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What is a Research Engineer?

e |'m not aresearcher
o (although | can pretend to be one)

e I'm an engineer who cares deeply about
research

e My job is to help researchers be successful
o by building tools for them
o by advocating best practices
o and also by collaborating with them

e And so my job involves thinking a lot about
reproducibility




Outline

Why reproducibility?

Why not notebooks?

If not notebooks, then what?
Reproducibility and AllenNLP
Reproducibility and Beaker



Why Reproducibility?



Somewhat expansive
view of the role of
reproducibility in science




Reproducibility Helps With Correctness

If no one ever runs your code but you, it might be wrong




Reproducibility Protects
Against Bad Actors

Certainly you would never try to
publish fraudulent research, but
what about your bitter rival?
(Hopefully this is a minor
consideration.)




Reproducibility Makes It Easy to Try New Datasets

e Maybe your model works great on a different dataset
e Maybe it works terribly on a different dataset
e Hard datasets help move Al forward




Reproducibility Makes It Easy to Try New Tasks

You haven't thought of (or tried) every way your model could be used

Can you use BERT to generate text?

16 Jan 2019

Just quickly wondering if you can use BERT to generate text. I'm using huggingface’s
pytorch pretrained BERT model (thanks!). | know BERT isn’t designed to generate
text, just wondering if it's possible. It’s trained to predict a masked word, so maybe
if | make a partial sentence, and add a fake mask to the end, it will predict the next
word. As a first pass on this, I'll give it a sentence that has a dead giveaway last

token, and see what happens.



Reproducibility Enables Strong Baselines

Wouldn't you like your model to be the
standard by which new models are judged?




Reproducibility Is Necessary For Extensibility

"you can't stand on the shoulders of giants if they keep their shoulders private”




Extensibility Leads to Progress




Extensibility Leads to Progress

?

BERT

transformer

attention




Fundamental Premise:

The tools you choose and the processes you
adopt can make reproducibility either a lot
harder or a lot easier.



Jjupyter

Why Not Notebooks?



What are Jupyter Notebooks?

Computational environment
that uses the lab notebook as
a metaphor

Easy to mix marked-up text,
executable code, results,
visualizations, interactive
widgets, and so on

Very popular with data
scientists, less so (?) with
researchers

Often promoted as beneficial
for "reproducibility”
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How Could Someone Not Like Notebooks?

e |had a lot of complaints (but also some positives and suggestions)
e |t's a very comprehensive talk, you should check it out
e A lot of the complaints were around user-unfriendliness + confusingness
e One dislike was particularly relevant to this workshop:
NOTEBOOKS
HINDER
REPRODUCIBLE
+ EXTENSIBLE
SCIENCE
e oo NO, I'M SERIOUS



https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit?usp=sharing

Notebooks for Reproducibility?
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Code That's in Notebooks Is Hard to Re-Run



Notebooks Allow Out-of-Order Execution

- Ju pyter madness

File Edit

View Insert Cell Kernel
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In: [1]:

In [3]:

In [4]:

Out[4]:

TR 5]

def f(x):

print(y)

5

return x + 2

Code

Help
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| Python 3 O

CellToolbar

unless you are very
disciplined, you may
not even be able to
reproduce your work



Notebooks Hard-Code Their Parameters

logits flatten = binary logits.view(-1, 2)

return logits flatten, hidden

In [4]: rnn
rnn

RNN(input_size=88, hidden size=512, num classes=88)
rnn.cuda()

criterion = nn.CrossEntropyLoss().cuda()

criterion val = nn.CrossEntropylLoss(size_average=False).cuda()

learning _rate = 0.001
optimizer = torch.optim.Adam(rnn.parameters(), lr=learning rate)

In [6]: %matplotlib notebook

import sys, os
sys.path.append(" /home/-/repos /pytorch-segmentation-detection/")

sys.path.insert (0, ' /m@-'repos /pytorch-segmentation-detection/vision/"')



Notebooks Don't Help You Enforce Dependencies

Branch: master v

_ added the link to download midi library

1 contributor

1246 lines (1245 sloc) 104 KB

In [1]:

import pretty midi

import numpy as np

import torch

import torch.nn as nn

from torch.autograd import Variable
import torch.utils.data as data
import os

import random

<
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Blame
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Notebooks Complicate Collaboration



Collaboration is a Forcing
Function for Reproducibility



Notebooks Don't Play Well With Source

distributed source control is the de
facto way to collaborate on coding

projects

Changes from all commits Jump to...~  +53 -113 mumm

1,
"source": [
“rng = np. random.RandonState(8)\n",

for marker in ['o’, '0', ' EEEENS+', 'v', '8, '8,

plt.plot(rng.rand(5), rng.rand(5), marker,\n",
- label=\"marker="{0}'\". format (marker))\n",
- "plt.legend(numpoints=1)\n",

- "plt.xtim(e, 1.8);"

ontrol

1,
“source": [
“rng = np. randon.RandonState (@)\n",

+ for marker dn ['o'y 'B', ' 'v', '8') '8 ‘8%, ‘@' 'B'1:\n%,

» plt.plot(rng.rand(5), rng.rand(5), marker,\n",
+ o label=\"pointer="{0}'\".fornat(pointer))\n",
"plt. legend (numpoints=3)\n",
"plt.xlin(0, 1.6);"
1

+ o+

h h

o {
8@ -127,16

hH h

{ 1{

“cell_type": "code", “cell_type": “code",
- “execution_count": 4, + “execution_count": 7,
- ‘"metadata": { +  ‘“metadata": {},
o "collapsed": false
= Iy

"outputs": [ “outputs": [

1 {
“data": { “data": {

- “image/png": + “image/png":
" iVBORWOKGGOAAAANSUhEUGAAAXOAAAD/ CAYAAAD/ qh1PAAAABHNCSVQICAQI fAhKiAAAAATWSF L " AYAAAB+W1aP/ IQICAQI fAhkiAAAAALWSF L
Z\NAAALEGAACXIBOt 1+/AAATABIREFUedzt 3Xt CVOWEB/Df cBUZFE28V j 1 fWumeEMCGXUUUQgKK ZAAALEGAACXIBO! 0CGxvdGXpY iB22X)2aWOuIDIUNSAyLCB
1gD\n1p6y2anZHT1ak+nk9tLITrX1aL 13KqCIN25K0ga iucUL3sp7Mt7AWhQVUBCYdf7owHbiPrd odHRWO i 0CGXVAGXPY i5v JREFUe] 2t 3X4FFX28PFVIWSSSCKo iy JWG6
3rTXP\n9/PpD9Ywa/1YDY+LZ73vuy CLESKVSEECIyV0gITUTKNATQ0j U AWVC21Cx1/DK6K] OKj GFEFQi40T 101 kZFwySB: j fumIGy
aEnhBCR\N0AIPCCE 1Z1KNP3v2LGJiYmptz8ZzMRGRKIKK10rBI+3ZTDKETTCREDS a+ccOGDUNISYG COVX+kYQ3ZCHQWIVXn8/Z5DFIQ6rrXLo9qT59616HYRGTTYSwpyCzAXBCCOEIKUSFEMLGIMKLIYS
rq6vB9s rk\nSaxYsQK7du2Cs7Mzoq0jMXroaLRt29bks IQQQprPECt6TOOP rFmzptb2adeuwdPTE NSZL JK1eCCFsrIbZAVSUL jopt 15+ T8UNLTO
1KpFI60jvD2\n9saJ EydMCKKIL tLSkrg5uzZw87Wrayuk: \Tmf1 cibV: yBKtU1XCOEEDYMSVAT: QQtiYIHKhhLAXt754VUq1B17SWnetoHa
mrFQQRULISC3] WlaNWgll ighpImM7tF’ QEF11a4MSJE5g: 38CxwC| rf (wghxLmS5 fCWv 1BoL gl VYA7gCS1VBPgYWC
83NZTX POB\nvb2b/LONF3q 2Bp0iQsXL +WsCy J1Vp2YAYW3tV2CyHs JyMj 98] ISTKCGoiMj GTx4sVmh2QL7pRr fgYSqmhvCWzRWh/QWpBAVgRUBZO

PVCOkICTU2u7061 1re0FBATP37myR7

Dy@r3yQXudoPcfqnimzgj 18Mj+wrh7zIyMkhKSqKwsBDDMCgSLOTZZ5+V97@HUFyuaVrPUOPFVrG



Notebooks Lock You Into

Using Notebooks

The Module Finder

The finder is a simple object that tells you whether a name can be imported, and returns the

appropriate loader. All this one does is check, when you do:
import mynotebook

it checks whether aynoteboak ipyab exists. If a notebook is found, then it returns a

NotebookLoader.

Register the hook

“Totebooks a:

ant to import code fro
> not plain Python file:

Now we register the nNotebookFinder with sys.meta_path

[ ]:

sys.meta_path.append(NotebookFinder())

Notebook Loader

Here we have our Notebook Loader. It's actually quite simple - once we figure out the filename of
the module, all it does is:

1. load the notebook document into memory
2. create an empty Module
3. execute every cell in the Module namespace

Since IPython cells can have extended syntax, the IPython transform is applied to turn each of
these cells into their pure-Python counterparts before executing them. If all of your notebook cells

are pure-Python, this step is unnecessary.

shell = Interactiveshell. instance()

.path = path

print (“importing Jupyter notebook from %s™ % path)

# load 1ot ebook
with io.open(path,

nb = read(f, 4)

, encoding='utf-8') as f:



Notebooks Conflate "Library" Code and "Experiment” Code

In [3]: class RNN(nn.Module): In [4]: rnn = RNN(input_size=88, hidden_size=512, num_classes=88)
= .cud
def _ init_ (self, input_size, hidden_size, num_classes, n_layers=2): At nnctiald

super(RNN, self). init_ () criterion = nn.CrossEntropyLoss().cuda()

self.input_size = input size criterion_val = nn.CrossEntropylLoss(size average=False).cuda()
self.hidden size = hidden size

self.num classes = num_classes learning_rate = 0.001

self.n_layers = n_layers optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate)

self.notes_encoder = nn.Linear(in_features=input_size, out_ features=hidden_size)

self.lstm = nn.LSTM(hidden size, hidden_size, n_layers) In [8]: clip = 1.0
= = — epochs_number = 12000000
. . . . le_history =
self.logits_fc = nn.Linear(hidden_size, num_classes) ;:!Eigi{gg?[? f{(];a(("lnf“;

for epoch_number in xrange(epochs_number):

def forward(self, input_sequences, input_sequences_lengths, hidden=None): .
= = = for batch in trainset_loader:
batch size = input_sequences.shape[1] post_processed batch tuple = post process sequence batch(batch)
notes_encoded = self.notes_encoder(input_sequences) input_sequences_batch, output sequences batch, sequences lengths = post processed batch
tuple
# Here we run rnns only on non-padded regions of the batch .

s X output _sequences batch var = Variable( output sequences batch.contiguous().view(-1).cud
packed = torch.nn.utils.rnn.pack padded_sequence(notes_encoded, input_sequences_lengths) a() ) Utz - - ¢ bii_ed - J ) GL)
outputs, hidden = self.lstm(packed, hidden)
outputs, output_lengths = torch.nn.utils.rnn.pad_packed_sequence(outputs) # unpack (back input_sequences_batch var = Variable( input_sequences batch.cuda() )

to padded)
optimizer.zero_grad()
logits = self.logits_fc(outputs) logits, _ = rnn(input_sequences batch var, sequences lengths)
logits = logits.transpose(0, 1).contiguous() loss = criterion(logits, output sequences batch var)

loss list.append( loss.data[0] )

neg logits = (1 - logits) [osszbackward ()
torch.nn.utils.clip_grad norm(rnn.parameters(), clip)

# Since the BCE loss doesn't support masking, we use the crossentropy

binary logits = torch.stack((logits, neg_logits), dim=3).contiguous() optimizer.step()

logits_flatten = binary logits.view(-1, 2) Gl rent valiloes = aliae
X X val_list.append(current_val loss)
return logits_flatten, hidden

if current val loss < best val loss:

torch.save(rnn.state dict(), 'music_rnn.pth')
best _val loss = current_val_loss



Francois Chollet &
@ @fchollet m M
Buggy code is bad science. Poorly
tuned benchmarks are bad science.

Notebooks Poorly factored code is bad science

are g recipe (hinders reproducibility, increases
chances of a mistake). If your field is all

for poorly about empirical validation, then your
code *is* a large part of your scientific

factored outout.
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Notebooks Frustrate Software-Engineering
Best Practices



Software Engineering?

You may not think of your Al
experiments as software engineering
But | do

And you should!

| sometimes give talks on "why data
scientists should care about software
engineering best practices’

This is sort of my "why Al researchers
should care about software
engineering best practices” variant




Notebooks Complicate Code Reviews

Code reviews are an early
bulwark against incorrect
code (and hence incorrect
science)

Code reviews help you grow
as a coder and as a scientist

allennlp/semparse/domain_languages/domain_language.py Outdated

9

B 5

@@ -243,7 +261,8 @@ def init_ (self,

E%Z Hide resolved

if isinstance(getattr(self, name), types.MethodType):

function = getattr(self, name)
if getattr(function, '_is_predicate’,
self.add_predicate(name, function)

5 side_arguments = getattr(function,

pdasigi 2 days ago  Member

Did you want the default value to be None instead of False ?

matt-gardner 2 days ago  Member

Yes | did, thanks, good catch.

Reply...

False):

' _side_arguments’',
»



Notebooks Make it Hard to Unit Test

e Unit tests assure you that small pieces
of your logic are correct ai.ipynb

e Unit tests make it easy to iterate by
running your model end-to-end on s o] Ao
small datasets # maybe assert something

e Unit tests make it safe to refactor your ¢ train model

code # maybe assert something
o : :

Unit tests are small WOI’kII’?g examples # get results
o Yes, you can put assertsinyour # maybe assert something

notebook, but you want to be able to # save results
run your tests without running your

experiment



Yeah, but what
do unit tests for
Al experiments
even look like?



Unit Tests for Al Experiments

def test_forward_pass_runs_correctly(self):

training_tensors =

self.dataset.as_tensor_dict() [ _tiny known dataset |

output_dict = self.model(**training_tensors) [ check that model runs |

tags = output_dict['

assert len(tags) ==
assert len(tags[0])
assert len(tags[1])
for example_tags in

tags'] | check that output has the right fields :
2

=7 | check that output has the right shape )
== 7

tags:

for tag_id in example_tags:

tag = self.model.vocab.get_token_from_index(tag_id, namespace="labels")
assert tag in {'0', 'I-ORG', 'I-PER', 'I-LOC'}

[ check that output has reasonable values |




Notebooks Make Science Harder



Notebooks Are Hard to Parametrize

view & share )
e - -
a ’ notebooks Commuter |

interactive compute Titus container :
==Y > Y 1 <L {5 ——— T :
=

l 7 S | | )
,u,,w,Jupvter Pyspark | o T
~ Server kernel |
e ad hoc L \ J L J

ntefQCt execution read
L interactive output :
notebook Hotebook V
configure %
storage AWS
job )
scheduler ~ Meson Legend axseaten . PR (I >} Anéla:zson
2 A=
, ad hoc execution data warehouse services
M Meson . read e
---- scheduled execution 4 ; Amazon
d Metacat Genie & ‘
1 | | e = === > S3
. ) ) write \
....... store & view notebook ! -
' i
( Meson jdb :
Template execution

:. _________________________________ store
G T

Parameterized i =
( Notebook 1
— o scheduled compute v T S —
; i
1 N\ - N 4
scheduled -=cevsmasamad 0 |essewsss > | m P - f PySpark ( i
execution ‘ ) *epermi kernel ‘ output
A notebook

parameterized
notebook



Notebooks Lump
Together Code and Data

Often you'll run many experiments
with the same code but different
parameters

For analysis it can be good to have
your results mixed in

For science you want to aggregate
results across experiments

For science you want your results
to have a life of their own




Notebook Code Can't
Easily Be Built On




In Short

e "Notebooks as a source of reproducibility” presupposes a static view of Al
as a science:

o "l did some science, now here is an artifact containing the code and data"
e |'m advocating for a dynamic view:
o "l did some science, now you do some more science on top of it"

o Which is the kind of reproducibility that moves Al forward



If Not Notebooks, Then What?



Code in Modules

# models/crf_tagger.py

class CrfTagger(Model):

The ~"CrfTagger ~ encodes a sequence of text with a ~~Seq2SeqEncoder™ ",
then uses a Conditional Random Field model to predict a tag for each token in the sequence.
def __init_ (self, vocab: Vocabulary,

text_field embedder: TextFieldEmbedder,

encoder: Seq2SeqgEncoder,

label namespace: str = "labels",

feedforward: Optional[FeedForward] = None,

label encoding: Optional[str] = None,

include_start_end_transitions: bool = True,

constrain_crf_decoding: bool = None,

calculate_span_f1: bool = None,

dropout: Optional[float] = None,

verbose metrics: bool = False,

initializer: InitializerApplicator = InitializerApplicator(),

regularizer: Optional[RegularizerApplicator] = None) -> None:

super().__init_ (vocab, regularizer)



Unit Tests

e develop your model on a tiny test set
e |terate
e run the tests frequently
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The best time to find
mistakes is before
you run your
experiments!




Be Explicit About Your Dependencies

#### ESSENTIAL LIBRARIES FOR MAIN FUNCTIONALITY ####

# This installs Pytorch for CUDA 8 only. If you are using a newer version,
# please visit http://pytorch.org/ and install the relevant version.

# For now AllenNLP works with both PyTorch 1.0 and ©.4.1. Expect that in
# the future only >=1.0 will be supported.

torch>=0.4.1

# Parameter parsing (but not on Windows).
jsonnet==0.10.0 ; sys.platform != 'win32'

# Adds an @overrides decorator for better documentation and error checking when using subclasses.
overrides

# Used by some old code. We moved away from it because it's too slow, but some old code still
# imports this.
nltk

# Mainly used for the faster tokenizer.
spacy>=2.0,<2.1



Make It Easy To Vary Parameters

export BERT_BASE DIR=/path/to/bert/uncased L-12 H-768 A-12
export GLUE_DIR=/path/to/glue

python run_classifier.py \
--task_name=MRPC \
--do_train=true \
--do_eval=true \
--data_dir=$GLUE_DIR/MRPC \
--vocab file=$BERT_BASE DIR/vocab.txt \
--bert_config file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$BERT_BASE_DIR/bert _model.ckpt \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3.0 \
--output_dir=/tmp/mrpc_output/



Consider Docker Images

Create container with OS +
environment + code (+ data?)
Can share and anyone can run
(in theory)

Build up step by step with
smart caching when you
change it




$ docker run -it --entrypoint /bin/bash allennlp/allennlp:v0.8.0

root@7d1f120a83e9:/stage/allennlp# echo '{"sentence": "Did Uriah honestly think he could beat the
game in under three hours?"}' | allennlp predict

https://s3-us-west-2.amazonaws.com/allennlp/models/srl-model-2018.05.25.tar.gz -

input: {"sentence": "Did Uriah honestly think he could beat the game in under three hours?"}
prediction: {"verbs": [{"verb": "Did", "description": "[V: Did] Uriah honestly think he could beat
the game in under three hours ?", "tags": ["B-V", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"o", "0", "0"]}, {"verb": "think", "description": "Did [ARGO: Uriah] [ARGM-MNR: honestly] [V:
think] [ARG1l: he could beat the game in under three hours] ?", "tags": ["0", "B-ARGO",
"B-ARGM-MNR", "B-V", "B-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1l", "I-ARG1l",
"I-ARG1", "I-ARG1l", "O"]}, {"verb": "could", "description": "Did Uriah honestly think he [V: could]
beat the game in under three hours ?*", "tags": ["O", "O", "O", "O", "O", "B-V", "O", "O", "O", "O",
"o", "o", "0o", "0"]1}, {"verb": "beat", "description": "Did Uriah honestly think [ARGO: he]
[ARGM-MOD: could] [V: beat] [ARG1l: the game] [ARGM-TMP: in under three hours] ?", "tags": ["O",
"o", "0", "0", "B-ARGO", "B-ARGM-MOD", "B-V", "B-ARG1l", "I-ARG1l", "B-ARGM-TMP", "I-ARGM-TMP",
"I-ARGM-TMP", "I-ARGM-TMP", "0"]}], "words": ["Did", "Uriah", "honestly", "think", "he", "could",
"beat", "the", "game", "in", "under", "three", "hours", "?"]}



Provide Instructions

Installation
This repo was tested on Python 3.5+ and PyTorch 0.4.1/1.0.0
With pip

PyTorch pretrained bert can be installed by pip as follows:

pip install pytorch-pretrained-bert

From source

Clone the repository and run:
pip install [--editable]

A series of tests is included in the tests folder and can be run using pytest (install pytest if needed: pip install pytest ).

You can run the tests with the command:

python -m pytest -sv tests/



Reproducibility and AllenNLP



What is AllenNLP?

AllenNLP

An open-source NLP research library, built on PyTorch

VIEW DEMO

GET STARTED

AllenNLP is a free, open-source projectt

Deep learning for NLP

AllenNLP makes it easy to design and evaluate
new deep learning models for nearly any NLP
problem, along with the infrastructure to easily
run them in the cloud or on your laptop.

Get Started

State of the art models

AllenNLP includes reference implementations of
high quality models for both core NLP problems
(e.g. semantic role labeling) and NLP applications
(e.g. textual entailment).

View Models




Programming to Higher-Level Abstractions

# models/crf_tagger.py

class CrfTagger(Model):

The ~"CrfTagger ~ encodes a sequence of text with a ~~Seq2SeqEncoder™ ",
then uses a Conditional Random Field model to predict a tag for each token in the sequence.
def __init_ (self, vocab: Vocabulary,

text_field embedder: TextFieldEmbedder,

encoder: Seq2SeqgEncoder,

label namespace: str = "labels",

feedforward: Optional[FeedForward] = None,

label encoding: Optional[str] = None,

include_start_end_transitions: bool = True,

constrain_crf_decoding: bool = None,

calculate_span_f1: bool = None,

dropout: Optional[float] = None,

verbose metrics: bool = False,

initializer: InitializerApplicator = InitializerApplicator(),

regularizer: Optional[RegularizerApplicator] = None) -> None:

super().__init_ (vocab, regularizer)



Declarative Configuration

"model": {

"type": "crf_tagger",
"label _encoding": "BIOUL",
"dropout": 0.5,
"include_start_end_transitions": false,
"text_field_embedder": {
"token_embedders": {
"tokens": {
"type": "embedding",
"embedding dim": 50,
"pretrained_file": "/path/to/glove.txt.gz",
"trainable": true

¥

"elmo": {
"type": "elmo_token_embedder",
"options_file": "/path/to/elmo/options.json",
"weight_file": "/path/to/elmo/weights.hdf5",
"do_layer_norm": false,
"dropout": 0.0

¥

"token_characters": {

"type": "character_encoding",

"embedding": {
"embedding_dim": 16

s

"encoder": {
"type": "cnn",
"embedding_dim": 16,
"num_filters": 128,
"ngram_filter_sizes": [3],
"conv_layer_activation": "relu"

}
¥

s

"encoder": {
"type": "lstm",
"input_size": 1202,
"hidden_size": 200,
"num_layers": 2,
"dropout": 0.5,
"bidirectional™: true

¥
"regularizer”: [
[
"scalar_parameters",
{
"type": "12",
"alpha": 0.1
}
1
]

¥



. o o CrfTagger(
De C l ad ratlve CO nflg u ratl on (text_field_embedder): BasicTextFieldEmbedder(
(token_embedder_token_characters):
TokenCharactersEncoder(
(_embedding): TimeDistributed(
(_module): Embedding()
)
(_encoder): TimeDistributed(
(_module): PytorchSeqg2VecWrapper(
(_module): GRU(25, 80, num_layers=2,
batch_first=True, dropout=0.25, bidirectional=True)

some voodoo )
. . )
. Ir1\/()|\/|r]SJ (token_embedder_tokens): Embedding()
JSON inspect.getfullarg )

(encoder): PytorchSeq2SeqWrapper(
(_module): GRU(210, 300, num_layers=2,
batch_first=True, dropout=0.5, bidirectional=True)

)
(tag_projection_layer): TimeDistributed(

blob spec and type

annotations

(_module): Linear(in_features=600, out_features=4,

bias=True)

)

(crf): ConditionalRandomField()
)

CrfTagger. 1init




Command-Line Tools

Using the Command Line Tool

In fact, we provide a command line tool that handles most common AllenNLP tasks, so in practice you probably wouldn't read
the params or call train_model yourself (although you can), you'd just run the command

$ allennlp train tutorials/tagger/experiment.jsonnet \
-s /tmp/serialization_dir \
--include-package tutorials.tagger.config_allennlp



Interactive Demos and Visualization of Model Internals

Entailment 80.9%
AllenNLP .
Textual Entailment
Machine Comprehension Contradiction 4.4%
Textual Entailment (TE) takes a pair of sentences and predicts whether the facts in the first
Textual Entailiment necessarily imply the facts in the second one. The AllenNLP toolkit provides the following TE
visualization, which can be run for any TE model you develop. This page demonstrates a Neutral 14.7%

reimplementation of the decomposable attention model (Parikh et al, 2017) , which was state of C N

the art for the SNLI benchmark (short sentences about visual scenes) in 2016. Rather than pre- Model internals (beta) (=]

trained Glove vectors, this model uses ELMo embeddings, which are completely character based

and improve performance by 2% premise to hypothesis attention =]

For every premise word, the model computes an attention over the hypothesis words. This heatmap
shows that attention, which is normalized for every row in tge matrix.

Semantic Role Labeling

Coreference Resolution

Named Entity Recognition
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If you help the needy, God will reward you. Monsy,
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Giving money to the poor has good consequences. has
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consequences
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Higher-Level NLP Abstractions as Library Primitives

e Field + Instance (nice representation of examples)
o question field = TextField("What is the ...", token_indexers)
o instance = Instance({"question": question_field, "passage": passage field)

e Vocabulary (map word <-> index, label <-> index, etc)

e Tokenlndexer (map token -> [indexl, ..., indexn]
o could be one per word
o could be one per character
o could be one per wordpiece

TokenEmbedder (map indices -> embedding vectors)
Seg2VecEncoder (map [v1, ..., vn] -> w)
Seg2SeqgEncoder (map [v1, .., vn] -> [w1, ..., wn])

..and many more



"l want to try
using BERT
vectors instead

of GloVe
vectors”




"Oh, great, now I'm
going to make lots
of ges@pmy
code aintain

all rent
verstons so that my
results are

reproducible”

"I'll just make a
new config file for
the BERT version!”



"token_indexers": { "token_indexers": {

"tokens": { "bert": {

"type": "single_id", "type": "bert-pretrained”,

"lowercase_tokens": true "pretrained_model": std.extVar("BERT_VOCAB"),
}» "do_lowercase": false,

i "use_starting_offsets": true
}s

"token_characters": { "token_characters": {

"type": "characters", "type": "characters",

"min_padding length": 3 "min_padding_ length": 3
} }

} }



"text field embedder": {

}s

"token_embedders": {

}s

"text_field embedder": {
"allow_unmatched_keys": true,
"embedder_to_indexer_map": {
"bert": ["bert", "bert-offsets"],
"token_characters"”: ["token_characters"],

"tokens": { }»
"type": "embedding", "token_embedders": {
"embedding_dim": 50, "bert": {
"pretrained_file": "/path/to/glove.tar.gz", "type": "bert-pretrained”,
"trainable": true "pretrained_model"”: std.extVar("BERT_WEIGHTS")
s
"token_characters": { _— "token_characters": {
"type": "character_encoding", "type": "character_encoding",
"embedding": { "embedding": {
"embedding dim": 16 "embedding_dim": 16
¥ ¥
"encoder": { "encoder": {
"type": "cnn", "type": "cnn",
"embedding_dim": 16, "embedding_dim": 16,
"num_filters": 128, "num_filters": 128,
"ngram_filter_sizes": [3], "ngram_filter_sizes": [3],
"conv_layer_activation": "relu" "conv_layer_activation"”: "relu"
} }
}
}

¥

}s



"Want to Reproduce My Results?"

e create avirtual environment

e clone my GitHub repo and pip install its dependencies
o including a specific version of AllenNLP
o which includes a specific version of PyTorch

e each experiment has its own JSON configuration file
e allennlp train specific_experiment.json -s /tmp/results



Reproducibility and Beaker



What is Beaker?

Kubernetes-based platform for rapid
experimentation

Specify experiments as Docker containers +
config.yaml

Request GPUs + Memory + etc

Upload or mount existing datasets

Track results

(Currently runs on GKE, working on a "runs
on your machines" version)

Mostly internal-only for now (sorry)

la/ Beaker

FICIAL INTELLIGENCE



What is Beaker?

beaker experiment run \
--name wordcount-moby \
--blueprint examples/wordcount \
--source examples/moby:/input \

--result-path /output



ex_ndcfzinlot02 ¢ C maw

Program Arguments python  -m  allennlp.run train /config.json -s  /joutput  --file-friendly-logging
NER with char + BERT (using [SEP] and [CLS]) ¢ descri ption
Created 2 months ago by joelg Environment Variables Key Value
BERT_VOCAB /data/bert-vocab
Tasks Experiment Graph Spec Permissions
BERT_WEIGHTS /data/bert-weights
NER_TEST_A_PATH /conll2003/eng.testa
& training
. e NER_TEST_B_PATH /conll2003/eng.testb
training g
NER_TRAIN_DATA_PATH /conll2003/eng.train
v/} Succeeded Finished 2 months ago. Ran for 2 hours. Created by: joelg
O pa ra meters dataset_reader_coding_scheme BIOUL
Description None & dataset_reader_tag_label ner
logs ,
dataset_reader_token_indexers_bert_do_lowerc... False
Lo; 2506 Lines (377.3KiB)  Show Full Log Download Full L
L RS ‘ cwriLog Downloadulloe dataset_reader_token_indexers_bert_pretrained... /data/bert-vocab
Results ds_og42u9uwhhld dataset_reader_token_indexers_bert_type bert-pretrained
Show all
Metrics
{
"best_epoch": 37, Requirements 1GPU
“best _validation accuracy": 0.9904209337642615,
"best validation accuracy3": 0.9915307036330361,
"best validation fl-measure-overall": 0.95274928535391, Blueprint bp_w3b6mh1llks8 1
"best _validation loss": 51.06252528171913, = P dOCker Image
"best validation precision-overall": 0.9519489247311828,
"best validation recall-overall": 0.9535509929316729, Experiment ex_ndcfzinlot02
"epoch": 61, i
. “training accuracy": 0.998340053334381,
metrics “training accuracy3": 0.9985414078115715, Input Datasets Dataset ID Mount Path
“training duration": "01:52:06",
“training epochs": 61, bert-base-cased-vocab /data/bert-vocab
“training fl-measure-overall": 0.9909963602306816, ;
“training loss": 3.9061280575665562, Beri-base:cased /data/bert-weights datasets
“training precision-overall”: 0.9913550804871817, conll2003 Jconll2003

“training recall-overall": 0.9906378994850845,
“training start_epoch": 0, ds_5oc1fv4320dm /Jconfig.json
“validation accuracy": 0.9893111638954869,

“validation accuracy3": 0.9906740391729294,

"validation fl-measure-overall”: 0.9481381860972855, D
"validation loss": 65.0678040747549,

“validation precision-overall”: 0.947103274559194,

"validation recall-overall": 0.9491753618310333 Cost $4.887

3 cost

tk_63w97m1997ba




Organize Experiments Into Groups

Comparisons

4 N

ideally you'd give
them more
descriptive
names, though

\_ /




Beaker and Reproducibility

e old code + new data => upload the dataset, reuse the blueprint
e new code + old data => create the blueprint, point at existing dataset

e want to see previous results?
o inputs + logs + outputs stored "forever”
o record of every experiment run + results
o share with a link



To Sum Up

Reproducibility is important for more
than the obvious reasons

Your choices of tools and processes
make reproducibility easier or harder
There are several ways that notebooks
make reproducibility harder

Search out tools that make
reproducibility easier

Adopt processes that make
reproducibility easier



A Few Related Presentations

e |Don't Like Notebooks

The talk that launched a thousand arguments. Heavy on the memes.

e Writing Code for NLP Research

EMNLP 2018 tutorial from me + Matt Gardner + Mark Neumann, goes
much deeper into "what good research code looks like"

e How Becoming Not a Data Scientist Made Me a Better Data Scientist

Explores some similar themes in the context of "why data scientists
should care about software engineering best practices”


https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit?usp=sharing
https://docs.google.com/presentation/d/17NoJY2SnC2UMbVegaRCWA7Oca7UCZ3vHnMqBV4SUayc/edit?usp=sharing
https://docs.google.com/presentation/d/1jk-qrVKCb0-P9P4BVzH75gcVhp5Dy5n1CP_gKnHMNY0/edit?usp=sharing

Any questions?

me: @joelgrus

Al2: allenai.org

AllenNLP: allennlp.org
Beaker*: beaker.org an
will tweet out slides from J 1 ,/;'

@joelgrus and @ai2_allennlp



https://twitter.com/joelgrus
https://allenai.org/
https://allennlp.org/
https://beaker.org

