

DETERMINISTIC IMPLEMENTATIONS FOR REPRODUCIBILITY IN DEEP REINFORCEMENT LEARNING

Prabhat Nagarajan¹, Garrett Warnell^{2,3}, and Peter Stone²

Preferred Networks, Tokyo, Japan Department of Computer Science, The University of Texas at Austin Computational and Information Sciences Directorate, US Army Research Laboratory

Reproducibility in Reinforcement Learning

Instability ≠ Incorrect Implementation

Van Hasselt, Guez, Silver. AAAI. 2016

Reproducibility in Reinforcement Learning

Intrinsic Variance

Henderson et al. AAAI. 2018

Reproducibility in Reinforcement Learning

Different Implementation = Different Performance

Henderson et al. AAAI. 2018

Other work

- Hausknecht & Stone. AAAI-2015 workshop on Learning for General Competency in Video Games. 2015
- Machado et al., JAIR. 2018
- Henderson, Romoff, & Pineau, EWRL.
 2018.
- Islam, Henderson, Gomrokchi, and Precup. ICML RML. 2017

Reproducibility vs. Replicability

 Reproducibility* - the ability of an experiment to be repeated with minor differences from the original experiment, while achieving the same *qualitative* results.

* Definitions inspired by Drummond, 2009.

Reproducibility vs. Replicability

 Replicability* - the ability of an experiment to be repeated exactly, producing the same *quantitative* results.

* Definitions inspired by Drummond, 2009.

Motivation for Deterministic Implementations

- Randomness and Implementation details
- Develop cleaner computational testing environments
- What benefits to we hope to achieve?
 - Debugging & Verification
 - Algorithm Comparisons
 - Ablation Studies
 - Can learn more about implementation details

Deterministic Implementations

• **Goal**: Develop cleaner computational testing environments

Mnih et al. Nature Letters. 2015.

Atari Breakout

DQN – Sources of Nondeterminism

Preferred

Our Deterministic Implementation

- GPU torch.backends.cudnn.deterministic = True
 GPU operations are deterministic
- **Network initialization** PyTorch enables fixed initialization
 - Identical network initialization across program runs.
- Minibatch Sampling seeded random number generator
- Exploration seeded random number generator
- Note: Deep learning library can matter!

Result

• Deterministic implementation¹ achievable!

Cascading Effect

Preferred Networks

Sensitivity Analysis

What kind of experimental **variance** is induced by each source of nondeterminism in deep reinforcement learning?

Experimental setup:

- Ablation on sources of nondeterminism
- Permit a single source of nondeterminism to affect training (GPU, Network Init, Minibatch, Exploration)
- 5 DQN training runs per source of nondeterminism
- Measure variance of the achieved scores

GPU Results

Results

Metric	Deterministic	GPU	Exploration	Initialization	Minibatch
Average Score	146.7	141.9	148.6	131.2	153.38
Standard Deviation	0.0	8.8	17.0	31.0	32.96
Relative Standard Deviation	0.0%	6.22 %	11.42%	23.61%	21.49%

Limitations - ...on different hardware

Deterministic implementation ≠ Replicable

Same deterministic implementation on different machines!

Limitations

- Limited benefit beyond simulation
 - Robotics, demonstrations, human feedback
- Potential slower training times by making GPU deterministic
 - We did not observe this.
- Deterministic implementations can be time-consuming (depending on library)
- Replicability requires additional work

Future Work

- Extend analysis to a larger suite of algorithms
 - E.g. Pong vs. Asterix
- Investigation of individual implementation details
 - Ablation study
- How can we improve statistical power by combining paired testing and deterministic implementations?

Summary

- Deterministic Implementations are achievable
 - Given a deterministic simulator, training data, demonstrations, etc.
- Deterministic implementations are insufficient for achieving perfect replicability
 - Need other experimental conditions to be fixed
- Variance in performance of DQN grows as training progresses.

Evaluation Protocol

Supervised Learning vs. Deep RL

• Stationary vs. Nonstationary

Supervised	RL
GPU	GPU
Network Initialization	Network Initialization
Minibatch Sampling	Minibatch Sampling
	Transition function
	Policy

Q-Value Results

Q-Value Results

Metric	Det	GPU	Env	Exp	Init	Mini
AverageMax-imumQ-value(Best)	4.00	3.45	2.49	3.53	3.29	3.44
Standard Devia- tion (<i>Best</i>)	0.0	0.081	0.269	0.305	0.204	0.36
Relative Standard Deviation (<i>Best</i>)	0.0%	2.34%	10.83%	8.63%	6.19%	10.5%
AverageMax-imumQ-value(Final)	4.00	3.51	2.60%	3.51	3.25	3.43
Standard Devia- tion (Final)	0.0	0.096	0.245	0.315	0.284	0.34
Relative Standard Deviation (Final)	0.0%	2.73%	9.45%	8.98%	8.73%	9.97%

Full Tabular Results

Metric	Deterministic	GPU	Environment	Exploration	Initialization	Minibatch
Average Score (Best) Standard Deviation (Best) Balative Standard Deviation (Best)	146.7 0.0 0.0%	141.9 8.8	33.6 8.7 25.06%	148.6 17.0	131.2 31.0 23.61%	153.38 32.96 21.40%
Average Score (Final)	146.7	126.5	29.0	126.9	108.6	132.84
Standard Deviation(Final)Relative Standard Deviation (Final)	$\left \begin{array}{c} 0.0\\ 0.0\%\end{array}\right $	15.7 12.41%	10.9 37.65%	21.4 16.85%	47.4 43.61%	8.89 6.69%

