Reproducing AlphaZero with ELF:
What we learned

Yuandong Tian

Facebook Al Research

Yuandong Tian Jerry Ma* Qucheng Gong Shubho Sengupta* Zhuoyuan Chen James Pinkerton Larry Zitnick

AlphaGo Series

eon 2ZTem
........
S0 sooel Y

AlphaGo Zero

Starting from sératch

$EAT M A2
MTEEERE

e il — S AW PR
1
WIS = |
O R O '
2% 7
O QO

AlphaGo Lee AlphaGo Master AlphaGo Zero
(Mar. 2016) (May. 2017) (Oct. 2017)

L A¢

AlphaGo Series

BPR 2T
oooooo
B SEY

AlphaGo Zero

Starting from sératch

- e >4 ogle H#iTAEKER
.<., & i | (@ = O A » L :
AlphaGo Lee AlphaGo Master AlphaGo Zero

(Mar. 2016) (May. 2017) (Oct. 2017)

Impressive Results, No code, No model

Demystifying AlphaGoZero/AlphaZero

* Hard to reproduce
* Details are missing in the paper
 Huge computational cost (15.5 years to generate 4.9M selfplays with 1 GPU)
» Sophisticated (distributed) systems.

* Lack of ablation analysis
* What factor is critical for the performance?
* |s the algorithm robust to random initialization and changes of hyper parameters?
 How the ladder issue is solved?

* Lots of mysteries
* Is the proposed algorithm really universal?
* Is the bot almighty? Is there any weakness in the trained bot?

Reimplementation of AlphaGoZero / AlphaZero

Generate
Training data

A

0; <

Zero-human knowledge

Update

Models

—_—] &;ﬁ?.ﬁ::?_’ %Tg%

o

T3 z

\4

Self-Replays

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017] . \ ‘

AlphaGo Zero

(317 1, Z) Training
(52727 e
(837 3, <) ik
s, S, Sj
e 1] e 15T w000 = %
!

AlphaGo Zero

(s,7r,2)

Player situation ~ Opponent situation Player situation at t=-7

at time O at time O
\ / / / Color to play

Input features (19x19x17): (X, Y, X 1,Y 4,.... X 7. Y - C) o \ ‘

AlphaGo Zero Strength b

5,000
* 3 days version 4.000-
* 4.9M Games, 1600 rollouts/move
(@)

* 20 block ResNet % 3,000

» Defeat AlphaGo Lee. 2 5,000

. 1,000

* 40 days version _
* 29M Games, 1600 rollouts/move 0-

* 40 blocks ResNet. R

%)
» Defeat AlphaGo Master by 89:11 AU

o e
. =
1
=

Yuandong Tian Jerry Ma Qucheng Gong Shubho Sengupta Zhuoyuan Chen James Pinkerton Larry Zitnick

ELF OpenGo

e System can be trained with 2000 GPUs in 2 weeks (20 block version)
e Superhuman performance against professional players and strong bots.
 Abundant ablation analysis

* Decoupled design, code reusable for other games.

pytorch / ELF @ Unwatch~ 162 W Unstar 2,374 Y Fork 387
<> Code Issues 21 Pull requests 2 Projects 0 Wiki Insights Settings
ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation Edit
reinforcement-learning alphago-zero rl rl-environment alpha-zero Manage topics

We open source the code and the pre-trained model for the Go and ML community . \ ‘

ELF OpenGo Timeline

2017 2018 2019
Oct Nov Jan Feb Mar Apr May. 2, 2018 Oct
| | | | | | | | >
| | | | | | | |
AlphaGoZero AlphaZero OpenGo Amateur Model Prototype Release Final
paper A P ; Ie Starts level takes off Models Code/model Model
Release rXiv Release Match with Reproduce our

professional players

own progress!

A

ELF OpenGo Performance

Vs top professional players 1.0
[T T T
Kim Ji-seok 3590 (#3) 0.5
Shin Jin-seo 3570 (#5) 5-0 v
Park Yeonghun 3481 (#23) 5-0 fc
Choi Cheolhan 3466 (#30) 5-0 0.0
Single GPU, 80k rollouts, 50 seconds
Offer unlimited thinking time for the players
Vs professional players —05¢ 0 50 200
Single GPU, 2k rollouts, 27-0 against Taiwanese pros. Move number

Vs strong bot (LeelaZero)
[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%) \ ‘
O

http://zero.sjeng.org/networks/158603eb61a1e5e9dcd1aee157d813063292ae68fbc8fcd24502ae7daf4d7948.gz

ELF OpenGo Sample Game

4 < <1o>>|

©
Ra-nk

Caps
0
kim
Rank Caps
- 0
Comments

Black value -0.0206527

A

ELF: Extensive, Lightweight and Flexible
Framework for Game Research

Yuxin Wu Larry Zitnick

[Y. Tian et al, ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games, NIPS 2017]

A

ELF: A simple for-loop

\While True:

replies

batched _

states = GameContext.Wait()
= model (batched _states)

GameContext.Steps(replies)

A

How ELF works

Game
Threads
(C++)

Batch Batch Batch Batch Batch

I § ——— W ——
Y § N § —
I D g
4 I | T v .
5 I | s

|
I |

N T

while True:
batched_states = GameContext.Wait()
replies = model (batched_states)
GameContext.Steps(replies)

w N = O

Distributed ELF (version 1)

Selfplay 1

Selfplay 2 ®

V\\\

Selfplay data

Training

Current trained model

Current best model

procedure
(8 GPUs)

>

o o Selfplay n

’
/
/

Evaluation
Server

N Update best model

and.next candidate

1 (o)
Model Zoo Win rate > 55%

~

/
/
/
/
/
/
/
/
/
/
/
/
/
‘/ -
\
\
\
\
\
\

/

/
/

\
\

<

4 Evaluation 1

Evaluation 2

* Evaluation m

A

Distributed System (version 1)

Opena port
Receive selfplay data via ZeroMQ

Training Current trained model

>
procedure

8 GPUs

Distributed System (version 1)

Selfplay 1

V\\\

Selfplay 2

® o |Selfplayn| 300-2k GPUs

Current best model

’
/
/

Each selfplay client
batches 32 parallel games
in a batch size of 128

A

Distributed System (version 1)

Update best model
and._néxt candidate

Win rate > 55%

No GPU needed

Evaluation
Server

/
/
/
/
/
/
/
/
/
/
,
/
/
/
/
/ '
\
\
\
\
\
\
\
\
\

A

Distributed System (version 1)

100 GPUs

4 Evaluation 1

Send the current model
pairs to evaluate

¥ Evaluation 2
" °
o
o

* Evaluation m

Each evaluation client
batches 2 parallel games

A

Distributed ELF (v2)

Client
) Trainin
Client |- | server
Client Client

Putting AlphaGoZero and AlphaZero

Evaluate/Selfplay into the same framework

Client

AlphaGoZero (more synchronization)
AlphaZero (less synchronization)

Send request

(game params) Client

Receive
experiences Server controls synchronization

Server also does training.

Client

A

Adaptation

gcp / leela-zero ® Watch ~
Code @ Issues 288 Pull requests 6 Projects 0 Wiki Insights
Filters ~ elf Labels Milestones

Clear current search query, filters, and sorts

® 43 Open + 54 Closed Author ~ Labels ~ Projects v

® Facebook open sources elf opengo (J 413
#1311 opened on May 2 by kityanhem

We put our bot on Fox server

s 1B

HE#

1

2)

BTy

B ELFOpenGo

Bl = ENH

Bl B AE(ZTEI7VER)
9, stealer

Wl BN 5 (B RAER)

Egfi

1 10E%
1 10E%
1 10E%
2 OF%
9F%

% 98

165

90

189

18

11

10

12

RHHMTIRSD
7,573,934
4,681,775
3,281,788
1,290,230
1,214,060

838,926

A

What we learned?

Training Stage of Final Model

1.0
’)

0.8 N Prototype-a = strong amateur level
v 0.6 Prototype-f5 = professional level
©
=
= 0.4 -

Prototype = superhuman level
0.5 — Vs. Prototype-a (model against professional players)
' ——— VS, Prototype-f3
—— vs. Prototype
0.0 -
0 500000 1000000 1500000

Training minibatches

A lot of zig-zag in the training process

Overfitting issues \//

O B e —
0
Dip of the value function

Overestimate white winrate G
—— Value loss
3 1 —— Policy loss l

—— Total loss

Black resigns prematurally

l

Black loses many games

|

Imbalanced replay buffer

0. 500000 1000000 1500000 .
Training minibatches Large replay buffer is the key

Adaptive resign threshold has delays

However, it is quite stable.

* Without policy head, it can still achieve ~2d level.
* With strong correlation in batch, it still train 1/3 of the time.

* With batchnorm with shifted mean/std, it still works to some extend.

Ladder Issues

(IDJ [lJ—’f‘
=
B i | 2
- 0
oy
. [TIL [|
‘J"Ii
y
o9 #O‘A
m o
J“"‘__ 4 O
i

Run a ladder and lost Run shorter ladder and lost

[
|
O

|
1% .
__‘ ul

There is only one long path that is correct

] i Value propagation is really slow.
Doesn’t run ladder o \ ‘

. No
Did we solve ladder?

|
—— 1600 rollouts/move

0.6 ——— 6400 rollouts/move ||

o
I

Mistake Rate

o
N
]

0.0 \ . .
0 500000 1000000 1500000

Training minibatches

Why is the model still strong? - It plays alternative moves to avoid these situations.

AlphaZero versus AlphaGoZero

* AlphaZero is much faster than AlphaGoZero
* No synchronization locks

e After a day’s training, model trained with AZ won 100:0 against model trained
with AGZ

* Essentially a value/policy iteration with function approximation.
* No evaluation needed.

* Zig-zag slight overfitting which leads to improvement

Why MCTS is so important?

Look-ahead is how new knowledge is created.

Winrate of double-rollout bot

=
o

—— Black rollouts doubled
White rollouts doubled

O
©
1

o
o

o
9)

800 1600 3200 6400 12800 25600
Rollout count

On Final Model

White rollouts 2x =2 ~85% winrate

Black rollouts 2x =2 ~65% winrate

Training is almost always constrained
by model capacity (why 40b > 20b)

A

How sensible moves are learned?

Hypothetically Practically
Game _ _____________ Wherethe 0.7
End . reward signal is
0.6 A
Training £ 0.5
Progresses pu Move 61-120 grows at the
S = 0.4 - same rate as move 121-180
T o.
—— Moves 1-60
0.3 —— Moves 61-120
—— Moves 121-180
0.2
Game 0 100000 200000 300000 400000 500000

Start Training minibatches

Match rate of each move against the prototype model.

Random Moves - Meaningful Moves

Further train with learning rate 107>...

 Surprisingly, it is not stable any more.

* Once at capacity, new models becomes similar to each other.
* Replay buffer becomes uniform and models start to overfit.

. ! X < Model
S | | A

-~ N
N— __

Replay
Selfplay Buffer Training

Replay
Buffer

Model

» time

games ~— —

Conclusion

* The algorithm has pros and cons
* Inductive bias
* Planning is the key

* A lot of mysteries remain.
* Why the method still works even with zig-zag and high-variance?
* How to build a theoretical framework?
* Maybe population-based approach is more stable?
* More research to do

Challenge in Reproducibility

* How to reproduce a distributed ML/RL system like AlphaZero?
* On-policy RL system does not have fixed dataset.
* Distributed system poses more challenges.

* Practice
* Fix the random seeds.

* Record the script, the command argument and git commit number
* Put the commit number into C++ library compilation.

 Save the raw logs (stdout / stderr) and the script from raw logs to figures

Thanks!

