
Write Optimized Object-Oriented Database Systems
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Abstract

In a database system, read operations are much more
common than write operations, and consequently, database
systems have been read optimized. As the size of main mem-
ory increases, more of the database read requests will be sat-
isfied from the buffer system, and the amount of disk write
operations relative to disk read operations will increase.
This calls for a focus on write optimizeddatabase systems.
In this paper, we present solutions to this problem. We de-
scribe in detail the data structures and algorithms needed
to realize a write optimized object-oriented database system
in the context of Vagabond, an OODB currently being im-
plemented at our department. In Vagabond, focus has been
to provide support for applications which have earlier used
file systems because of the limited data bandwidth in current
database systems, typical examples are super computing ap-
plications and geographical information systems

1. Introduction

Based on current available technology, some interesting
observations can be done:

� Disk is cheap.

� Memory is cheap.

� CPU speed is increasing very fast.

However: the increase in disk speed is much lower than
the memory and CPU speed, which results in an increasing
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secondary memory access bottleneck. This is not a new sit-
uation, minimizing the effects of this bottleneck has been
the main motivation behind most database related research.
However, the advent of very large main memory buffers,
makes it necessary to revise previous work and solutions.

In a database system, most accesses to data are read op-
erations. Traditional database systems are designed to work
in an environment where memory is expensive, and hence,
buffer space quite limited. As a result, they have beenread
optimized. However, the increasing buffer size, means that
more and more of the read requests can be satisfied from
the buffer system. The result is that performance become
limited by the the systems write throughput. This calls for
a focus onwrite optimized database systems. Another as-
pect that gives this issue increased importance, is database
systems which also needs high performance in terms of data
bandwidth, and not only in transaction throughput (although
these points are related). This is especially important for
new emerging application areas, like super computing appli-
cations and geographical information systems, which have
earlier used file systems.

In the rest of the paper, we will show how we can in-
crease write throughput in an object-oriented database sys-
tem (OODB). This is done by employing techniques from
write-optimized file systems, mainlylog-structured file sys-
tems (LFS) [11]. Some important differences between com-
mon file system requirements and database requirements
complicates this work. The most important is data granu-
larity. Objects are much more lightweight than files. The
overhead acceptable for finding a file in a file system, is not
acceptable to find an object. Second, the number of objects
in an object-oriented database system will usually be much
larger than the number of files in a file system. While it is
possible to have most of the file directory cached, this will
not be possible for the object directory. Finally, access pat-
terns are radically different.

A database system must also provide ACID properties.
In file systems, data are often not immediately written to
disk (unless flushing is done explicitly)when a file is closed.
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Figure 1. Disk volume structure.

The reason is that commonly, created files are just tempo-
rary files, that will be deleted shortly after. In this case, disk
write would be wasted. While this is acceptable in a file sys-
tem environment, it is of course not acceptable for a database
storage system. When a transaction is committed, the data
should really be durable.

1.1. Outline of the Paper

The rest of this paper is organized as follows. Section 2
presents the log-only approach, and its advantages. Sec-
tion 3 gives an overview of the architecture of the Vagabond
OODB. Section 4 describes objects in Vagabond, and Sec-
tion 5 describes how to index objects in the log. Section 6
describes the physical storage structures, and Section 7 how
to do access data in the database, transaction management,
and recovery. Section 8 gives an overview of related work,
and in Section 9 we conclude the paper and indicate topics
for future work.

2. The Log-Only Approach

Increasing the effective disk bandwidth can be done in
three ways: 1) by reducing seek time, 2) by reducing the
amount of time spent in rotational delay, and 3) parallel
I/O. In current database systems, the first two are partially
achieved by the use of write ahead logging (WAL), which
defers the non-sequential writing. However, sooner or later,
the data has to be written to the database. This involves the
writing of lots of small objects, almost always one access
for each individual object. Our solution to this problem, is
to eliminate the database completely, and use alog-only ap-
proach. The log is written contiguously to the disk, in a no-
overwrite way, in large blocks. This is similar to the ap-
proach used inlog structured file systems (LFS) [11]. We
will now explain briefly how data are written to the log, and
delve into more details regarding algorithms and data struc-
tures in the following sections.

2.1. Log Writing

With a log-only approach, data as well as metadata are
written contiguously to the log. To be able to retrieve data
written to the log, an index, the OID-index (OIDX), is used
to map from from logical object identifier (OID) to physical
location on disk. This index structure is interleaved with the
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Figure 2. Data and index in a log-only OODB.

objects in the log. Already written data are never modified,
new versions of the objects and the index are just appended
to the log. Writes are always done sequentially, and with a
large write block size, preferably up to 1MB. This is done by
writing many objects and index entries, possibly from many
transactions, in one write operation.

Logically, the log is an infinite length resource, but the
physical disk size is, of course, not infinite. We solve this
problem by dividing the disk volume into large, equal sized,
physical segments, as illustrated on Figure 1.

A segment starts in aclean state, e.g., it contains no data.
The segment currently being written to, is called thecurrent
segment. When the segment is full, we start writing into a
new segment. The new segment now goes from theclean
state, tocurrent. The previous segment is nowalive, it con-
tains valid data. When checkpoint is done, all previous seg-
ments in the alive state changes state todirty.

Recovery in a log-only database can be done very fast,
since there is no need to redo or undo any data. Only seg-
ments that werealive when the system crashed needs to be
processed. At regular times, a checkpoint operation is per-
formed, and at recovery time we just do an analysis pass
from the last known checkpoint to the end of the log (where
the crash occurred).

As data are deleted, old segments can be reused. Deleted
data will leave behind a lot of partially filled segments, the
data in these near empty segments can be collected and
moved to a new segment, thus freeing up space in the old
segments and making the old segments available for reuse.
This process is calledcleaning.

Figure 2 illustrates how data and index are interleaved in
the log. On top of the figure is the log. At timet�, a transac-
tion allocates four objects or pages. The index block IDX0
is written, and the pages can later be retrieved via this index
(which, in general, have more than one level above the leaf



pages). Later, a new transaction modifies one of the objects
on page number 2 (whose first version is denoted P2V0).
The new version of the page (page P2V1) and a new ver-
sion of the index (index block IDX1) is written to the log.
The two versions of the database are illustrated on the figure,
with arrows from the respective index blocks. If we want to
keep the old version, e.g., in a temporal database system, we
use an index that can index more than one version of an ob-
ject.

2.2. Log-Only Object Storage

There are two alternative ways to design an OODB based
on LFS techniques:

1. Page based [5, 14], and

2. Object based.

Page Based Designs. In these designs, we look at the log
as one large persistent address space. When objects are cre-
ated, they are allocated space from this address space. These
pages are written to the log, as illustrated on Figure 2. The
objects are referenced by persistent memory address, and are
retrieved via the page index interleaved in the log. If an ob-
ject is modified, a new version of the page(s) it resides on is
written back to the log.

Object Based Designs. The alternative to a page based
design, is to to index objects instead of pages in the persis-
tent address space. When an object is modified, only the ob-
ject (or a delta object) needs to be written to the log. This is
especially useful if good clustering is difficult. This is the
approach taken in Vagabond, described in detail in the next
sections.

Page vs. Object Based Log-Only OODB. The main ad-
vantage of the page based approach is ease of implementa-
tion. However, it has the same problem as traditional page
servers: Even if just a small part of the page is modified, the
whole page has to be written back. If objects are not well
clustered, this will give low write bandwidth. Variable sized
objects are difficult to integrate into the page approach, since
the space is allocated when the objects are created. This
makes it difficult to employ compression, described in the
next section.

In the rest of the paper, we writelog-only as short for a
log-only object based design.

2.3. Advantages of a Log-Only Approach

Because the log-only, no-overwrite approach, is radically
different from the techniques used in current systems, it is

appropriate to discuss some of the advantages of the ap-
proach.

2.3.1. Functional Issues

A log-only approach is particularly applicable for storage
technologies where in-data modifications are costly or im-
possible. Two good examples are write-once optical disks,
where in-place update is impossible, and flash memory,
where write/erase has to be done blockwise. A log-only
approach is also interesting for very large databases where
most of the database resides on tape.

Disk access times and bandwidth improve at a much
lower rate than main memory, and parallel disk systems,
e.g., RAID, are necessary to get high performance. To ben-
efit from RAID technology, the write blocks has to be much
larger than those used in traditional systems. In addition,
sequential write becomes more important. While in nor-
mal systems, sequential write is only about 3-5 times faster
than random write, in RAID, sequential write is probably
20 times faster than random write [16]. The advantages of
combining LFS and RAID have already been shown in the
Sawmill system [13].

Each write of an object to the log creates a new version,
which is timestamped. Realizing a temporal database sys-
tem is easy with our approach. Versioning comes at virtu-
ally no extra cost, while in a conventional database system,
versioning doubles the amount of data that has to be writ-
ten (the previous current version has to be moved before the
new can be inserted). The sequential writing of the log, with
timestamped segments, also makes on-line and incremental
backup easy. To take a incremental backup, it is enough to
know the last time of backup to know where backup should
be started. This also make it possible to do backup at times
when the load on the system is low, and temporarily stop it
when the load is high.

With in-place update, it is difficult to save storage space
by using compression, since compression ratio and storage
size might change. However, this is no problem with the
log-onlyapproach, objects can change size with no fragmen-
tation problems.

Versioning/timestamping can be exploited by cache co-
herence algorithms in client-server environments, as is done
in BOSS [8]. Similar techniques can also be used in peer-to-
peer parallel database systems. It can also help in nomadic
computing. By the use of timestamped data, it is easier to
update partitioned databases after reconnect.

The log-only approach is particularly attractive in appli-
cation areas with large objects, e.g., super computing appli-
cations. In many super computing applications, computa-
tions are done on large matrixes and arrays. To be able to
do operations on these large structures, it is often necessary
to break them into chunks which can be processed indepen-



dently. It is necessary to retrieve and store these chunks ef-
ficiently. Until now, only file systems have been able to of-
fer the performance needed. However, there is a demand for
some of the services offered by database systems in these ar-
eas: access control, concurrency control, and recovery. Per-
formance close to file system performance is necessary for
database systems to be applicable.

For high-availability applications, fast crash recovery is
needed. The log-only approach is really a refined form of
shadow storage. While this has its deficiencies, it also has
a very nice and interesting feature: very fast crash recovery.
By never updating in-place, recovery issues can be solved
much easier. Only one read pass is needed from the last
checkpoint.

The fact that the log-onlyapproach has similarities to ear-
lier shadow page approaches, implies that it might inherit
the nasty side of shadowing: after a while, data becomes
declustered. Clearly, this can also be the case with our ap-
proach. However, we expect that the increased amount of
main memory will compensate for the lack of clustering. It
is also possible torecluster the database when needed. This
can be done as a part of the cleaning process. Many sys-
tems are write-once systems, and if a large batch is loaded
at a time, we can get very efficient clustering. Also, dy-
namic, adaptive, clustering can be done. Traditional clus-
tering works well as long as the access pattern is static, but
if this happens to change, or access pattern is navigational
rather than set based, reclustering the database have to be
done.

3. Overview of Vagabond

In the rest of the paper, we will describe how a log-
only OODB can be implemented. We start with a general
overview of the Vagabond architecture.

Vagabond is a system designed for high performance,
based on parallel servers. In many organizations it is also
desirable to have the data in a distributed system. To satisfy
this, we ended up with a hybrid solution: a distributed sys-
tem, withserver groups. In this way, objects are clustered
on server groups based on locality as is common in conven-
tional distributed OODBs, but one server group can contain
more than one computer (a kind of “super server”). Objects
to be stored on a server group are declustered on the servers
in the group according to some declustering strategy, e.g.,
hashing.

Similar to another recent project, Shore [2], our architec-
ture is a peer-to-peer architecture. Clients in the system are
connected toone server running on the same machine. This
make it possible for several clients running on the same ma-
chine to utilize a common cache. This server is the gateway
to the database system. The servers do not have to contain
any data (clearly, if all severs did, including those running
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Figure 3. The Vagabond server.

on office workstations, availabilitywould be a big problem).
Thus, even if a node contains no data volume, a server must
be running on that node to make it possible for the client to
access the OODB. The communication between the client
and the server process is through shared memory.

The architecture of the server is shown on Figure 3. A
normal client operates against the Vagabond API, which
provides the mechanisms to communicate with the server
through a shared memory queue, themessenger. Each client
that connects to the server is allocated one server thread, an
OODB session subserver. This operates in the server ad-
dress space on behalf of the client.

Vagabond is extensible, and new subservers can be added
to the system. Subservers access the storage manager (SM)
through the SM API. The interesting point here, is that the
SM API is a superset of the Vagabond API, which the clients
operate against. This feature makes it possible to implement
and test subservers as clients, before they are added to the
server. As subservers, they can communicate with clients
through a messenger, as illustrated on Figure 3.

Instead of using a page buffer as is common in other sys-
tems, we use anobject buffer, which is more efficient when
data are not guaranteed to be well clustered.

4. Objects In Vagabond

In our storage system, all objects smaller than a certain
threshold , e.g., 64 KB, are written as one contiguous ob-
ject (not segmented into pages as is done in other systems).
Objects larger than this threshold are segmented intosub-
objects, and alarge object index on the subobjects is main-
tained. There are several reasons for doing it this way:

� Writing one very large object should not block all other
transactions during that time.
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� A segmented object is useful later, when only parts
of the object is to be read. This also simplifies
insert/modify operations to large objects, only in-
serted/modified parts and the new object index table
have to be written.

� Parts of the object can reside on different physical de-
vices, possibly on different levels in the storage hierar-
chy.

5. Object Indexing

An object in an OODB is uniquely identified by an ob-
ject identifier (OID). OIDs can bephysical, or logical. If
the former is used, the disk block where the object resides
is given directly from the OID, if the latter is used, it is nec-
essary to use an index to convert from logical OID to phys-
ical location. In our system, logical OID is necessary, since
the objects are never written back to the same place. This
might seem like an disadvantage, but even though a physical
OID has a potential performance benefit, it also has a major
drawback: relocation and migration of objects are difficult.
Therefore, logical OIDs are generally the preferred choice.

5.1. Object Descriptors

Object descriptors (OD) contains administrative infor-
mation for each object version. Its main function is to pro-
vide the information needed to map from logical OID to
physical location. The ODs are stored both in the OID index,
and together with the objects in the segment. They are stored
in the segments to help identifying objects during cleaning,
and as a kind of write ahead logging of index entries. An
OD contains the following information, summarized on Fig-
ure 4.

Physical location is the location in secondary or tertiary
memory. If the physical location is NULL, this means that
the object is deleted (but previous versions might exist), or
that it is not yet created (timestamp is NULL). If the object

is a large object, the location is the location of the (root of)
the subobject index of the object.

Create timestamp is the (logical) commit time of the
transaction creating this version.

Versioned object is set to true if this is an object where
we want to keep old versions when it is modified or deleted.
This is decided for each object at object creation time, but
can be changed later (although this is, in general, not a good
idea).

Often, only small parts of an object is changed when a
new version is written. In this case, much can be gained if
only the changes are written. This is especially the case if
an object is a hot spot. A version which only contains the
changes from last version, is called adelta object. The delta
object itself can be made at low cost by the use of XOR be-
tween the new and the old version, and run-length encoding
the result. The disadvantage of delta object is, of course, that
previous versions have to be retrieved to reconstruct an ob-
ject at read time.Delta object in the OD is set if this ver-
sion is a delta object. Delta objects are usually only created
if the previous version is already in memory. For large ob-
jects, other rules apply.

To further reduce storage space, and disk bandwidth, ob-
jects can be compressed before they are written. In many
application areas, e.g., statistical and scientific databases, a
large number of NULL-fields exists in the records/objects.
Without even knowing the structure of the objects, it
is easy to run-length encode these objects. Compres-
sion/decompression is transparent to applications, and a re-
trieved object is decompressed before it is delivered.Com-
pressed object is set when an object is compressed before it
is stored.

Class tag identifies the class the object belongs to. This is
necessary to be able to use hierarchical concurrency control
techniques, and is also useful for type checking.

Large object is true if the object islarge (cf. Section 4).
Both plain “data” objects and index structures are realized as
large objects. Clearly, different object classes and indexes
have different needs. The class tag, which primary use is
tagging an object with its class, is not needed for indexes,
we use it as an index class identifier as well. This makes
the system extensible, new index classes can be added to the
system as needed.

5.2. OID Index

The number of ODs can be very large, and a fast and ef-
ficient index structure is needed. Efficient indexing in a log-
only system is not trivial. Consider a tree-like index struc-
ture: if we update an index node, this will be written to a
new location. The pointer in its parent node becomes in-
valid. The parent node needs to be updated, and this cas-
cades up to the root. We also have another problem: index



blocks as well as objects may be relocated during cleaning
or migration. In this case, structures having pointers to this
data needs to be updated. To avoid inefficient structures, and
minimize cascading updates, design of the index structure
needs careful attention.

Each version of an object has its own OD, and this ver-
sioning complicates the index considerably, access to cur-
rent as well as old versions of objects has to be supported by
the index. There are several solutions to the indexing prob-
lem:

� Two index structures, one for current ODs, and one for
historical ODs.

� One index structure for current ODs, and maintaining
a linked list of versions from the version in the index.

� One index structure, with all ODs, current as well pre-
vious versions.

If versioning is only used to support temporal databases,
most queries will be against the current data. To make ac-
cess to current version as efficient as possible, one separate
index for current data is desirable. The problem with this ap-
proach, is that every time a new version is created, we have
to updatetwo indexes.

A second alternative is to have one index structure for
current ODs, and linking old versions to new versions. This
has similarities with approach used in Postgres [15]. In Post-
gres, a link exists from one version of a tuple, to the previ-
ous version. This has to serious disadvantages: 1) a lot of
disk accesses may be necessary to retrieve an old version,
2) this is not efficient for all kinds of queries, an extra index
is needed, and 3) most important, in our system, it would be
difficult to move objects during cleaning, since only back-
ward pointers exists (bidirectional pointers would make an
efficient write pattern impossible).

The third alternative is to have one index structure, with
all ODs, current as well as previous versions. This is neces-
sary if versioning is also used for multiversion concurrency
control. In that case, both current andrecent data will be ac-
cessed. From research in multiversion access methods the
recent years, we know that it is possible to make such a struc-
ture efficient, e.g., by using a time-split B-tree [9]. How-
ever, the general available multiversion access methods pro-
vides more flexibility than we need, an OID index has some
special properties that can be exploited to make it more ef-
ficient:

� The keys in the index, the OIDs, are not uniformly dis-
tributed over a domain as keys commonly are supposed
to be.

� If we assume the unique part of an OID to be an integer,
new OIDs will always be assigned monotonic increas-

ing values. There will never be insertions of new key
(OID) values between existing keys (OIDs).

� If an object is deleted, the OID will never be reused.

� There will be no key range search (but time range
search may be needed), search will always be for per-
fect match.

The index structure in Vagabond is an ISAM variant, with
extensions for versions. To reduce the index update cost, we
write only the ODs when a transaction is committed (write
ahead logging), and write the index blocks themselves later.
If an index block to be updated is not in memory, we just
insert the index entry into a waiting list, and insert it into the
respective index block next time the index block is retrieved
into memory.

5.3. Other Indexes

To make an OODB efficient, we need other indexes in ad-
dition to the OID index, e.g., to implement collections. In
Vagabond, these indexes are all realized as objects.

For temporal queries, it is useful to be able to search and
retrieve by time as well as OID. A multidimensional index
can be used here, e.g., time-split B-trees [9] or R-trees [4].

6. Physical Storage Structures

The log is stored on avolume. One volume is a configu-
ration of one or more storage devices. The storage devices
are typically disk partitions, cf. Figure 1. A volume consists
of a volume information block, a number of equal sized seg-
ments, and a checkpoint region.

The size of the segments is set when the volume is for-
matted. The segment size is a tradeoff between different,
partly conflicting, goals. To improve write efficiency, it is
desirable that the segments written are as large as possible.
On the other hand, large segments can make response time
longer, since we have to wait for transactions during group
commit, and result in a larger number of subsegments (one
or more subsegments can be written to a segment). Also,
segment writing blocks read operations.

6.1. Volume Information Block

This block holds static volume information, and is only
read when the system is started. It is written when the vol-
ume is formatted, and when new devices are added to the
volume. Devices can be added to the volume while the sys-
tem is running. Each device has its own volume information
block. Static volume information includes segments size,
number of segments, large object threshold, and locations of
segments status blocks.
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6.2. Segment Structure

Objects, index blocks, transaction control information,
and object descriptors, are placed into the segments. We do
not always have a full segment of data to write when a flush
is requested (timeout on group commit), and therefore we
write data as subsegments.

The layout of a segment is shown on Figure 5. The
first part is the segment header, consisting of some identify-
ing information, link to next subsegment, and a subsegment
checksum.

The main part of the segment consists of objects, index
blocks and transaction control information. There are some
details to note here. When a segment is to be cleaned later, it
is necessary to know the contents of the segment, to be able
to check if an object is still valid. If we did not store this in-
formation in the segment, we would have to search through
the whole OIDX to find out which objects resides in the seg-
ment. This is obviously too costly. The solution is to store
the OID and object length together with the object. Ideally
we would store the OD here, but this is not possible. The rea-
son is that objects can be written before a transaction com-
mits because the buffer is full, or simply to avoid a heavy
burst at commit time. If this is done, the transaction is not
yet given its timestamp, and we do not have enough informa-

tion to write the ODs. Therefore, they are not written until
transaction commit. This, implies that in general, the object
and its OD are in different segments.

The reason for writing both ODs and index blocks, is to
avoid having to flush all index blocks at commit time. By
writing these ODs, the index blocks themselves can be writ-
ten lazily to disk later. If the system crashes, dirty index
blocks that had not been written can be reconstructed from
the information in the ODs at recovery time.

Transaction control information is written to the segment
just as it would be done in an ordinary write ahead log, but no
information is written until the transaction start the commit
process.

Finally, at the end of the segment, we can have a seg-
ment status table. This table contains the status (clean, dirty
etc.) for each segment, together with some access statistics
to help decide victims in the cleaning process. This is kept
in main memory during normal operation, but periodically
written to the log as a part of the checkpointing.

6.3. Checkpoint Blocks

These blocks holds the location of the last written version
of the segment status information, and pointers to the object
index root. This is the starting point for the analysis pass
when doing recovery.

7. Object Operations

In this section, we describe how objects in the log are
accessed, and how transaction management and recovery is
done.

7.1. Writing Objects

When we create a new object, it is allocated a unique
OID. The buffer system employs a steal strategy, which
means that objects can be written to disk before the trans-
action commits, if the buffer gets out of space. To ensure
durability, the object have to be written to disk before the
transaction commits. If it is an update (new version of an ex-
isting object), only a delta object needs to be written. In our
system, we will write delta objects if some given criteria is
satisfied, e.g., based on the difference between the size of the
object and the delta object. In this way, we are guaranteed
that delta objects will only be written if they are beneficial.
This is important, since writing delta objects has the unfor-
tunate disadvantage that after a crash, to read an object, we
will have to go through a list of delta records to reconstruct
the object. However, during normal operation, transactions
will usually be able to commit much faster, and for objects
that are hot spots, delta objects can save a lot of bandwidth.



The object’s OD is not written until commit time (cf. Sec-
tion 6.2).

7.2. Deleting Objects

Deleting an object is done by writing a tombstone ver-
sion, which is an OD where the physical location is NULL,
and the timestamp is the delete time.

If we do not want to keep the deleted version (it is not a
temporal object), the object is simply marked as deleted in
the index. The object will sooner or later be removed by the
cleaning process.

7.3. Reading Objects

To read an object that is not resident in memory, we first
have to look up in the OIDX to find the physical location,
and then read the object. We expect that at least the up-
per levels of the index is resident in the buffer, so that most
lookups will be satisfied from the buffer system, and that
reading index blocks is only needed for a few of the lookups.

7.4. Transaction Management

When a transaction commits, it is necessary to write
enough information in the log to be able to do recovery in
case of a crash. Objects can be written to disk before a
transaction commits, e.g., due to insufficient buffer space.
However, it does not become visible before commit, which
is done by updating the indexes. To avoid having to force
the index blocks to disk, only object descriptors need to be
stored before a transaction commits it finished. Commit of
a transaction is done by writing the index entries, the ODs.
The index blocks themselves, which consists of many (pos-
sibly unrelated) entries on each, can be written later, since
they can be reconstructed at recovery time from the index
entries written at commit time.

The easiest way to do implement commit in our system,
would be to do commits serially (not to be confused with
executing transactions serially), e.g., write all ODs from
one transaction before writing ODs from the next, and write
transaction finished marks between each of them. At re-
covery time, we would immediately know which transac-
tion finished last. Since many transactions can be commit-
ted in one segment write, this would not give problems with
throughput, but could give higher response times for some
transactions, if a transaction with many created or modified
objects was earlier in the queue. If done serially, all ODs of
this transaction must be written first. Reordering could alle-
viate the problem, by writing the data from smaller transac-
tions first. But sooner or later, we have to write the large one,
and this would effectively block the system for a while. In

most applications, we would be able to live with these prob-
lems, but there is one additional, more serious, problem: it
would be difficult to implement an efficient 2-phase commit,
since the system would be blocked during the whole process,
from prepare to commit finished.

Our solution, is interleaved commit. The timestamp in
the ODs act as a transaction identifier. When a transaction
finishes the commit, this is noted in the log. Thus, at re-
covery time, it is easy to decide which transactions finished
before the crash. With our scheme, two-phase commit has
the same cost as a local commit, and actually, in our system,
we only operate with two-phase commit. A local commit is
a two-phase prepare followed immediately by a two-phase
commit.

The fact that no transaction control information is writ-
ten to the log before a transaction starts the commit process,
simplifies abort considerably. This is especially important in
a client-server environment. It is also useful to exploit opti-
mistic concurrency control techniques.

7.5. Checkpointing

Efficient checkpointing is important. Currently, we have
only sharp checkpointing in our design, but other strategies
appropriate for our system will be considered. In general,
sharp checkpointing is not a good alternative, since the sys-
tem has to stop the normal processing while doing the check-
point operations. However, in our system,most operations
can run as normal during checkpointing. The only restric-
tion is that ongoing commit operations have to finish before
the checkpointing starts, and new commit operations have
to be delayed until the checkpointing finishes. Unlike con-
ventional systems, the checkpointing operations does not in-
volve lots of random writes. Data and index blocks are writ-
ten to the log as usual. The only non-sequential write is the
update of the checkpoint block.

7.6. Segment Cleaning

As times go by, and non-versioned objects gets deleted,
more and more of the space in the segments becomes
garbage. The disk will eventually fill up, and we do not have
any clean segments left. Before this happens, we move non-
deleted objects in almost empty dirty segments, to the cur-
rent segment. In this process, which is called cleaning, we
get empty (clean) segments as a result.

There are some tradeoffs involved in the choice ofwhich
segment to clean. Several constraints have to be satisfied,
e.g., free as much space as possible. It is also beneficial to
cluster together objects that are expected to have the same
lifetime, to avoid having to move the objects many times,
and cluster together related objects. There is ongoing work
in this area in the context of LFS [10], and some of the results



should be applicable here as well. However, the clustering
constraints give us some additional problems, which is not
as important in a file system.

7.7. Tertiary Storage Migration

Even if disk space is cheap, it will still be necessary to
have data on tertiary storage for some applications. This can
be done transparently in our system, as a part of the cleaning
process. Index blocks, as well as objects, can migrate. It is
possible to determine from the physical location addresses
where objects and index blocks are stored.

7.8. Recovery

Crash recovery can be done fast and efficient. At sys-
tem startup time, it is determined from the checkpoint block
whether the the shutdown of the system was controlled or
caused by a crash. If done controlled, resident structures are
built from the data written during shutdown, the most im-
portant being the last segment status table and the index root
blocks.

If crash recovery is needed, we start reading from the last
checkpoint, and build the relevant structures in memory in
one forward analysis pass. If we need to write objects or
index blocks during recovery because of insufficient buffer
capacity, this is done to a clean segment. Since we do not
do any in-place update, idempotence is no problem. When
we read a subsegment that was only partially written, we
have come to the place where the system crashed. We do
a checkpoint, and when the checkpoint process is finished,
the checkpoint blocks are updated. Because we do not mod-
ify any written data before updating the checkpoint block,
idempotence is guaranteed. If the system crashes before the
checkpointing is finished, the recovery will start from the
same point next time we try.

Media failure in a log-only system, can be handled by the
use of mirroring (RAID 1), RAID with parity blocks, or log-
ging to another node.

8. Related Work

No-overwrite strategies have been used in shadow-
paging recovery strategies earlier, e.g., in System R [1, 3],
but with the limited buffer size at that time, the performance
was not satisfactory. Postgres [15] also employed a no-
overwrite strategy, but had also its performance problems,
for several reasons, the most important being the buffer
force strategy used.

Log structured file systems was introduced by Rosen-
blum and Ousterhout [11], an idea which has been further
developed through the BSD-LFS [12] and Spiralog [6, 17]
file systems. LFS has also been used as a basis for a high

performance RAID [13], and for tertiary storage manage-
ment [7]. LFS has been used as the basis for two other ob-
ject managers: the Texas persistent store [14], and as a part
of the Grasshopper operating system[5]. Both object stores
are page based. To our knowledge, there have been no publi-
cations on other object based log-onlyOODB, based on LFS
principles.

9. Conclusions and Future Work

The size of main memory in a typical database server is
increasing at a high rate, and it is now possible to keep much
of the data and index structures in main memory. The result
is that most read requests and index searches can be satisfied
from the buffer system. However, before a transaction can
commit, modified data has to be written to disk, so that re-
covery can be done if the system crashes. With current read
optimized database systems, this will become a bottleneck.
To solve this problem, we need write optimized database
systems.

In this paper, we have described the data structures and
algorithms needed to realize a write optimized log-only
OODB, in the context of Vagabond, an OODB currently be-
ing developed at our department. Vagabond is a transaction
time temporal OODB, where focus is to provide database
system support for applications which have earlier used file
systems because of the limited data bandwidth in current
database systems, typical examples are super computing ap-
plications and geographical information systems.

The design of Vagabond is now finished, and we are cur-
rently in the implementation phase. In addition to imple-
menting the storage manager as described in this paper, we
will pursue issues related to super computingdatabase appli-
cations (especially storage of matrixes), geographical infor-
mation systems (which can exploit our support for tempo-
ral/versioned objects), and efficient buffer structures in the
context of the object buffer in Vagabond.
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