
If Not Notebooks, Then What?

Thoughts on notebooks and reproducibility 

AAAI 2019 Workshop on Reproducible AI

Joel Grus
@joelgrus

https://www.idi.ntnu.no/~odderik/RAI-2019/


About Me

● Research engineer on the AllenNLP team
● Previously SWE@Google, Data Science@VoloMetrix, …
● Author of Data Science from Scratch
● Co-host of "Adversarial Learning" podcast
● The "Fizz Buzz in Tensorflow" guy
● Started "the first notebook war"

https://allennlp.org/
http://shop.oreilly.com/product/0636920033400.do
http://adversariallearning.com
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/




What is a Research Engineer?

● I'm not a researcher
○ (although I can pretend to be one)

● I'm an engineer who cares deeply about 
research

● My job is to help researchers be successful
○ by building tools for them
○ by advocating best practices
○ and also by collaborating with them

● And so my job involves thinking a lot about 
reproducibility



Outline

● Why reproducibility?
● Why not notebooks?
● If not notebooks, then what?
● Reproducibility and AllenNLP
● Reproducibility and Beaker



Why Reproducibility?



I take a somewhat expansive 

view of the role of 

reproducibility in science



Reproducibility Helps With Correctness

If no one ever runs your code but you, it might be wrong



Reproducibility Protects 

Against Bad Actors

● Certainly you would never try to 
publish fraudulent research, but 
what about your bitter rival?

● (Hopefully this is a minor 
consideration.)



Reproducibility Makes It Easy to Try New Datasets

● Maybe your model works great on a different dataset
● Maybe it works terribly on a different dataset
● Hard datasets help move AI forward



Reproducibility Makes It Easy to Try New Tasks

You haven't thought of (or tried) every way your model could be used



Reproducibility Enables Strong Baselines 

Wouldn't you like your model to be the 
standard by which new models are judged?



Reproducibility Is Necessary For Extensibility

"you can't stand on the shoulders of giants if they keep their shoulders private"



Extensibility Leads to Progress



Extensibility Leads to Progress

attention

transformer

BERT

?



Fundamental Premise:

The tools you choose and the processes you 

adopt can make reproducibility either a lot 

harder or a lot easier.



Why Not Notebooks?



What are Jupyter Notebooks?

● Computational environment 
that uses the lab notebook as 
a metaphor

● Easy to mix marked-up text, 
executable code, results, 
visualizations, interactive 
widgets, and so on

● Very popular with data 
scientists, less so (?) with 
researchers

● Often promoted as beneficial 
for "reproducibility"





How Could Someone Not Like Notebooks?

● I had a lot of complaints (but also some positives and suggestions)
● It's a very comprehensive talk, you should check it out
● A lot of the complaints were around user-unfriendliness + confusingness
● One dislike was particularly relevant to this workshop:

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit?usp=sharing


Notebooks for Reproducibility?



Code That's in Notebooks Is Hard to Re-Run



Notebooks Allow Out-of-Order Execution

unless you are very 
disciplined, you may 
not even be able to 
reproduce your work



Notebooks Hard-Code Their Parameters



Notebooks Don't Help You Enforce Dependencies



Notebooks Complicate Collaboration



Collaboration is a Forcing 

Function for Reproducibility



Notebooks Don't Play Well With Source Control

distributed source control is the de 
facto way to collaborate on coding 
projects



Notebooks Lock You Into 

Using Notebooks



Notebooks Conflate "Library" Code and "Experiment" Code



Notebooks 

are a recipe 

for poorly 

factored 

code



Notebooks Frustrate Software-Engineering 

Best Practices



Software Engineering?

● You may not think of your AI 
experiments as software engineering

● But I do
● And you should!
● I sometimes give talks on "why data 

scientists should care about software 
engineering best practices"

● This is sort of my "why AI researchers 
should care about software 
engineering best practices" variant



Notebooks Complicate Code Reviews

● Code reviews are an early 
bulwark against incorrect 
code (and hence incorrect 
science)

● Code reviews help you grow 
as a coder and as a scientist



Notebooks Make it Hard to Unit Test

# load data
# maybe assert something

# train model
# maybe assert something

# get results
# maybe assert something
# save results

ai.ipynb

● Unit tests assure you that small pieces 
of your logic are correct

● Unit tests make it easy to iterate by 
running your model end-to-end on 
small datasets

● Unit tests make it safe to refactor your 
code

● Unit tests are small working examples
● Yes, you can put asserts in your 

notebook, but you want to be able to 
run your tests without running your 
experiment



Yeah, but what 

do unit tests for 

AI experiments 

even look like?



Unit Tests for AI Experiments

tiny known dataset

check that model runs

check that output has the right fields

check that output has the right shape

check that output has reasonable values



Notebooks Make Science Harder



Notebooks Are Hard to Parametrize



Notebooks Lump 

Together Code and Data

● Often you'll run many experiments 
with the same code but different 
parameters

● For analysis it can be good to have 
your results mixed in

● For science you want to aggregate 
results across experiments

● For science you want your results 
to have a life of their own



Notebook Code Can't 

Easily Be Built On



In Short

● "Notebooks as a source of reproducibility" presupposes a static view of AI 
as a science:
○ "I did some science, now here is an artifact containing the code and data"

● I'm advocating for a dynamic view:
○ "I did some science, now you do some more science on top of it"
○ Which is the kind of reproducibility that moves AI forward



If Not Notebooks, Then What?



Code in Modules

# models/crf_tagger.py

class CrfTagger(Model):
   """
   The ``CrfTagger`` encodes a sequence of text with a ``Seq2SeqEncoder``,
   then uses a Conditional Random Field model to predict a tag for each token in the sequence.
   def __init__(self, vocab: Vocabulary,
                text_field_embedder: TextFieldEmbedder,
                encoder: Seq2SeqEncoder,
                label_namespace: str = "labels",
                feedforward: Optional[FeedForward] = None,
                label_encoding: Optional[str] = None,
                include_start_end_transitions: bool = True,
                constrain_crf_decoding: bool = None,
                calculate_span_f1: bool = None,
                dropout: Optional[float] = None,
                verbose_metrics: bool = False,
                initializer: InitializerApplicator = InitializerApplicator(),
                regularizer: Optional[RegularizerApplicator] = None) -> None:
       super().__init__(vocab, regularizer)
       ...



Unit Tests

● develop your model on a tiny test set
● iterate
● run the tests frequently



The best time to find 

mistakes is before 

you run your 

experiments!



Be Explicit About Your Dependencies

#### ESSENTIAL LIBRARIES FOR MAIN FUNCTIONALITY ####

# This installs Pytorch for CUDA 8 only. If you are using a newer version,
# please visit http://pytorch.org/ and install the relevant version.
# For now AllenNLP works with both PyTorch 1.0 and 0.4.1. Expect that in
# the future only >=1.0 will be supported.
torch>=0.4.1

# Parameter parsing (but not on Windows).
jsonnet==0.10.0 ; sys.platform != 'win32'

# Adds an @overrides decorator for better documentation and error checking when using subclasses.
overrides

# Used by some old code.  We moved away from it because it's too slow, but some old code still
# imports this.
nltk

# Mainly used for the faster tokenizer.
spacy>=2.0,<2.1



Make It Easy To Vary Parameters

export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
export GLUE_DIR=/path/to/glue

python run_classifier.py \
  --task_name=MRPC \
  --do_train=true \
  --do_eval=true \
  --data_dir=$GLUE_DIR/MRPC \
  --vocab_file=$BERT_BASE_DIR/vocab.txt \
  --bert_config_file=$BERT_BASE_DIR/bert_config.json \
  --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
  --max_seq_length=128 \
  --train_batch_size=32 \
  --learning_rate=2e-5 \
  --num_train_epochs=3.0 \
  --output_dir=/tmp/mrpc_output/



Consider Docker Images

● Create container with OS + 
environment + code (+ data?)

● Can share and anyone can run 
(in theory)

● Build up step by step with 
smart caching when you 
change it



$ docker run -it --entrypoint /bin/bash allennlp/allennlp:v0.8.0

root@7d1f120a83e9:/stage/allennlp# echo '{"sentence": "Did Uriah honestly think he could beat the 
game in under three hours?"}' | allennlp predict 
https://s3-us-west-2.amazonaws.com/allennlp/models/srl-model-2018.05.25.tar.gz -

input:  {"sentence": "Did Uriah honestly think he could beat the game in under three hours?"}
prediction:  {"verbs": [{"verb": "Did", "description": "[V: Did] Uriah honestly think he could beat 
the game in under three hours ?", "tags": ["B-V", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", 
"O", "O", "O"]}, {"verb": "think", "description": "Did [ARG0: Uriah] [ARGM-MNR: honestly] [V: 
think] [ARG1: he could beat the game in under three hours] ?", "tags": ["O", "B-ARG0", 
"B-ARGM-MNR", "B-V", "B-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", 
"I-ARG1", "I-ARG1", "O"]}, {"verb": "could", "description": "Did Uriah honestly think he [V: could] 
beat the game in under three hours ?", "tags": ["O", "O", "O", "O", "O", "B-V", "O", "O", "O", "O", 
"O", "O", "O", "O"]}, {"verb": "beat", "description": "Did Uriah honestly think [ARG0: he] 
[ARGM-MOD: could] [V: beat] [ARG1: the game] [ARGM-TMP: in under three hours] ?", "tags": ["O", 
"O", "O", "O", "B-ARG0", "B-ARGM-MOD", "B-V", "B-ARG1", "I-ARG1", "B-ARGM-TMP", "I-ARGM-TMP", 
"I-ARGM-TMP", "I-ARGM-TMP", "O"]}], "words": ["Did", "Uriah", "honestly", "think", "he", "could", 
"beat", "the", "game", "in", "under", "three", "hours", "?"]}



Provide Instructions



Reproducibility and AllenNLP



What is AllenNLP?



Programming to Higher-Level Abstractions

# models/crf_tagger.py

class CrfTagger(Model):
   """
   The ``CrfTagger`` encodes a sequence of text with a ``Seq2SeqEncoder``,
   then uses a Conditional Random Field model to predict a tag for each token in the sequence.
   def __init__(self, vocab: Vocabulary,
                text_field_embedder: TextFieldEmbedder,
                encoder: Seq2SeqEncoder,
                label_namespace: str = "labels",
                feedforward: Optional[FeedForward] = None,
                label_encoding: Optional[str] = None,
                include_start_end_transitions: bool = True,
                constrain_crf_decoding: bool = None,
                calculate_span_f1: bool = None,
                dropout: Optional[float] = None,
                verbose_metrics: bool = False,
                initializer: InitializerApplicator = InitializerApplicator(),
                regularizer: Optional[RegularizerApplicator] = None) -> None:
       super().__init__(vocab, regularizer)
       ...



Declarative Configuration

 "model": {
   "type": "crf_tagger",
   "label_encoding": "BIOUL",
   "dropout": 0.5,
   "include_start_end_transitions": false,
   "text_field_embedder": {
     "token_embedders": {
       "tokens": {
           "type": "embedding",
           "embedding_dim": 50,
           "pretrained_file": "/path/to/glove.txt.gz",
           "trainable": true
       },
       "elmo":{
           "type": "elmo_token_embedder",
           "options_file": "/path/to/elmo/options.json",
           "weight_file": "/path/to/elmo/weights.hdf5", 
           "do_layer_norm": false,
           "dropout": 0.0
       },

       "token_characters": {
           "type": "character_encoding",
           "embedding": {
               "embedding_dim": 16
           },
           "encoder": {
               "type": "cnn",
               "embedding_dim": 16,
               "num_filters": 128,
               "ngram_filter_sizes": [3],
               "conv_layer_activation": "relu"
           }
       }
     }
   },
   "encoder": {
       "type": "lstm",
       "input_size": 1202,
       "hidden_size": 200,
       "num_layers": 2,
       "dropout": 0.5,
       "bidirectional": true
   },
   "regularizer": [
     [
       "scalar_parameters",
       {
         "type": "l2",
         "alpha": 0.1
       }
     ]
   ]
 },



Declarative Configuration

JSON 
blob

CrfTagger.__init__

some voodoo 
involving 

inspect.getfullarg
spec and type 
annotations

CrfTagger(
  (text_field_embedder): BasicTextFieldEmbedder(
    (token_embedder_token_characters): 
TokenCharactersEncoder(
      (_embedding): TimeDistributed(
        (_module): Embedding()
      )
      (_encoder): TimeDistributed(
        (_module): PytorchSeq2VecWrapper(
          (_module): GRU(25, 80, num_layers=2, 
batch_first=True, dropout=0.25, bidirectional=True)
        )
      )
    )
    (token_embedder_tokens): Embedding()
  )
  (encoder): PytorchSeq2SeqWrapper(
    (_module): GRU(210, 300, num_layers=2, 
batch_first=True, dropout=0.5, bidirectional=True)
  )
  (tag_projection_layer): TimeDistributed(
    (_module): Linear(in_features=600, out_features=4, 
bias=True)
  )
  (crf): ConditionalRandomField()
)



Command-Line Tools



Interactive Demos and Visualization of Model Internals



Higher-Level NLP Abstractions as Library Primitives

● Field + Instance (nice representation of examples)
○ question_field = TextField("What is the …", token_indexers)

○ instance = Instance({"question": question_field, "passage": passage_field)

● Vocabulary (map word <-> index, label <-> index, etc)
● TokenIndexer (map token -> [index1, ...., indexn]

○ could be one per word
○ could be one per character
○ could be one per wordpiece

● TokenEmbedder (map indices -> embedding vectors)
● Seq2VecEncoder (map [v1, …, vn] -> w)
● Seq2SeqEncoder (map [v1, .., vn] -> [w1, …, wn])
● ...and many more



"I want to try 

using BERT 

vectors instead 

of GloVe 

vectors"



"Oh, great, now I'm 

going to make lots 

of changes to my 

code and maintain 

all these different 

versions so that my 

results are 

reproducible"

"I'll just make a 

new config file for 

the BERT version!"



    "token_indexers": {
      "tokens": {
        "type": "single_id",
        "lowercase_tokens": true
      },

      "token_characters": {
        "type": "characters",
        "min_padding_length": 3
      }
    }

    "token_indexers": {
      "bert": {
          "type": "bert-pretrained",
          "pretrained_model": std.extVar("BERT_VOCAB"),
          "do_lowercase": false,
          "use_starting_offsets": true
      },
      "token_characters": {
        "type": "characters",
        "min_padding_length": 3
      }
    }



   "text_field_embedder": {

     "token_embedders": {
       "tokens": {
           "type": "embedding",
           "embedding_dim": 50,
           "pretrained_file": "/path/to/glove.tar.gz",
           "trainable": true
       },
       "token_characters": {
           "type": "character_encoding",
           "embedding": {
               "embedding_dim": 16
           },
           "encoder": {
               "type": "cnn",
               "embedding_dim": 16,
               "num_filters": 128,
               "ngram_filter_sizes": [3],
               "conv_layer_activation": "relu"
           }
         }
      },
   },

   "text_field_embedder": {
       "allow_unmatched_keys": true,
       "embedder_to_indexer_map": {
           "bert": ["bert", "bert-offsets"],
           "token_characters": ["token_characters"],
       },
       "token_embedders": {
           "bert": {
               "type": "bert-pretrained",
               "pretrained_model": std.extVar("BERT_WEIGHTS")
           },
           "token_characters": {
               "type": "character_encoding",
               "embedding": {
                   "embedding_dim": 16
               },
               "encoder": {
                   "type": "cnn",
                   "embedding_dim": 16,
                   "num_filters": 128,
                   "ngram_filter_sizes": [3],
                   "conv_layer_activation": "relu"
               }
           }
       }
   },



"Want to Reproduce My Results?"

● create a virtual environment
● clone my GitHub repo and pip install its dependencies

○ including a specific version of AllenNLP
○ which includes a specific version of PyTorch

● each experiment has its own JSON configuration file
● allennlp train specific_experiment.json -s /tmp/results



Reproducibility and Beaker



What is Beaker?

● Kubernetes-based platform for rapid 
experimentation

● Specify experiments as Docker containers + 
config.yaml

● Request GPUs + Memory + etc
● Upload or mount existing datasets
● Track results
● (Currently runs on GKE, working on a "runs 

on your machines" version)
● Mostly internal-only for now (sorry)



What is Beaker?

beaker experiment run \

  --name wordcount-moby \

  --blueprint examples/wordcount \

  --source examples/moby:/input \

  --result-path /output



description

logs

metrics

parameters

docker image

datasets

cost



Organize Experiments Into Groups

ideally you'd give 
them more 
descriptive 

names, though



Beaker and Reproducibility

● old code + new data => upload the dataset, reuse the blueprint
● new code + old data => create the blueprint, point at existing dataset
● want to see previous results?

○ inputs + logs + outputs stored "forever"
○ record of every experiment run + results
○ share with a link



To Sum Up

● Reproducibility is important for more 
than the obvious reasons

● Your choices of tools and processes 
make reproducibility easier or harder

● There are several ways that notebooks 
make reproducibility harder

● Search out tools that make 
reproducibility easier

● Adopt processes that make 
reproducibility easier



A Few Related Presentations

● I Don't Like Notebooks

The talk that launched a thousand arguments. Heavy on the memes.

● Writing Code for NLP Research

EMNLP 2018 tutorial from me + Matt Gardner + Mark Neumann, goes 
much deeper into "what good research code looks like"

● How Becoming Not a Data Scientist Made Me a Better Data Scientist

Explores some similar themes in the context of "why data scientists 
should care about software engineering best practices"

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit?usp=sharing
https://docs.google.com/presentation/d/17NoJY2SnC2UMbVegaRCWA7Oca7UCZ3vHnMqBV4SUayc/edit?usp=sharing
https://docs.google.com/presentation/d/1jk-qrVKCb0-P9P4BVzH75gcVhp5Dy5n1CP_gKnHMNY0/edit?usp=sharing


Any questions?

me: @joelgrus

AI2: allenai.org

AllenNLP: allennlp.org

Beaker*: beaker.org

will tweet out slides from

@joelgrus and @ai2_allennlp

https://twitter.com/joelgrus
https://allenai.org/
https://allennlp.org/
https://beaker.org

