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Talk Overview

Reproducibility matters for scientific researchers, but does it 
matter for practitioners?

Designing ML development tools that users will love
(and getting reproducibility in the process)

→ Yes, in fact it matters more!



My Background

Research on infrastructure for 
usable machine learning

Cloud platform for large-scale
data analytics and ML



ML development is harder than 
traditional software development



Traditional Software Machine Learning

Goal: optimize a metric (e.g., CTR)
• Constantly experiment to improve it

Quality depends on input data, 
training method, tuning params

Compare many libraries, models & 
algorithms for the same task

Goal: meet a functional 
specification

Quality depends only on code

Typically pick one software stack



Production ML is Even Harder

Data Prep

Training

Deployment

Raw Data

ML apps must be fed new data 
to keep working

Design, retraining & inference 
done by different people

Software must work across 
many environments

ML ENGINEER

MOBILE DEVELOPER

DATA
ENGINEER

WEB DEVELOPER



“I build 100s of models/day to lift revenue, using any library: 
MLlib, PyTorch, R, etc. There’s no easy way to see what data 
went in a model from a week ago and rebuild it.”

-- Chief scientist at ad tech firm

Example



Example

“Our company has 100 teams using ML worldwide. We can’t 
share work across them: when a new team tries to run some 
code, it doesn’t even give the same result.”

-- Large consumer electronics firm



Traditional Software Development

Became dramatically faster through dev lifecycle tools
• Version control, unit tests, logging, code review, etc

Tools useful enough that developers use them by default
• Even when working alone on a toy project!

How can we do the same for machine learning?



Open source platform to manage ML development
• Works with any ML library, algorithm, language, etc
• Key principle: “API-first” design (use with any code you already have)

Tackles three key problems:
• Experiment tracking: MLflow Tracking
• Reusable workflows: MLflow Projects
• Model packaging: MLflow Models



Model Development without MLflow
data   = load_text(file)
ngrams = extract_ngrams(data, N=n)
model  = train_model(ngrams,

learning_rate=lr)
score  = compute_accuracy(model)

print(“For n=%d, lr=%f: accuracy=%f”
% (n, lr, score))

pickle.dump(model, open(“model.pkl”))
What if I tune this 
other parameter?
What if I upgrade 

my ML library?

What version of 
my code was this 

result from? 🤯



$ mlflow ui

Experiment Tracking with MLflow
data   = load_text(file)
ngrams = extract_ngrams(data, N=n)
model  = train_model(ngrams,

learning_rate=lr)
score  = compute_accuracy(model)

mlflow.log_param(“data_file”, file)
mlflow.log_param(“n”, n)
mlflow.log_param(“learning_rate”, lr)
mlflow.log_metric(“score”, score)

mlflow.sklearn.log_model(model)
Track parameters, metrics,
output files & code version



MLflow UI: Inspecting Runs



MLflow UI: Comparing Runs



MLflow Tracking: Extensibility

Using a notebook? Log its final state as HTML

Using TensorBoard? Record the logs for each run

Etc.



MLflow Projects: Reusable Workflows

“How can I split my workflow into modular steps?”

“How do I run this workflow that someone else wrote?”



MLflow Projects

my_project/
├── MLproject
│ 
│  
│ 
│ 
│
├── conda.yaml
├── main.py
└── model.py

...

conda_env: conda.yaml

entry_points:
main:

parameters:
training_data: path
lr: {type: float, default: 0.1}

command: python main.py {training_data} {lr}

$ mlflow run git://<my_project>

mlflow.run(“git://<my_project>”, ...)

Simple packaging format for code + dependencies



Composing Projects

r1 = mlflow.run(“ProjectA”, params)

if r1 > 0:
r2 = mlflow.run(“ProjectB”, …)

else:
r2 = mlflow.run(“ProjectC”, …)

r3 = mlflow.run(“ProjectD”, r2)

Combine projects into arbitrary workflows



MLflow Models: Packaging Models

“How can I reliably pass my model to production apps?”



Model Format

ONNX Flavor
Python Flavor

Model Logic

Batch & Stream Scoring

REST Serving

MLflow Models: Packaging Models

Packaging Format

. . .

Evaluation & Debug Tools

LIME
TCAV

Packages arbitrary code (not just model weights)



Example MLflow Model
my_model/
├── MLmodel
│ 
│  
│ 
│ 
│
└── estimator/

├── saved_model.pb
└── variables/

...

Usable by tools that understand
TensorFlow model format

Usable by any tool that can run
Python (Docker, Spark, etc!)

run_id: 769915006efd4c4bbd662461
time_created: 2018-06-28T12:34
flavors:

tensorflow:
saved_model_dir: estimator
signature_def_key: predict

python_function:
loader_module: mlflow.tensorflow

$ mlflow pyfunc serve -r <run_id>

spark_udf = pyfunc.spark_udf(<run_id>)



MLflow Project Status

Fast-growing open source community
• 70 contributors from >30 companies since we started in June 2018
• External contributions: R API, Docker support, and integrations with 

PyTorch, H2O, Docker, GCP & more

Try it out:  pip install mlflow



74%

82%

62%

50%

55%

43%

Creating a standard process to build and 
maintain ML applications

Tracking and sharing results during 
experimentation

Tracking the performance of models in 
production

Enabling reproducible runs in different 
hardware environments

Packaging models for easy deployment to 
production

Ability to deploy  same model to multiple 
platforms

“Which MLflow use cases are important to you?”



Conclusion

Better ML development tools can improve reproducibility while 
also improving productivity for ML engineers

Plenty of need for new tools in the industry

Learn about MLflow at mlflow.org


