lta
points. Consequently, also the query spétg. (¢) contains

V. MATERIALIZED REVERSE TORK VIEWS more thank points, and therefore ¢ TO Py (w,).
In this section, we present an indexing structuRs’Q P- On the other hand, if a weighting vectar, belongs to

Grid) based on space partitioning, which materializes revergiterialized viewL{, thenw, is definitely in the reverse top-
top-k views for efficient processing of bichromatic reversé result ofq. To explain this better, consider Figyre 6(b) and
topk queries. First, we present an example that explaiffiat w. belongs to the reverse tdp+esult set ofCY, i.e.
how RTOP-Grid improves the performance of reverse tops € LY. This means that less thdndata points exist in the
k queries, by further reducing the required number of togiuery spaceH,, (CY). Therefore, since is enclosed inC;,

k query evaluations. Then, we describe in detail the reverden it is also in the top- result, independently of's exact
top-k algorithm based on RTOP-Grid. Afterwards, we clarifyposition in the cell. Notice that a weighting vecter, that
the details on how the construction of the RTOP-Grid can tglongs toL{, also belongs td.} .

accomplished in an efficient manner. Finally, we generalize Only for weighting vectors that are ih/ but not inL} we

our approach for arbitrary values and discuss updates.  have to examine the exact ranking pbased on its position.
o Essentially, this restricts the input of Algorithild 2, which

A. Motivating Example is used to compute theRT'OP;(q), to consider weighting
Let us assume that we have a grid-based space partitioniegtors only from the seLiL — LZU, rather thaniv.

of the data space. The grid consists of disjoined data space )

partitions, also callectells Each cellC; is defined by its B- Grid-based Reverse Top-k Algorithm (GRTA)

lower left cornerC¥ and upper right corne€?. For each  Algorithm [3 formally describes how a bichromatic reverse

cell C; and a given valué:, a reverse tog: query for each top-k query is processed using the grid-based materialized

corner CL and CY is evaluated and the result set is storediews. Initially, the cellC; that encloseg is determined (line

More particularly, the resulting weighting vectors, are 4). Then, each weighting vectar, € L’ is further examined

maintained in a list associated with the correspondingemrn(line 5). If w, belongs also td.¥ (line 6), then we are certain



Algorithm 3 GRTA: Grid-based Reverse tdpAlgorithm. Algorithm 4 Construction of RTOP-Grid.
1: Input: S, ¢, k 1: Input: S, W, k, Limit

2: Output: bRTOPx(q) 2: Output: RTOP-Grid

3 W — {0}, W — {0}, Weana — {0} 3: Create cellCy that covers the universe
4: Find cell C; that encloseg 4: LY — RTA(S,W,CE k)

5: for (Vw. € LF) do 5: LY — RTA(S,W,CY k)

6: if (w, € LY) then 6: RES «— {Co}

7 W' — W U{w.} 7: centCells — 1

8: else 8: while (cntCells < Limit) do

9: Weand — Weana U {w.} 9:  Find cell C; with maximumCOST¢,
10:  end if 10:  Split C; into C; and C» based ond;
11: end for 11: LY — LE

12: W — RTA(S Weana,q.k) 122 LY «— GRTA(S,CY k)

13: return {W/ UW”"} 13:  L{ < GRTA(S,C7 k)

14: LY — LV

15:. RES «— RES —{C;}

16: RES «— RESU{C:1,C5}
that w, belongs to the reverse tdpresult of query poinyy, 17: cntCells « cntCells + 1

so we addw, to list W’ (line 7) that contains the results.18: end while

If w. does not belong td.V, thenw. is added (line 9) to 19 'etun RES

the set of candidate weighting vectovg.,,, that need to

be evaluated. Finally, we invoke Algorithid 2 on the set of - .

candidate weighting vectot¥.,..q (line 12) and some of them notion ofcostfor a cellC; as _the probability that a query point

are returned as results denotedVEé. The weighting vectors IS enclosed in a cell multiplied by the number of tomuery

that belong to the union of’ and W constitute the results evaluations necessary for processing the query;inAssume

of the GRTA algorithm (line 13). that f_(q_[l], q[2], s q_[d])_z f(q) denoj[es the density fur_mtion
As already discussed, the cost of RTA (Algoritfith 2) dedescr_lbmg t_he distribution of thé_varlables corresponding to

pends mainly on the number of tdpevaluations. This number the dimensions of the.query points. Then, the expected cost

is related to the cardinality of the datagét, which is given ©f @ cellC; can be estimated as:

as an input to the algorithm. Therefore, by using the grid-

based materialization, the number of weighting vectors tha COSTg, = (|LF| - ILZUD/ f(q) 1)

need to be examined in order to retrieve the reversektop- Ci

result is restricted, since Algorithf 2 takes as input attahi In the case of uniform query distribution, the integral of

set of weighting vector$l,,..4, instead of the entire sé/’. In  Equation[1 can be replaced by the fraction of the volume of

particular, the upper bound of tdp-evaluations for different the space covered by the cell (normalized volu}%%i)).

weighting vectors is|LF| — |LY|, which is the number of Given a RTOP-Grid index, we define the average number

evaluations required by the brute force algorithm. Of ceursof top-k query evaluations that are necessary for processing a

RTA reduces even more this number, by discarding weightimgverse topk query as a quality measure of RTOP-Grid, which

vectors based on already computed results. However, tht ex@an be expressed as the sum of the costs of all cells:

savings in terms of discarded weighting vectors also depend

on the construction algorithm and the quality of the reaglti COSTrTrOP—Grid = Z COSTe, (2)

grid, as will be shown presently. Vi

. . The cost function insinuates that the cost of a particullir ce
C. RTOP-Grid Construction adds up to the total cost of the grid, only if a qury point is
In this section, we discuss the construction algorithm eafctually enclosed in the cell. Equatioh 2 is the average @ost

RTOP-Grid. In our approach, the grid-based space parititipn processing a reverse tdpguery, in terms of toge evaluations
occurs recursively, starting by a single cell that covers tHor a given RTOP-Grid, because it contains the probabitigt t
entire universe. We take into consideration three differea query is enclosed in a cell. Furthermore, the estimated<os
subproblems. First, we develop a cost-based heuristicder én upper bound of the actual cost, since RTA needs even fewer
ciding which cellC; to split. Secondly, we accomplish efficienttop-k evaluations thanLZ| — |LY|. The splitting employed in
computation of the views.Z and LY, by using a results the RTOP-Grid construction algorithm aims at minimizing th
sharing approach. Finally, we propose different stratefpe aforementioned cost function. Thus, the constructionritlym
establishing the stopping condition of the cell divisiongess. splits the cell with the maximun®'OST¢, value.

Given a cellC; and a query poiny; enclosed inC;, the Algorithm [4 describes the construction of RTOP-Grid. As-
performance of reverse tdp-query depends mainly on thesuming initially a single cell’y covering the entire universe
number of evaluated top-queries, which in turn depends on(line 3), the algorithm starts by computing the materialize
the number of weighting vectors in the viewg and LY. views of the lower and upper corner of the universe (lines
Therefore, it is very important that the splitting strategfythe 4,5). In order to process the reverse toguery for each cell's
construction algorithm splits first the most costly cells, the corners efficiently, the RTA algorithm is employed. In each
cells that may lead to many tdp-evaluations. We define theiteration, the algorithm picks a cefl’; to be split, which is



the cell C; with the maximumCOSTc,, according to our weighting vectors that are contained i are examined,
splitting strategy (line 9). Then, two new cels; and C, while weighting vectors that are not ib> cannot contribute
are created (line 10) by selecting a dimension in a rourd the reverse topg- result set ofg. For anyw, € LF, the
robin fashion, which is used to divide the cell in two partdollowing cases are distinguished (the following code aepb
Consequently, the materialized views of the new c€ljsand lines 6-10 of AlgorithnB):

C, are computed. Our algorithm employs result sharing in two

ways. First, it is obvious that! and LY equals toLf and | F (kF < k) THEN

LY respectively (lines 11,14), and these materialized views | F (w. € LY and kY < k)
do not have to be recomputed. Whenever a reversek top- THEN

query for each cell’s corners needs to be computed, GRTA W' — W U{w.}

is employed (lines 12,13) on the currently constructed RTOP ELSE

Grid. Therefore, the algorithm takes into account the viefs Weand <= Weana U {w.}

the existing cells to restrict the weighting vectors thagahéo
be examined and the tdp-queries that have to be evaluated Updates
This is the second way result sharing is used, namely It:'c') P
efficiently compute the necessary materialized views. Ijina  UPdates that occur either i or .S affect the materialized
cell C; is removed from the RTOP-Grid, whereas cellsand reverse topk views, therefore they should be supported effi-
C, that cover the removed cell are added (lines 15,16). TRENtly. In case of insertion of a new weighting vectar,,, we
algorithm continues to iterate, until the stopping comditthat need to progressively examine the corners of the grid,istart
ceases splitting of cells is satisfied (line 8). from the origin of the data space. If a corrgr (CY) does not
As regards the stopping condition, two different strategi@ualify as topk object for w,, then we can safely discard
are used, each controlling the cost of a different paramet@ll comers dominated by’ (C{’). Deletion of an existing
namely storage requirements and query processing perf§ighting vectonug,; is simple, as it requires removal ofyc;

mance. Hence, two different strategies are employed: from the lists of any corner of the grid. Notice that again

« Space-boundedn order to restrict the construction andthe_cprners of the grid can be examined progressively, thus
voiding processing of dominated corners.

storage cost, the algorithm stops when a specific numB&s

h . . . Insertion of a data poing;,,; is more costly, since only grid
of gnq ceIIs_(g|ven as |r_1put) are created. Algoritiim %orners that dominate,, s are discarded. For the remaining
describes this strategy (line 8).

corners, we cannot avoid computing the reversektapiery.

« Guaranteed costThis strategy focuses on query pro-

cessing cost, rather than construction cost, and aimsHa wever, GRTA can be used and only weighting vectors that

setting a bound on the average number of required togf ong to the materialized views of the cell corner have to be

k evaluations. Cells are split as long as the quality 0valuated, since no weighting vectors can be added, but only

the RTOP-Grid, has not reached the bound (given sgme of them may be removed from the materialized view.

input). The quality is measured by means of Equaiion imilarly a data point,.; that is removed from the dataset

Therefore, the stopping condition of AlgoritHrh 4 (line 8)orobably influences all dom|r.1aFed cgll corers, thergfoaa W
. e . need to recompute the materialized views for them, since new
is modified as follows:

COSTRrop—cria < Limit weighting vectors may have to be added.

In our experimental evaluation, we also examine a straight- VI. EXPERIMENTAL EVALUATION

forward approach, namely UNIFORM, where the algorithm In this section, we present an extensive experimental evalu
decides to split the cell that has the largest volume, withoation of reverse tog- queries. All algorithms are implemented
using the cost function. The stopping condition follows th@g Java and the simulations run on a 3GHz Dual Core AMD
space-bounded strategy, i.e. splitting stops when a spécifprocessor equipped with 2GB RAM. The block size is 8KB.
number of cells are created. We focus on the evaluation of the bichromatic reverseitop-
query, as it is most useful for practical applications.

As far as the datasetf is concerned, both real (RE) and
In this section, we generalize our approach to supp@ynthetic data collections, namely uniform (UN), corretht
reverse topk queries for arbitrary values @f, using a common (CO) and anticorrelated (AC), are used. For the uniform

RTOP-Grid. Given an upper limik,,,., the RTOP-Grid is dataset, all attribute values are generated independesitig
constructed for<,,,, and additional information is stored thata uniform distribution. The anticorrelated dataset is getesl
enables processing queries for dnyalue ¢ < K,,..). For by selecting a plane perpendicular to the diagonal of tha dat
each weighting vectow,, the rank of the cell corner, i.e. thespace using a normal distribution, and within the plane each
minimum & for which the corner is in the top-result set of attribute value follows a uniform distribution. Similaylipr the
w,, is additionally maintained. Thus, the materialized vieworrelated dataset, first a plane perpendicular to the di&lgo
can be described a&l' = {(w.,kL)} and LY = {(w.,kY)}. of the data space is selected by using a normal distribution
Algorithm [3 can be adjusted to process reverse iopand within the plane, each attribute value is generatedgusin
qgueries over a grid constructed for arbitraky < K,,.,. a normal distribution. We also use two real datasets. NBA
First, the cellC; that encloses; is determined. Then, the consists ofl 7265 5-dimensional tuples, representing a player’s

D. Supporting Arbitrary k Values
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Fig. 8. Performance of RTA for varyind for k-skyband queries [naive (outer bar) vs. RTA (inner bar)].

performance per year. The attributes are average values Af:Performance Evaluation of RTA

number of points scored, rebounds, assists, steals ankisbloc

HOUSE (Household) consists 827930 6-dimensional tuples,  In Figure[T, we study the behavior of RTA for increasing

representing the percentage of an American family’s annutimensionality d, for various distributions (UN,AC,CO) of

income spent o types of expenditure: gas, electricity, watergatasetS' and uniform weightd?. We use|S|=10k, [W|=10k,

heating, insurance, and property tax. top-4£=10 and 1000 random queries that follow the data distri-
bution. Notice that the y-axis is in logarithmic scale. le thar

For the dataselV of the weighting vectors, two different charts, each of the three bars (for a specific dimensionality
data distributions are examined, namely uniform (UN) arig@presents a dataset: UN, AC, and CO respectively. The total
clustered (CL). For the clustered datad®t first Cyy cluster length of the bar represents the performance of naive, while
centroids that belong to thed{l)-dimensional hyperplane the inner dark-colored bar depicts the performance of RTA.
defined by> w; = 1 are selected randomly. Then, eactregarding average time, RTA is 2 orders of magnitude better
coordinate is generated on théX)-dimensional hyperplane than naive, in all examined data distributions. In termg/Os|
by following a normal distribution on each axis with variancagain RTA outperforms naive by 1 to 3 orders of magnitude,
o3, and a mean equal to the corresponding coordinate of téile larger savings are obtained for datasets UN and CO.
centroid. We conduct experiments varying the dimensignaliThe reason behind RTAs superiority is clearly demonstrate

(2-5), the cardinality (10k-100k) of the datasgtand cardi- in Figure[7(c), where the average number of fopvaluations
nality (5k-15k) of the datasefd’. necessary for computing a bichromatic reverseitapsery is
shown. The threshold employed by RTA reduces significantly

We evaluate the performance of RTA against an alternatitfge number of tope evaluations, saving around 1.5 to 3 orders
technique that evaluates a tépeuery for each weight in of magnitude compared to naive. Notice that naive requires
the datasetV. In particular, the datasef is indexed by an [W| (=10k) top% query evaluations to compute the result,
RTree and top: processing is performed using a state-of-théegardless of data distribution.
art branch-and-bound algorithm. We refer to this algorithm An interesting observation is that only a small percentage
as naive. Our metrics include: a) the time (wall-clock timefaround 2%) of the queries actually return non-empty result
required by each algorithm, b) the I/Os used, and c) the numisets. This is due to the fact that queries are generateavialip
of top-k evaluations conducted. We also investigate the perfahe data distribution, therefore many queries are not indpe
mance benefits that RTOP-Grid attains over RTA. We preséntesult for any weighting vector. An important feature of our
average values over thH#)00 queries in all cases. Notice thatalgorithm is the fact that RTA can efficiently process such
we do not measure the I/Os that occur by readitig since queries. Thus, RTA processes reverse kogderies that have
this is the same for every method, assuming sequential seasmall or empty result set quickly, because the threshold em
on the datasetV. ployed eliminates candidate weighting vectors, often irgum
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Fig. 10. Performance of RTA for clustered weighié and for real data (NBA and HOUSE).

only one topk evaluation. In contrast, naive does not have this Thereafter, we perform a scalability study of RTA by
ability and compute$iW| top-k queries for all queries. Notice varying several parameters in Figlile 9. We use as metric the
that reverse top- queries that produce empty result sets amumber of topk evaluations, as it is the dominant factor for
also very informative for a product manufacturer, sinceythahe performance of RTA. First, we increase the cardinality
indicate that the particular product is probably not popéda of W and study the performance of RTA for different data
any customer, compared to their competitors’ products.  distributions ofS (Figure[9(d)). We fix the remaining parame-
Nevertheless, we also employ a different method to gener&@és to|S|=10k, d=5 and topk=10. In general, dataset$ of
queries and present the corresponding results. In orderhigher cardinality demand more tdpevaluations. However,
increase the probability that a query point belongs to aktopwe observe that RTA is highly efficient, especially for the
result, we pick random query points from ttheskyband of costly CO dataset. For instance, fo#|=5k, RTA needs on
the dataset. Obviously, these query points are more likely average544 top-k evaluations, while the average mandatory
produce non-empty reverse tégresults. This query workload cost is 459 (this is the number of queries that cannot be
corresponds to queries about products that seem popd@dpided, also equal to the average size of the result sey. Th
to costumers, and manufacturers are expected to pose s#epws that out 05000 query evaluations1(0%), RTA needs
queries with high probability. Figurg]l 8 depicts the resul@nly 544 (10.88%), which is only marginally more than the
obtained by using-skyband queries for the same experimentanandatory459 (9.18%), thus RTA save89.12% of the cost.
setup depicted in FigurE] 7. Although we witness a small In Figure[9(B), we sellW|=10k and gradually increase the
deterioration in the results of RTA, our algorithm congighe cardinality of S to 100k. For the CO dataset, we observe that
outperforms naive by 1 to 2 orders of magnitude. Sonfewer top4 evaluations are necessary with increagisig This
interesting observations can be made by studying Figurk 8(s because the data space has more data points, thus becomes
First, we notice that the correlated dataset requires matenser, andi-skyband queries have fewer weighting vectors
top-k evaluations caused by the fact that the cardinality @f results, hence smaller processing cost. In Figuré 9@), w
bRTOPy(q) is high. The reason is that the-skyband of useS=10k andWW=10k, and study how the value éfaffects
a correlated dataset contains points that are close to the performance of RTA. It is clear that RTA is highly efficien
origin of the data space, and therefore such points arefix UN and AC datasets, and its performance is affected only
the top4 for many weighting vectors. Second, we observe far the CO dataset. The increasekoincreases the probability
decreasing tendency as dimensionality increases, whiamhse that a query point belongs to tdpfor some weighting vector,
counterintuitive at first. However, this is because agaia tland therefore the average cardinalityp®fl'O P (q) increases,
cardinality of bRTOP;(q) decreases as the dimensionalityeading to more tog: evaluations.
increases. For the rest of our experiments, we iuskyband We also study the performance of RTA for a clustered
gueries and we do not show the results of naive, as it perforatetasetV, using Cy =5 clusters of weighting vectors. A
consistently worse than RTA by few orders of magnitude. clustered datasé¥’ simulates the case where user preferences
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Fig. 12. Scalability study of RTOP-Grid for the space-boemhdtrategy.

are not independent, but there exist some groups of comnthe number of tope evaluations compared to RTA by 30%,
user preferences. This chart, depicted in Figbre 10(a), viien the cost bound is set to 100. As expected, when the
analogous (thus also comparable) to the setup of Fguré 8(@yund imposed on cost is smaller, RTOP-Grid improves RTA
which was for a uniform datasé?’. The results show that in more. Notice that in most cases the actual number ofktop-
the case of clustered datasét, RTA performs better than for evaluations is smaller than the bound set on average cast. Th
uniform W for all data distributions, nevertheless the generé because the average cost is estimated based on the number
trends remain the same as dimensionality increases. of weighting vectors in the views, and it does not take into ac
In Figure[1I0(0), we test the performance of RTA on theount the additional savings in tdpguery evaluations caused
NBA dataset. The performance of RTA is in accordanday the threshold mechanism of RTA, employed also by RTOP-
with the case of synthetic data. We try both a uniform ar@rid. In Figure[11(d), we show the number of cells created
clustered dataset’’ and the results show again that feweby RTOP-Grid for the same experiment. Clearly, the number
top-k evaluations are required for the clustered datdget of cells increases rapidly when the cost bound is set too low.
In Figure[I0(d), a similar experiment is conducted using tldowever, similar improvement can be obtained by relaxirey th

HOUSE dataset. cost bound, i.e. notice that setting the bound to 200 achieve
) _ similar performance to the bound of 100, using much fewer
B. Performance Evaluation of RTOP-Grid cells. Furthermore, we study the scalability of RTOP-Gad f

In the sequel, we evaluate the performance of RTOP-Gnarying values of W], |S| and topk. Figure[12(d) shows the
and the results are shown in Figurel 11. Unless mentionegsults obtained by increasing the cardinality 16T. RTOP-
explicitly, we use |S|=10k, |W|=10k, d=5 and topk=10. Grid consistently outperforms UNIFORM and improves RTA.
First, we provide a comparison of the RTOP-Grid spacdhen, in Figur¢ 12(b), we sé¢tl’|=10k and increasg5|. Once
bounded strategy to the UNIFORM approach and to RTAgain, the gains of RTOP-Grid over RTA are sustained in all
(Figure[TI(d)), for increasing number of cells. RTOP-Gid-p setups. Finally, in Figurg 12(c), the chart shows how the cos
forms consistently better than UNIFORM, demonstrating tHe affected by increasing values &f RTOP-Grid performs
advantages of using the cost-based splitting strateggadsof better than RTA and UNIFORM for alf values and the benefit
splitting the cell with the maximum volume. RTOP-Grid alsdncreases withk.
provides an improvement to RTA, in terms of the required
number of topk evaluations as expected, and in this setup it
achieves a reduction of top-evaluations betweet8.5% (100 Reverse tope queries are inherently related to top-k query
cells) and26.3% (1000 cells). processing, thus we summarize some representative work

In Figure[11(B), we test the RTOP-Grid guaranteed cosere. One family of algorithms are those based on pre-
strategy versus the RTA algorithm, with increasing costrishu processing technique®nion [2] pre-computes and stores the
for top-k={10,20}. The chart shows that RTOP-Grid reducesonvex hulls of data points in layers. Then, the evaluation

VIl. RELATED WORK



of a linear topk query is accomplished by processing thé queries is presented, based on the geometrical properties
layers inwards, starting from the outmost hiftefer [6] uses of the result set. Thereafter, we present an efficient tlnldsh
materialized views of top- result sets, according to arbitrarybased algorithm (RTA) for computing bichromatic reverge-to
scoring functions. During query processing, Prefer seldte & queries, which eagerly discards candidate user prefesence
materialized view corresponding to the function that is tmowithout the need to evaluate the associated Aopuery.
similar to the querying scoring function, and examines RBurthermore, we present an indexing structure based orespac
subset of the data elements in this view. Onion and Prefeartitioning, which materializes reverse tépriews, in order
are mostly appropriate for static data, due to the high cbstto improve reverse top- query processing even further. We
pre-processing. Efficient maintenance of materializedvsie conduct a thorough experimental evaluation that demaestra
for top-k queries is discussed in [9]. The authors propogke efficiency of our algorithms. RTA consistently improves
algorithms that reduce the storage and maintenance cost®mB orders of magnitude the naive approach.

materialized top-k views in the presence of deletions andThere are several interesting issues for future work. It is
updates. Theobust indeX8] is a sequential indexing approachimportant to study in more detail the monochromatic reverse
that improves the performance of Onion [2] and Prefer [6 ThHop-k query, especially for high dimensions, since the geomet-
main idea is that a tuple should be placed at the deepest lageal properties of the result set are essential for prongsbe
possible, in order to reduce the probability of accessinat it bichromatic reverse top-query efficiently. Moreover, we plan
guery processing time, without compromising the corresgtneto study approximate reverse tépalgorithms that compute
of the result. Later, in [10], the authors propose tleeninant quickly a good approximation of the result set.
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VIII. CONCLUSIONS

To the best of our knowledge, this is the first paper that in-
troduces reverse top-queries. We present two versions of re-
verse topk queries, namely monochromatic and bichromatic.
Then, an algorithm for evaluating monochromatic reverge to
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