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Abstract

Accurate and reliable semantic segmentation of historical aerial images of land-1

scapes is crucial for tracking, analyzing, and understanding land use over time.2

Development of such models is challenging due to the lack of annotated datasets of3

historical images. We introduce HAIR, the first dataset for semantic segmentation4

of historical aerial imagery for land cover to address this issue. The dataset contains5

high resolution, grayscale images of riverscapes with a resolution of 20 cm per6

pixel, captured from 1947 to 1998. The images of this large-scale dataset are anno-7

tated into six land types in meticulous detail by domain experts. We benchmark8

state-of-the-art semantic segmentation models and present both quantitative and9

qualitative results on in-distribution and out-of-distribution test sets. Our baseline10

experiments show that pre-training on a recent high-resolution satellite image11

dataset that is converted to grayscale does not improve performance. They also12

show that state-of-the-art models do not generalize well on out-of-distribution data.13

Finally, we characterize four challenges facing the segmentation of historical aerial14

images, including HAIR, and by this hope to spur interest in developing models15

that generalize well on historical images to support temporal analysis of land use.16

1 Introduction17

Rivers are central for the human condition. Early civilizations were build in river valleys, and today18

they remain important, i.e. for fresh drinking water and livelihood, such as fishing, agriculture and19

power production. However, this importance comes at a cost. Riverscapes are under pressure from20

human development, and this challenges the biodiversity and hydromorphology around the rivers.21

Given that rivers are home to some of the most diverse and endangered wildlife on Earth, the problem22

is especially severe. Since 1900 the human population has grown from 1.65 Billion to 7.9 Billion in23

2022 [51]. The growth has lead to an increasing pressure on all ecosystems on the Earth, including24

riverscapes. UN has declared the decade from 2021 to 2030 as the UN Decade of Restoration, and it25

is described as "a rallying call for the protection and revival of ecosystems all around the world".26
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Figure 1: Ambiguous areas are marked in red. Left and middle show cases where gravel and human
construction can be confused while right is an example where vegetation and water could be confused.

To understand the impact of human development in a region, it is crucial to understand the state of the27

landscape from a time when the world’s population was significantly smaller. While satellite data has28

facilitated the production of land use and land cover maps since the 1990s [40], aerial images have29

been systematically captured since the early 1900s in some parts of the world. However, the majority30

of these aerial images were captured using an analog film-based camera before 2005. The captured31

films were then scanned and converted into a digital format [9]. Additionally, for aerial images32

captured before the 2000s, only panchromatic (grayscale) historic photographs are available [27].33

Historical aerial images have the potential to be used as a valuable data source for understanding,34

monitoring, and analyzing land use over time. However, using aerial images for these purposes35

requires automatic and reliable mapping of the aerial grayscale images into desired habitats [44].36

Image recognition, specifically semantic segmentation, can be utilized for this mapping but this relies37

on the availability of a large dataset of historical images annotated into desired the habitats.38

Datasets of historical aerial images have four characteristics that impacts semantic segmentation:39

1) camera technology has advanced significantly over time, which results in varying image quality40

based on when images are captured, 2) lightning conditions that are influenced by factors such as the41

time of the day and the airplane’s direction during the capture, 3) class imbalance, as some classes42

are underrepresented due to the nature of the aerial images, and 4) grayscale, which means that they43

carry less information than satellite images that include RGB channels and sometimes additional44

infra-red channels as well.45

Contributions: Our contributions are threefold. First, we release HAIR, the first dataset of high-46

resolution, historical aerial images with high-quality annotations of riverscapes made by experts. The47

dataset is released under the CC BY-SA 4.0 license3 and contains roughly 8.72 billion annotated48

pixels surpassing widely recognized land cover datasets, such as DeepGlobe [22] and Inria [41].49

Second, we present a benchmark of state-of-the-art semantic segmentation models to provide as50

baselines for future work. Third, experiments show that pre-training on high-resolution satellite51

image that are converted to grayscale does not improve performance and that state-of-the-art models52

do not generalize well to out-of-distribution data.53

2 Related work54

The datasets, LandCover.ai, DeepGlobe and Agriculture-Vision, which are summarized in Table 1 are55

most similar to HAIR given that they all contain images of natural landscapes with high resolution.56

Long et al.[39] give an overview of many other datasets. LandCover.ai is a semantic segmentation57

dataset of aerial images from rural areas across Poland with resolutions between 25 to 50 cm per58

pixel and contains 5 classes. Agriculture-Vision [21] is an aerial image dataset for pattern analysis of59

agricultural lands in US with nine classes and 10 cm per pixel resolution. DeepGlobe is a Satellite60

3https://creativecommons.org/about/cclicenses/
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Table 1: Comparison of HAIR and similar natural landscapes datasets for semantic segmentation.
The resolution unit is (meters per pixel).

Dataset #Classes #Images Resolution #Channels #Pixel Size

DeepGlobe Land Cover [22] 7 1147 0.5 RGB 6.87 ∗ 109 2448x2448
LandCover.ai [5] 3 41 0.25,0.5 RGB 2.98 ∗ 109 9000x9500;4200x4700

Agriculture-Vision [21] 9 94986 0.1,0.15,0.2 RGB+NIR 2.49 ∗ 1010 512x512
HAIR 6 178 0.2 Grayscale 8.72 ∗ 109 8000x6000;6400x4800;16000x12000

Image Understanding Challenge with the three challenges: road extraction, building detection and61

land cover classification. DeepGlobe has high resolution images of 50 cm per pixel from India,62

Indonesia and Thailand and has 6 classes. Ratajczak et al. [49] introduce a historical aerial image63

dataset with grayscale images. They formulate the problem as a classification task where smaller64

image patches are given one class labels. However, the low resolution limits the usefulness of the65

data for studying land use evolution [13, 25].66

HAIR has some key differences from other datasets. First, unlike most datasets that consist of recent67

aerial and satellite images with at least three channels (RGB), images are exclusively grayscale, as68

this is the nature of historical aerial images. Color information could help the segmentation model69

to distinguish two otherwise similar classes. In the absence of color information, models must70

solely rely on the texture and context of images. However, capturing the global context becomes71

challenging due to the high resolution of HAIR images and the limited memory capacity of current72

GPUs. Having high resolution images might increase the complexity of semantic segmentation73

and hinder the effectiveness of pretraining on common low resolution landscape datasets. However,74

for many important applications, such as understanding of river habitat [12] and their evolution75

through time [44], ice morphology [3] and fish ecology [59], it is crucial to have high resolution76

images. By providing high resolution images, we hope to direct further research into the challenges77

related to the context of historical grayscale images. Figure 8 in the appendix provides a visual78

comparison of HAIR aerial images and Sentinel-1 SAR images. As it can be seen from the figure,79

these SAR images have low resolution which make them undesirable for studying the evolution of80

the rivers. Additionally, Sentinel-1 images are only available after 2014 and cannot be used to study81

the historical state of the landscape. Second, to the best of our knowledge, HAIR is the only dataset82

with gravel class. This class is critical in analyzing the evolution of riverscapes and their ecosystems83

[4, 30]. Gravel serves as the exclusive habitat for certain insect and plant species, making it crucial to84

monitor changes in this class for biodiversity tracking [45]. Finally, even though grayscale images85

are more difficult for humans to annotate, as we rely on color information when interpreting images,86

annotations in HAIR are finer than in previous works. For example, small vegetation on top of gravel87

bars is annotated. These details help to develop models that are useful in ecological applications.88

Furthermore, the detailed annotations are made by experts. As illustrated by Table 1, the size of89

HAIR exceeds that of many widely recognized datasets in the field.90

Since the introduction of FCN [38], the first end-to-end deep learning semantic segmentation model,91

numerous studies have proposed CNN-based architectures to enhance performance. These archi-92

tectures include U-Net [50], ParseNet [36], PSPNet [67], DeepLab [15, 16, 17, 18], and HRNet93

[61]. Recently, there has been a growing interest in pure transformer-based architectures inspired94

by the success of Visual Transformers [24]. For instance, Segmentor [57], Segformer [62], and95

Swin-Unet [11] are pure transformer-based architectures. Additionally, some studies propose models96

combining transformers and CNNs, like TransUnet [14]. Minaee et al. [42], provide an overview97

of the segmentation models. In remote sensing, many models have been developed for datasets like98

DeepGlobe and LandCover.ai. Examples include FPN [54] with ResNet50 [31] as encoder and spatial99

dropout, NU-Ne [53], and DIResUNet [46]. Some proposed models, such as GLNet [20] and MagNet100

[32], leverage both downsampled and patched input images to capture the global context. MagNet is101

currently state-of-the-art in DeepGlobe land cover classification. The development of models in the102

field has predominantly focused on datasets containing images with three or more channels, so the103

research of semantic segmentation for grayscale images have been relatively limited.104
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River Year Total ID OOD

Gaula 1947 1.15 0.14 -

Gaula 1963 3.60 0.43 -

Gaula 1998 0.29 - 0.29

Surna 1963 0.48 0.10 -

Lærdal 1976 2.35 0.24 -

Orkla 1962 0.51 - 0.51

Nea 1962 0.34 0.03 -

Total - 8.72 0.94 0.80

Figure 2: Diagrams: the distribution of classes in the dataset (left) and the OOD test set. Table:
overview of the number of pixels taken from the different rivers (Rivers) in the different years (Year)
and how many of these are in the ID and OOD test sets (in billion).

3 Dataset description105

HAIR is comprised of 8.72 billion pixels spread over 178 annotated images from the five rivers106

Nea, Orkla, Surna, Gaula and Lærdal in Norway. The images come in one of three different sizes107

(8000× 6000, 6400× 4800 or 16000× 12000 pixels), with a resolution of 20 cm per pixel. High108

quality annotations are made by experts, which limits the number of images that can be annotated;109

quality annotations take long time to make and they are made by experts that is a limited resource.110

This effort is inspired by the data-centric movement4.111

Figure 2 provides an overview of the dataset. The dataset contains images from 1947, 1962, 1963,112

1978 and 1998 redand therefore, all of them are panchromatic (grayscale) since aerial images before113

the 2000 were captured in grayscale [27]. These images are selected so that we have both spatial114

and temporal overlap in the dataset. By spatial overlap, we mean when two images capture the same115

geographical area in different years, and by temporal overlap, we mean when two images are captured116

the same year (but not necessarily over the same geographical area). The images of river Gaula117

represent the spatial overlap, and the river Surna represents the temporal overlap with Gaula images118

from 1963.119

The test sets have been designed to test whether both spatial and temporal characteristics are learned120

and can be generalized. Approximately 10% of the images from each river in the training set were121

chosen randomly for the ID test set, and the rest of images were used for training and validation. The122

OOD test set consists of two different rivers Gaula and Orkla. The OOD images of river Gaula are123

captured in 1998, which is a different time period than those found in the training set and translates124

to 51 years of camera improvement compared to the images from 1947 found in the training set. The125

OOD pictures of Orkla are captured in 1962, which are close in time to the Nea 1962, Surna 1963126

and Gaula 1963. However, the Orkla images cover a completely different spatial area. Out of the 178127

large images, 20 are in the ID test set and nine in the OOD test set. Note that there is a spatial overlap128

for areas in different time periods but not for the same period. All images from the same time period129

are of different spatial areas.130

Data Acquisition: HAIR consists of images from historical aerial photos used to develop the digital131

orthophoto covering the whole of Norway. The images can be accessed through a database of aerial132

imagery of the mainland of Norway (www.norgeibilder.no) covering both recent and historic photos133

that is maintained by the Norwegian mapping authority. The earliest images are from 1937 and the134

most recent are from 2022. A large backlog of historic aerial photos of the whole of Norway are135

being digitized and will be shared in the database continuously after being completed. All images are136

georeferenced in the database. The images in HAIR are projected into EUREF89-UTM33N.137

The aerial photos are taken at different times in the summer season when there is no snow, but138

also during varying periods of the vegetation season. The dataset includes a wide variety of optical139

4Workshop on Data-centric AI at NeurIPS 2021: https://datacentricai.org
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Figure 3: Intensity distribution of images covering the same section of Gaula from 1963 (left) and
1998 (right). It is calculated as the number of pixels with a given color (256 gray levels).

conditions including different shadow lengths, angels of sunlight and saturation. As mentioned by140

Boguszewski et al. [5], one would expect that this would make the dataset robust. However, the141

results on the OOD test data shows that it is not exactly the case.142

Annotation: Traditionally, the most common annotation tools for this purpose is GIS software with143

polygon editing, such as QGIS [47]. However, polygon editing lacks the precision required for144

the high quality labels. For HAIR, annotations were made manually by the experts using Adobe145

Photoshop on an iPad using a pen, as this enables detailed annotations. Each large image of mainly146

8000 × 6000 pixels was loaded as a layer to Adobe Photoshop. Annotations were done on top of147

the source image in a layer of its own. A specific color were assigned to each class, and the domain148

experts colored the six classes using the corresponding colors. Adobe Photoshop provided many149

tools that help facilitate the annotation. Magic Wand was, for example, used as a selection tool for150

most of the roads, and the Marching Ants algorithm [60] was used to modify the edges of the objects.151

The experts followed a common procedure. Areas that were considered ambiguous by individual152

experts were discussed by the group to reduce the noise in the annotation. The annotation has been153

taken very seriously and is considered to be of high quality, although ambiguous examples can154

without doubt be found in such a large dataset. Figure 1 illustrates three out of the many different155

cases that were discussed by the experts.156

Classes: We annotated the images with six different classes that can help understand the human157

pressure on river biodiversity and hydromorphology. These six classes are chosen pragmatically158

based on ease of manual annotation versus value of analyzing their change over time. More classes159

could have been added with high value, but these classes would have been even smaller than the160

gravel class with an even higher potential for misclassification.161

Water (W): Water covered areas (not restricted to river).162

Gravel (G): Gravel bars and point bars in the river – vegetation free.163

Farmland (F): Farmland and cultivated land in the river corridor.164

Vegetation (V): Forest and other vegetated areas in the riparian corridor.165

Anthropogenic (A): Anthropogenic structures like houses and roads.166

Unknown (U): Only areas that do not contain any aerial images are labeled as “unknown”.167

Statistics for HAIR: The distribution of different classes in HAIR is shown in Figure 2 and indicates168

an imbalanced dataset where the two classes gravel and anthropogenic are underrepresented. The169

most common classes, vegetation and forest, cover 69.8% of the images. Gravel, which is the most170

important class besides water for the analysis, covers only 1.9% of the images while water covers171

4.6%. Figure 3 shows a comparison of the the intensity distribution of images covering the same172

section of river Gaula from the years 1963 and 1998. The intensity distribution is calculated as the173

number of pixels with a given pixel color, where pixel color is one out of 256 gray levels.174
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4 Two Benchmark Tasks175

We select U-Net [48], FPN [55], DeepLabV3+ [19], HRNet [61], Magnet [32] and Swin-Unet [11]176

as baselines to get a broad set of models for the benchmark. The selected models are evaluated on177

both the ID and OOD test sets.178

4.1 Method179

The segmentation of grayscale images is under-studied primarily due to the lack of large-scale180

datasets. In this benchmark, we try to shed some lights into greyscale segmentation of aerial images181

by testing a set of approaches to provide insights into these. One promising approach is to employ182

transfer learning, where a common dataset of colored images is converted to grayscale and used for183

pre-training selected models. To investigate that, we convert the widely used DeepGlobe dataset to184

grayscale and employ it to pre-train the baselines. We evaluate two different scenarios for all models:185

1) all models are trained on HAIR only, and 2) models are first pre-trained on grayscale DeepGlobe186

dataset and then fine-tuned on HAIR.187

To convert the images of the DeepGlobe dataset into grayscale, we use the luminance method [33],188

which is widely used in computer vision [6] and is implemented in several image processing software189

and libraries such as OpenCV [8]. In luminance method, the function Gluminance is defined as:190

Gluminance ← 0.299 · R + 0.587 · G + 0.114 · B, where R, G and B represents the red, green191

and blue channels of the image5. Additionally for all the trainings, to leverage the strong feature192

extraction of encoders pre-trained on RGB Imagenet, we replicate the grayscale channel into the R,G,193

and B channels, transforming our single-channel input into a standard three-channel image format.194

ResNet50 pre-trianed on ImageNet is used as the encoder for most models, except for HRNet and195

Swin-Unet that are not pre-tained.196

The hyperparameters used for training MagNet are the same as in [32]. For other models, we197

used the Hyperband algorithm [35] with a maximum of 100 epochs and 11 hybrid iteration to198

find the hyperparameters. Also, validation accuracy was used as the objective. More detail of the199

hyperparameters for each model is provided in the appendix. The code used to run the experiments200

are available in https://github.com/SaeidShamsaliei/HAIR.201

4.2 Results202

We calculate performance using MIoU of the experiments in the same way as Huynh et al. [32].203

Results are presented in Tables 2 and 3 as mean± standard deviation of model performance. Variation204

is introduced through training five seed replicates for each model. A seed replicate is a model trained205

using different seeds for the pseudo-random generator [7]. The performance is reported as the mean206

and standard deviation of the MIoU for the set of five seed replicates. As can be seen, DeepLabV3+207

achieves the best performance on both datasets. However, it does not perform considerably better208

than the other models. Gravel is the class that all models struggle the most to identify, and forest209

is the class for which all models achieve their highest score. For the OOD test set, gravel is still210

the hardest class to predict for all models, while it is relatively easier for the models to predict the211

vegetation and farmland.212

Pre-training on the converted DeepGlobe dataset led to a slight decrease in performance for all models213

except HRNet and Swin-Unet, which do not perform well in general. Although the limited size of214

the DeepGlobe dataset could be a factor, the results highlight the need for developing large scale215

historical grayscale aerial imagery datasets. Another factor that might be a cause of the comparatively216

poorer performance is the luminance method for converting DeepGlobe to grayscale. Kanan and217

Cottrell [33] report that the conversion method affects the performance of downstream tasks, which218

could easily be the case for deep learning as well as pre-processing is known to affect reproducibility219

of deep learning methods [26, 28].220

5The method is used in many papers such as [6], however, in these works the name of method is not mentioned.
We got the name from [33]. The coefficients are the central component of the method.
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Table 2: The MIoU prediction of different semantic segmentation architectures on the ID test set.
MIoU is mean ± standard deviation over five seed replicates runs

Models Backbone
Not pre-trained on grayscale DeepGlobe Pre-trained on grayscale DeepGlobe

IoU per class
MIoU

IoU per class
MIoU

G V F A W G V F A W

U-Net ResNet50 60.81 88.02 85.31 65.70 85.54 77.07 ± 00.48 58.19 87.85 85.01 64.74 84.67 76.10 ± 00.72

FPN ResNet50 60.83 87.84 85.11 65.59 82.78 76.43 ± 01.84 59.40 87.40 84.75 64.70 84.05 76.06 ± 00.57

DeepLabV3+ ResNet50 61.07 87.92 86.23 65.43 86.19 77.37 ± 01.02 60.63 87.54 85.14 63.37 84.76 76.28 ± 01.26

HRNet HRNetV2-W18 52.56 87.17 82.20 62.97 77.70 72.52 ± 00.97 56.08 87.04 82.15 64.34 77.87 73.50 ± 00.79

Swin-Unet Swin Transformer 43.86 83.50 76.32 47.03 60.35 62.21 ± 00.40 44.41 83.43 76.31 49.79 61.38 63.06 ± 01.52

MagNet FPN 51.75 77.55 76.55 57.75 62.51 65.22 ± 01.39 44.21 72.53 70.54 44.96 49.36 56.32 ± 01.12

Table 3: The MIoU prediction of different semantic segmentation architectures on the OOD test set.
MIoU is mean ± standard deviation over five seed replicates.

Models Backbone
Not pre-trained on grayscale DeepGlobe Pre-trained on grayscale DeepGlobe

IoU per class
MIoU

IoU per class
MIoU

G V F A W G V F A W

U-Net ResNet50 32.09 78.38 75.98 61.20 73.20 64.17 ± 00.80 30.19 76.49 66.35 51.58 75.86 60.10 ± 01.03

FPN ResNet50 29.24 72.43 72.73 56.39 69.78 60.11 ± 01.51 32.02 76.29 69.42 57.22 63.05 59.60 ± 01.64

DeepLabV3+ ResNet50 30.55 76.93 73.83 61.57 78.57 64.29 ± 02.66 32.27 72.93 75.43 57.43 75.34 62.68 ± 02.81

HRNet HRNetV2-W18 22.27 67.03 60.27 50.00 68.17 53.44 ± 02.46 22.09 66.84 55.55 50.95 62.65 51.61 ± 02.63

Swin-Unet Swin Transformer 14.29 62.43 50.99 35.12 50.86 42.74 ± 00.84 14.40 62.71 51.02 35.58 52.09 43.16 ± 01.82

MagNet FPN 31.65 64.33 74.00 54.28 61.01 57.06 ± 03.84 21.01 53.59 54.31 38.88 40.09 41.58 ± 04.51

Table 4: The MIoU of the DeepLabV3+ on the two different rivers in the OOD test set and Gaula
1963 in ID test set.

River Year MIoU
Not pre-trained Pre-trained

Orkla 1962 69.64 ± 03.06 69.17 ± 01.58
Gaula 1998 61.62 ± 03.21 59.43 ± 03.70
Gaula 1963 79.83 ± 01.19 80.25 ± 00.26

The performance of MagNet experiences a relatively larger decline, compared to other models, when221

pre-trained on the grayscale DeepGlobe dataset. The combination of model’s complex architecture222

and relatively small scale of DeepGlobe used for pre-training, seems to affect the performance to223

a larger extent. The backbones of HRNet and Swin-Unet were not pre-trained on any large-scale224

dataset to help with extracting the low level features, like ImageNet. This could be a contributing225

factor to their relatively lower performance.226

All models perform substantially worse on the OOD test set compared to the ID test set. DeepLabV3+227

generalizes better than the other models, but only slightly better than U-Net when not pre-trained.228

Table 4 shows how DeepLabV3+ performs on the two different types of OOD data and that it229

generalizes better to data from the same time-period where the same or a similar camera technology230

is used than for the images captured more than 35 years later. The better performance of DeepLabV3+231

on OOD might be explained by how Atrous Spatial Pyramid Pooling (ASPP) mechanism fuses the232

extracted features from the input image. Since ASPP increases the field of view of the model, it can233

efficiently access a larger context of the input image.234

4.3 Discussion235

Here we present a short discussion of how the four characteristics of historical aerial images can236

affect the results.237
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Figure 4: Comparison of predictions for Gaula 1998 (left) and 1963 (right).

Figure 5: Different light conditions make accurate prediction difficult.

Characteristic #1 - Camera technology: The results on the OOD test set indicate that camera238

technology is an issue. The performance of the models drop considerably for the images of Gaula239

1998 compared to Orkla 1962. The Gaula 1998 were captured 35 years after the Orkla 1962 images.240

However, DeepLabV3+ performs much better when tested on the ID images of Gaula from 1963, as241

can be seen in Table 4. This indicates that it is not river Gaula itself that is challenging, but that it is242

the development of camera technology that is the cause of the performance drop. While intensity243

differs between the river in the ID test set compared to the older images in the OOD dataset, as244

seen in Figures 3 and 4, light intensity alone should not be a problem as contrast and brightness245

were changed randomly as part of the training, as described in methodology. More research on data246

augmentation methods designed specifically for grayscale aerial images might alleviate this issue.247

Examples include modification of brightness and contrast during the training [52, 64], blurring filters,248

histogram transformations, special optical and lens distortion [37], and generative models [56].249

Characteristic #2 - Lighting conditions: Light conditions make the prediction more challenging.250

In Figure 5, the reflections in the shimmery section represent an unusual visual effect on the water.251

Because this effect happens only when the light from the sun hits the water and is reflected in the252

camera, there are relatively few examples of such effects in the training data and little data for the253

model to learn the pattern. Challenge #1 covers this by suggesting that more research on online254

augmentations and generative models, designed specifically for historical grayscale aerial images,255

could mitigate this issue.256

Characteristic #3 - Class imbalance: Figure 2 shows the imbalanced class distribution, and the257

results presented in Table 2 and Table 3 indicate that the models have the worst performance on258

smallest classes. The class distribution clearly poses a problem. More research on effective methods259

to mitigate the class imbalance of high resolution aerial images, such as more efficient sampling260

methods [58] and more effective loss functions [23] could help overcoming this challenge.261

Characteristic #4 - Grayscale: Texture and context become the main sources of information262

for grayscale images. Land covers that are easily distinguishable when having color information263

become hard to distinguish in grayscale. Figure 6 shows several cases where texture alone makes264

8



Figure 6: Source images (top row), labels (middle-row) and best predictions (bottom row).

1963 1998

%

Figure 7: A section of River Gaula from 1963 and 1998 with distribution of classes in percentage.

the prediction hard. The deep learning segmentation methods typically divide the larger images into265

smaller patches and run these through the deep nets. Context is the underlying issue when the method266

miss-classifies two patches that clearly are of the same class. Examples of this can easily be spotted267

in Figure 6 where patches of the wrong class can be seen very clearly in larger regions that are mostly268

predicted correctly. These errors happen when there are examples of patches in the test set that have269

similar texture but different class than patches in the training data. It is easy to imagine that color270

information would help solve these cases. We believe that continued development of architectures271

similar to MagNet and GLNet that use different scales of images to provide the context to smaller272

patches could mitigate this issue.273
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5 Future Work and Conclusions274

Manual analyses of aerial images of riverscapes is the standard method for understanding the275

development of individual rivers [29, 66], and they include spatio-temporal dynamics of parameters276

such as river width, bank cover, sinousity and other geomorphological features. Figure 7 shows raw277

images and segmentations of the years 1963 and 1998 as well as a bar chart that enables us to perform278

a basic version of such an analysis on the current dataset. The images show that the reduction in279

gravel is substantial and so is the increase in water. The bar chart confirms not only this but that all280

classes except for gravel increase. The analysis could indicate that the conditions for the plants and281

insects living in gravel has worsened and that their existence is threatened. However, as these images282

could have been taken at different seasons we cannot draw this conclusion so easily. Hence, we need283

to semantically segment images of River Gaula for more years and the findings for one river must be284

compared to findings in other rivers to draw more certain conclusions. This is an example for a large285

scale analysis. However, such large scale analyses covering multiple rivers have not been done before.286

To achieve this, it is essential to automate the land cover classification of historical aerial images [2],287

and the segmentation model must generalize well to OOD data. Given that such land area cover maps288

made by segmentation models exist for multiple rivers over a long period of time (1940’s through289

2020’s), a completely new type of analysis can be done.290

In this paper, we present a free and open dataset for advancing semantic segmentation of historic, high291

resolution, grayscale aerial images of land cover. We provide baselines for selected state-of-the-art292

deep learning models on the two benchmark tasks and show several issues with applying state-of-293

the-art models developed for color images on grayscale images. It is clear that the training is not294

robust and that the models do not generalize well beyond the training data. Pre-training on a recent295

dataset of converted satellite images is shown to not improve the performance of the models, which296

highlights the importance of generating large scale datasets of historical aerial images. Additionally,297

more research can be done to improve the effectiveness of pre-training on low resolution RGB298

datasets to improve semantic segmentation of high resolution grayscale images. For example, one299

can explore the impact of converting the aerial resolution of HAIR images (e.g., from 20 cm per pixel300

to 50 cm per pixel as in DeepGlobe images) to determine whether the conversion would improve301

when using models pre-trained on lower resolution datasets. Finally, we identify and show how four302

characteristics of historical aerial images negatively affect the performance of the tested models.303

Grayscale aerial images are a potentially important data source that has not received much attention.304

Our hope is that bringing attention to this data source will support the development of generalizable305

models that can overcome the challenges of the dataset and be used to perform large scale land-306

mapping of historical grayscale aerial images accurately. This will enable longitudinal studies307

and quantified analyses of land use, and support large scale investigations into which practices are308

sustainable and which are not. Such analyses require far too much manual work of experts to be309

feasible without automatic solutions.310
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B Runtime Environment596
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CPU: Intel(R) Xeon-Gold 6240600

Number of Cores: 18 cores @ 2.6 Ghz601
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Figure 8: A visual comparison of HAIR images of Gaula captured in 1963 (top left) and SAT image
of Gaula captured by Sentinel-1 in 2015 (top right). A subsection of HAIR images of Gaula 1963 is
magnified to illustrate the high resolution of the HAIR images.

Models were implemented using Tensorflow [1] and Pytorch [43] packages. In addition, Albumentations603

library [10] was used for Online Augmentation, and SegmentModel [63] library was used in some of the604

implementations. In order to train the MagNet [32], the script provided by the paper’s github page was used.605

C Hyperparameters of benchmark models606

The batch size for the models is 16, except for HRNet, Swin-Unet and backbone of MagNet, which is 12, and607

MagNet refinement module, which is 8. Models were trained using a weighted categorical cross entropy loss608

function to mitigate the class imbalance of the dataset. For training the MagNet, stochastic gradient decent609

(SGD) is used for with a weight decay of 0.9, For the other architectures the Adam optimizer [34] is used.610

The ReduceLROnPlateau algorithm was applied in Adam to reduce the learning rate by a factor of 0.5 if value611

loss did not decrease for more than 5 epochs. Except for MagNet, L2 regularization is used for convolutional612

layers. The FPN backbone of the MagNet is pretrained on DeepGlobe dataset and the output layer is changed613

to have 6 outputs instead of 7. MagNet is trained for 484 epochs while the other architectures are trained until614

convergence .615

Gradient clipping with clipping value of 0.5 is applied for training the Swin-Unet. During training, images were616

randomly flipped and transposed, and their contrast and brightness were randomly transformed with the changing617

factor set to 0.1, and the probability of applying the changes was set to 20%. For training the MagNet, images618

were sampled as 2448 × 2448 px patches, and the rest are sampled as 512 × 512 px patches. To sample the619

patches, each large image is first divided into smaller patches with no overlap. Afterwards, images were flipped620

and patches with center pixel of gravel and water were added to the training set. The input size of MagNet used621

is the same as in the original paper for DeepGlobe. For the rest of the models, 512×512 is used as the input size.622

For inference, large images were divided into patches with the same size used to train the corresponding model,623

and each of these patches was used for inference. Due to low GPU memory, we did not used object-contextual624

representation for HRNet [65].625

D Visualization of the Synthetic Aperture Radar (SAR) images626

As illustrated in the Figure 8, the resolution of the SAR images from Sentinel-1 are comparably lower than the627

aerial images in the HAIR dataset. Additionally, Sentinel-1 started the mission in 2014, so evolution of the628

landscape during previous years is not captured.629
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