
If Not Notebooks, Then What?

Thoughts on notebooks and reproducibility

AAAI 2019 Workshop on Reproducible AI

Joel Grus
@joelgrus

https://www.idi.ntnu.no/~odderik/RAI-2019/

About Me

● Research engineer on the AllenNLP team
● Previously SWE@Google, Data Science@VoloMetrix, …
● Author of Data Science from Scratch
● Co-host of "Adversarial Learning" podcast
● The "Fizz Buzz in Tensorflow" guy
● Started "the first notebook war"

https://allennlp.org/
http://shop.oreilly.com/product/0636920033400.do
http://adversariallearning.com
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

What is a Research Engineer?

● I'm not a researcher
○ (although I can pretend to be one)

● I'm an engineer who cares deeply about
research

● My job is to help researchers be successful
○ by building tools for them
○ by advocating best practices
○ and also by collaborating with them

● And so my job involves thinking a lot about
reproducibility

Outline

● Why reproducibility?
● Why not notebooks?
● If not notebooks, then what?
● Reproducibility and AllenNLP
● Reproducibility and Beaker

Why Reproducibility?

I take a somewhat expansive

view of the role of

reproducibility in science

Reproducibility Helps With Correctness

If no one ever runs your code but you, it might be wrong

Reproducibility Protects

Against Bad Actors

● Certainly you would never try to
publish fraudulent research, but
what about your bitter rival?

● (Hopefully this is a minor
consideration.)

Reproducibility Makes It Easy to Try New Datasets

● Maybe your model works great on a different dataset
● Maybe it works terribly on a different dataset
● Hard datasets help move AI forward

Reproducibility Makes It Easy to Try New Tasks

You haven't thought of (or tried) every way your model could be used

Reproducibility Enables Strong Baselines

Wouldn't you like your model to be the
standard by which new models are judged?

Reproducibility Is Necessary For Extensibility

"you can't stand on the shoulders of giants if they keep their shoulders private"

Extensibility Leads to Progress

Extensibility Leads to Progress

attention

transformer

BERT

?

Fundamental Premise:

The tools you choose and the processes you

adopt can make reproducibility either a lot

harder or a lot easier.

Why Not Notebooks?

What are Jupyter Notebooks?

● Computational environment
that uses the lab notebook as
a metaphor

● Easy to mix marked-up text,
executable code, results,
visualizations, interactive
widgets, and so on

● Very popular with data
scientists, less so (?) with
researchers

● Often promoted as beneficial
for "reproducibility"

How Could Someone Not Like Notebooks?

● I had a lot of complaints (but also some positives and suggestions)
● It's a very comprehensive talk, you should check it out
● A lot of the complaints were around user-unfriendliness + confusingness
● One dislike was particularly relevant to this workshop:

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit?usp=sharing

Notebooks for Reproducibility?

Code That's in Notebooks Is Hard to Re-Run

Notebooks Allow Out-of-Order Execution

unless you are very
disciplined, you may
not even be able to
reproduce your work

Notebooks Hard-Code Their Parameters

Notebooks Don't Help You Enforce Dependencies

Notebooks Complicate Collaboration

Collaboration is a Forcing

Function for Reproducibility

Notebooks Don't Play Well With Source Control

distributed source control is the de
facto way to collaborate on coding
projects

Notebooks Lock You Into

Using Notebooks

Notebooks Conflate "Library" Code and "Experiment" Code

Notebooks

are a recipe

for poorly

factored

code

Notebooks Frustrate Software-Engineering

Best Practices

Software Engineering?

● You may not think of your AI
experiments as software engineering

● But I do
● And you should!
● I sometimes give talks on "why data

scientists should care about software
engineering best practices"

● This is sort of my "why AI researchers
should care about software
engineering best practices" variant

Notebooks Complicate Code Reviews

● Code reviews are an early
bulwark against incorrect
code (and hence incorrect
science)

● Code reviews help you grow
as a coder and as a scientist

Notebooks Make it Hard to Unit Test

load data
maybe assert something

train model
maybe assert something

get results
maybe assert something
save results

ai.ipynb

● Unit tests assure you that small pieces
of your logic are correct

● Unit tests make it easy to iterate by
running your model end-to-end on
small datasets

● Unit tests make it safe to refactor your
code

● Unit tests are small working examples
● Yes, you can put asserts in your

notebook, but you want to be able to
run your tests without running your
experiment

Yeah, but what

do unit tests for

AI experiments

even look like?

Unit Tests for AI Experiments

tiny known dataset

check that model runs

check that output has the right fields

check that output has the right shape

check that output has reasonable values

Notebooks Make Science Harder

Notebooks Are Hard to Parametrize

Notebooks Lump

Together Code and Data

● Often you'll run many experiments
with the same code but different
parameters

● For analysis it can be good to have
your results mixed in

● For science you want to aggregate
results across experiments

● For science you want your results
to have a life of their own

Notebook Code Can't

Easily Be Built On

In Short

● "Notebooks as a source of reproducibility" presupposes a static view of AI
as a science:
○ "I did some science, now here is an artifact containing the code and data"

● I'm advocating for a dynamic view:
○ "I did some science, now you do some more science on top of it"
○ Which is the kind of reproducibility that moves AI forward

If Not Notebooks, Then What?

Code in Modules

models/crf_tagger.py

class CrfTagger(Model):
 """
 The ``CrfTagger`` encodes a sequence of text with a ``Seq2SeqEncoder``,
 then uses a Conditional Random Field model to predict a tag for each token in the sequence.
 def __init__(self, vocab: Vocabulary,
 text_field_embedder: TextFieldEmbedder,
 encoder: Seq2SeqEncoder,
 label_namespace: str = "labels",
 feedforward: Optional[FeedForward] = None,
 label_encoding: Optional[str] = None,
 include_start_end_transitions: bool = True,
 constrain_crf_decoding: bool = None,
 calculate_span_f1: bool = None,
 dropout: Optional[float] = None,
 verbose_metrics: bool = False,
 initializer: InitializerApplicator = InitializerApplicator(),
 regularizer: Optional[RegularizerApplicator] = None) -> None:
 super().__init__(vocab, regularizer)
 ...

Unit Tests

● develop your model on a tiny test set
● iterate
● run the tests frequently

The best time to find

mistakes is before

you run your

experiments!

Be Explicit About Your Dependencies

ESSENTIAL LIBRARIES FOR MAIN FUNCTIONALITY

This installs Pytorch for CUDA 8 only. If you are using a newer version,
please visit http://pytorch.org/ and install the relevant version.
For now AllenNLP works with both PyTorch 1.0 and 0.4.1. Expect that in
the future only >=1.0 will be supported.
torch>=0.4.1

Parameter parsing (but not on Windows).
jsonnet==0.10.0 ; sys.platform != 'win32'

Adds an @overrides decorator for better documentation and error checking when using subclasses.
overrides

Used by some old code. We moved away from it because it's too slow, but some old code still
imports this.
nltk

Mainly used for the faster tokenizer.
spacy>=2.0,<2.1

Make It Easy To Vary Parameters

export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
export GLUE_DIR=/path/to/glue

python run_classifier.py \
 --task_name=MRPC \
 --do_train=true \
 --do_eval=true \
 --data_dir=$GLUE_DIR/MRPC \
 --vocab_file=$BERT_BASE_DIR/vocab.txt \
 --bert_config_file=$BERT_BASE_DIR/bert_config.json \
 --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
 --max_seq_length=128 \
 --train_batch_size=32 \
 --learning_rate=2e-5 \
 --num_train_epochs=3.0 \
 --output_dir=/tmp/mrpc_output/

Consider Docker Images

● Create container with OS +
environment + code (+ data?)

● Can share and anyone can run
(in theory)

● Build up step by step with
smart caching when you
change it

$ docker run -it --entrypoint /bin/bash allennlp/allennlp:v0.8.0

root@7d1f120a83e9:/stage/allennlp# echo '{"sentence": "Did Uriah honestly think he could beat the
game in under three hours?"}' | allennlp predict
https://s3-us-west-2.amazonaws.com/allennlp/models/srl-model-2018.05.25.tar.gz -

input: {"sentence": "Did Uriah honestly think he could beat the game in under three hours?"}
prediction: {"verbs": [{"verb": "Did", "description": "[V: Did] Uriah honestly think he could beat
the game in under three hours ?", "tags": ["B-V", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"O", "O", "O"]}, {"verb": "think", "description": "Did [ARG0: Uriah] [ARGM-MNR: honestly] [V:
think] [ARG1: he could beat the game in under three hours] ?", "tags": ["O", "B-ARG0",
"B-ARGM-MNR", "B-V", "B-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1", "I-ARG1",
"I-ARG1", "I-ARG1", "O"]}, {"verb": "could", "description": "Did Uriah honestly think he [V: could]
beat the game in under three hours ?", "tags": ["O", "O", "O", "O", "O", "B-V", "O", "O", "O", "O",
"O", "O", "O", "O"]}, {"verb": "beat", "description": "Did Uriah honestly think [ARG0: he]
[ARGM-MOD: could] [V: beat] [ARG1: the game] [ARGM-TMP: in under three hours] ?", "tags": ["O",
"O", "O", "O", "B-ARG0", "B-ARGM-MOD", "B-V", "B-ARG1", "I-ARG1", "B-ARGM-TMP", "I-ARGM-TMP",
"I-ARGM-TMP", "I-ARGM-TMP", "O"]}], "words": ["Did", "Uriah", "honestly", "think", "he", "could",
"beat", "the", "game", "in", "under", "three", "hours", "?"]}

Provide Instructions

Reproducibility and AllenNLP

What is AllenNLP?

Programming to Higher-Level Abstractions

models/crf_tagger.py

class CrfTagger(Model):
 """
 The ``CrfTagger`` encodes a sequence of text with a ``Seq2SeqEncoder``,
 then uses a Conditional Random Field model to predict a tag for each token in the sequence.
 def __init__(self, vocab: Vocabulary,
 text_field_embedder: TextFieldEmbedder,
 encoder: Seq2SeqEncoder,
 label_namespace: str = "labels",
 feedforward: Optional[FeedForward] = None,
 label_encoding: Optional[str] = None,
 include_start_end_transitions: bool = True,
 constrain_crf_decoding: bool = None,
 calculate_span_f1: bool = None,
 dropout: Optional[float] = None,
 verbose_metrics: bool = False,
 initializer: InitializerApplicator = InitializerApplicator(),
 regularizer: Optional[RegularizerApplicator] = None) -> None:
 super().__init__(vocab, regularizer)
 ...

Declarative Configuration

 "model": {
 "type": "crf_tagger",
 "label_encoding": "BIOUL",
 "dropout": 0.5,
 "include_start_end_transitions": false,
 "text_field_embedder": {
 "token_embedders": {
 "tokens": {
 "type": "embedding",
 "embedding_dim": 50,
 "pretrained_file": "/path/to/glove.txt.gz",
 "trainable": true
 },
 "elmo":{
 "type": "elmo_token_embedder",
 "options_file": "/path/to/elmo/options.json",
 "weight_file": "/path/to/elmo/weights.hdf5",
 "do_layer_norm": false,
 "dropout": 0.0
 },

 "token_characters": {
 "type": "character_encoding",
 "embedding": {
 "embedding_dim": 16
 },
 "encoder": {
 "type": "cnn",
 "embedding_dim": 16,
 "num_filters": 128,
 "ngram_filter_sizes": [3],
 "conv_layer_activation": "relu"
 }
 }
 }
 },
 "encoder": {
 "type": "lstm",
 "input_size": 1202,
 "hidden_size": 200,
 "num_layers": 2,
 "dropout": 0.5,
 "bidirectional": true
 },
 "regularizer": [
 [
 "scalar_parameters",
 {
 "type": "l2",
 "alpha": 0.1
 }
]
]
 },

Declarative Configuration

JSON
blob

CrfTagger.__init__

some voodoo
involving

inspect.getfullarg
spec and type
annotations

CrfTagger(
 (text_field_embedder): BasicTextFieldEmbedder(
 (token_embedder_token_characters):
TokenCharactersEncoder(
 (_embedding): TimeDistributed(
 (_module): Embedding()
)
 (_encoder): TimeDistributed(
 (_module): PytorchSeq2VecWrapper(
 (_module): GRU(25, 80, num_layers=2,
batch_first=True, dropout=0.25, bidirectional=True)
)
)
)
 (token_embedder_tokens): Embedding()
)
 (encoder): PytorchSeq2SeqWrapper(
 (_module): GRU(210, 300, num_layers=2,
batch_first=True, dropout=0.5, bidirectional=True)
)
 (tag_projection_layer): TimeDistributed(
 (_module): Linear(in_features=600, out_features=4,
bias=True)
)
 (crf): ConditionalRandomField()
)

Command-Line Tools

Interactive Demos and Visualization of Model Internals

Higher-Level NLP Abstractions as Library Primitives

● Field + Instance (nice representation of examples)
○ question_field = TextField("What is the …", token_indexers)

○ instance = Instance({"question": question_field, "passage": passage_field)

● Vocabulary (map word <-> index, label <-> index, etc)
● TokenIndexer (map token -> [index1,, indexn]

○ could be one per word
○ could be one per character
○ could be one per wordpiece

● TokenEmbedder (map indices -> embedding vectors)
● Seq2VecEncoder (map [v1, …, vn] -> w)
● Seq2SeqEncoder (map [v1, .., vn] -> [w1, …, wn])
● ...and many more

"I want to try

using BERT

vectors instead

of GloVe

vectors"

"Oh, great, now I'm

going to make lots

of changes to my

code and maintain

all these different

versions so that my

results are

reproducible"

"I'll just make a

new config file for

the BERT version!"

 "token_indexers": {
 "tokens": {
 "type": "single_id",
 "lowercase_tokens": true
 },

 "token_characters": {
 "type": "characters",
 "min_padding_length": 3
 }
 }

 "token_indexers": {
 "bert": {
 "type": "bert-pretrained",
 "pretrained_model": std.extVar("BERT_VOCAB"),
 "do_lowercase": false,
 "use_starting_offsets": true
 },
 "token_characters": {
 "type": "characters",
 "min_padding_length": 3
 }
 }

 "text_field_embedder": {

 "token_embedders": {
 "tokens": {
 "type": "embedding",
 "embedding_dim": 50,
 "pretrained_file": "/path/to/glove.tar.gz",
 "trainable": true
 },
 "token_characters": {
 "type": "character_encoding",
 "embedding": {
 "embedding_dim": 16
 },
 "encoder": {
 "type": "cnn",
 "embedding_dim": 16,
 "num_filters": 128,
 "ngram_filter_sizes": [3],
 "conv_layer_activation": "relu"
 }
 }
 },
 },

 "text_field_embedder": {
 "allow_unmatched_keys": true,
 "embedder_to_indexer_map": {
 "bert": ["bert", "bert-offsets"],
 "token_characters": ["token_characters"],
 },
 "token_embedders": {
 "bert": {
 "type": "bert-pretrained",
 "pretrained_model": std.extVar("BERT_WEIGHTS")
 },
 "token_characters": {
 "type": "character_encoding",
 "embedding": {
 "embedding_dim": 16
 },
 "encoder": {
 "type": "cnn",
 "embedding_dim": 16,
 "num_filters": 128,
 "ngram_filter_sizes": [3],
 "conv_layer_activation": "relu"
 }
 }
 }
 },

"Want to Reproduce My Results?"

● create a virtual environment
● clone my GitHub repo and pip install its dependencies

○ including a specific version of AllenNLP
○ which includes a specific version of PyTorch

● each experiment has its own JSON configuration file
● allennlp train specific_experiment.json -s /tmp/results

Reproducibility and Beaker

What is Beaker?

● Kubernetes-based platform for rapid
experimentation

● Specify experiments as Docker containers +
config.yaml

● Request GPUs + Memory + etc
● Upload or mount existing datasets
● Track results
● (Currently runs on GKE, working on a "runs

on your machines" version)
● Mostly internal-only for now (sorry)

What is Beaker?

beaker experiment run \

 --name wordcount-moby \

 --blueprint examples/wordcount \

 --source examples/moby:/input \

 --result-path /output

description

logs

metrics

parameters

docker image

datasets

cost

Organize Experiments Into Groups

ideally you'd give
them more
descriptive

names, though

Beaker and Reproducibility

● old code + new data => upload the dataset, reuse the blueprint
● new code + old data => create the blueprint, point at existing dataset
● want to see previous results?

○ inputs + logs + outputs stored "forever"
○ record of every experiment run + results
○ share with a link

To Sum Up

● Reproducibility is important for more
than the obvious reasons

● Your choices of tools and processes
make reproducibility easier or harder

● There are several ways that notebooks
make reproducibility harder

● Search out tools that make
reproducibility easier

● Adopt processes that make
reproducibility easier

A Few Related Presentations

● I Don't Like Notebooks

The talk that launched a thousand arguments. Heavy on the memes.

● Writing Code for NLP Research

EMNLP 2018 tutorial from me + Matt Gardner + Mark Neumann, goes
much deeper into "what good research code looks like"

● How Becoming Not a Data Scientist Made Me a Better Data Scientist

Explores some similar themes in the context of "why data scientists
should care about software engineering best practices"

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit?usp=sharing
https://docs.google.com/presentation/d/17NoJY2SnC2UMbVegaRCWA7Oca7UCZ3vHnMqBV4SUayc/edit?usp=sharing
https://docs.google.com/presentation/d/1jk-qrVKCb0-P9P4BVzH75gcVhp5Dy5n1CP_gKnHMNY0/edit?usp=sharing

Any questions?

me: @joelgrus

AI2: allenai.org

AllenNLP: allennlp.org

Beaker*: beaker.org

will tweet out slides from

@joelgrus and @ai2_allennlp

https://twitter.com/joelgrus
https://allenai.org/
https://allennlp.org/
https://beaker.org

