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Reproducibility in Reinforcement Learning
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Instability ≠ Incorrect Implementation



Reproducibility in Reinforcement Learning
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Intrinsic Variance



Reproducibility in Reinforcement Learning
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Reproducibility vs. Replicability

• Reproducibility* - the ability of an experiment to be repeated with 

minor differences from the original experiment, while achieving the 

same qualitative results. 
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* Definitions inspired by Drummond, 2009. 



Reproducibility vs. Replicability

• Replicability* - the ability of an experiment to be repeated exactly, 

producing the same quantitative results.

6
* Definitions inspired by Drummond, 2009. 
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Replicable 

Experiment

Deterministic 

Implementation

Fixed 

Experimental 

Conditions computation

a computer program that, when run under some 

fixed experimental conditions, will always 

produce identical outputs for a given input

OS, Software Versions, 

GPU, Deep learning 

library, Dependencies



Motivation for Deterministic Implementations

• Randomness and Implementation details

• Develop cleaner computational testing environments

• What benefits to we hope to achieve?

– Debugging & Verification

– Algorithm Comparisons

– Ablation Studies

– Can learn more about implementation details
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Deterministic Implementations

• Goal: Develop cleaner computational testing environments 

+

Mnih et al. Nature Letters. 2015. Atari Breakout
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DQN – Sources of Nondeterminism

Environment

stochastic 

transitions

replay buffer

deep neural network

computation

action selection

Agentminibatch sampling

exploration
network 

initialization

parallelized floating point 

arithmetic (GPU)
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Our Deterministic Implementation

• GPU – torch.backends.cudnn.deterministic = True

– GPU operations are deterministic

• Network initialization – PyTorch enables fixed initialization

– Identical network initialization across program runs.

• Minibatch Sampling – seeded random number generator

• Exploration – seeded random number generator

• Note: Deep learning library can matter!
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Result

• Deterministic implementation1 achievable!

Run 1

+ Run 2

+ Runs 3, 4, 5

121 https://github.com/prabhatnagarajan/repro_dqn



Cascading Effect
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Nondeterminism!



Sensitivity Analysis
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evaluation metric:

remove environment stochasticity

100 predefined action sequences = 100 (good) start states

performance = average score at the end of 100 episodes

experimental setup:

single source of nondeterminism at a time

5 training runs per source

Experimental setup:
• Ablation on sources of  nondeterminism

• Permit a single source of  nondeterminism to affect 

training (GPU, Network Init, Minibatch, Exploration)

• 5 DQN training runs per source of  nondeterminism

• Measure variance of  the achieved scores

What kind of experimental variance is induced by each source 

of  nondeterminism in deep reinforcement learning?



GPU Results
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Computation

Growing 

variance…



Results
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Results
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Limitations - …on different hardware
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Same 
deterministic 
implementation 
on different 
machines!

Deterministic implementation ≠ Replicable



Limitations

• Limited benefit beyond simulation

– Robotics, demonstrations, human feedback

• Potential slower training times by making GPU deterministic

– We did not observe this.

• Deterministic implementations can be time-consuming (depending on 

library)

• Replicability requires additional work
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Future Work

• Extend analysis to a larger suite of  algorithms

– E.g. Pong vs. Asterix

• Investigation of  individual implementation details

– Ablation study

• How can we improve statistical power by combining paired testing and 

deterministic implementations?
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Summary

• Deterministic Implementations are achievable

– Given a deterministic simulator, training data, demonstrations, etc.

• Deterministic implementations are insufficient for achieving perfect 

replicability

– Need other experimental conditions to be fixed

• Variance in performance of  DQN grows as training progresses.
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Evaluation Protocol
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Supervised Learning vs. Deep RL

• Stationary vs. Nonstationary

Supervised RL

GPU GPU

Network Initialization Network Initialization

Minibatch Sampling Minibatch Sampling

Transition function

Policy
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Q-Value Results
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Q-Value Results
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Full Tabular Results
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