Shrinking the Genotype: L-systems for EHW 7

Pauline C. Haddow!, Gunnar Tufte! and Piet van Remortel?

! The Norwegian University of Science and Technology
Department of Computer and Information Science
O.S. Bragstadsplass 2E, 7491 Trondheim, Norway
2 Vrije Universiteit Brussel
COMO - Department of Computer Science
Pleinlaan 2, 1050 Brussels, Belgium
pauline@idi.ntnu.no, gunnart@idi.ntnu.no,pvremort@vub.ac.be

Abstract. Inspired by biological development where from a single cell,
a complex organism can evolve, we are interested in finding ways in
which artificial development may be introduced to genetic algorithms so
as to solve our genotype challenge. This challenge may be expressed in
terms of shrinking the genotype. We need to move away from a one-
to-one genotype-phenotype mapping so as to enable evolution to evolve
large complex electronic circuits. We present a first case study where we
have considered the mathematical formalism L-systems and applied their
principles to the development of digital circuits. Initial results, based on
extrinsic evolution, indicate that our representation based on L-systems
provides an interesting methodology for further investigation. We also
present our implementation platform for intrinsic evolution with devel-
opment, enabling on-chip evaluation of grown solutions.

1 Introduction

The field of evolvable hardware promises many possibilities within optimisation
and exploration of new circuit designs apart from one missing factor — scala-
bility. Scalability is the property of a method or solution to keep on performing
acceptably when the problem size increases. In our case, acceptable performance
may be said to be a non-exponential resource increase and performance decrease.
Our problem domain is the evolution of electronic circuits. We have seen in recent
years that small electronic circuits may be evolved successfully [1-4]. However,
complex circuits are still beyond our reach.

The scalability problem is due to the resource-greedy nature of evolutionary
techniques. Generally in EHW, a one-to-one mapping has been chosen for the
genotype-phenotype transition. This means that the genotype needs to include
all the information required for the phenotype i.e. configuration data to program
the device. The larger the circuit to be evolved, the more logic and routing
information required. As the complexity of the genotype increases, so increases
the computational and storage requirements.
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A solution to this problem is to shrink the genotype in some way. This may
be stated as the genotype challenge, finding new forms of representation for
evolving complex circuits. In this work we are interested in investigating ways
in which development may be combined with genetic algorithms so as to enable
smaller genotypes to evolve complex circuit designs.

Turning to biology, the biological development stages of pattern formation,
morphogenesis, cell differentiation and growth (see section 3) provide us with
pointers as to the principles that should be included in a design methodology
for artificial development. Many alternative methodologies are possible. As a
first case study, we consider L-systems [5] which may be said to be based on
differentiation and growth through rules for changes and growth. Our goal is
to adapt L-systems to developing digital circuits within the constraints of our
technology, a virtual EHW FPGA [6] and then map our virtual EHW FPGA to
Xilinx Virtex. A genetic algorithm will be used in combination with L-systems
to evolve a final solution using intrinsic evolution. The work presented herein is
a first attempt at using L-systems in combination with a genetic algorithm to
achieve growth on a digital platform.

The paper is laid out as follows. In section 2 we introduce other work in the
field and our motivation for selecting the given representation. Since much of
this work is focused on biological development we give a brief introduction to
biological development in section 3. L-systems are described in section 4. Our
virtual EHW FPGA is briefly described in section 5. In section 6, we discuss and
present our adaptation of L-systems to digital circuits. Section 7 presents our
experimental platform and section 8 presents our initial results. Ongoing and
further work is described in section 9.

2 Background and Motivation

To solve the genome complexity issue and enable evolution of large complex cir-
cuits, the need to move away from a one-to-one genotype-phenotype mapping is
becoming generally accepted. We can expect newer features such as incremental
evolution [7],’divide and conquer’ [8] or growth [9] to become more common in
the work within the field of EHW so as to attack the representation problem.

In the past two to three years, researchers in the field of both software and
hardware evolution have begun to look again at biology to gain better insights
into improving existing techniques.

Inspired by biological development before differentiation, a new family of
fault tolerant FPGAs are being developed at York [10]. Each cell can take over
the functionality of a faulty cell as it possesses a complete copy of the ”genome”.
To achieve the degree of flexibility required when any cell can have any function,
reconfigurable technology may be said to be a requirement. This is especially
the case since the cellular structure varies as a function of the application [11].

Cellular encoding [12] is a well-defined formal approach based on biological
development. This approach may be used to build complex systems by encoding



the cell types, timing of cell division and changes in links involving the cell [13]
This methodology is a variation of genetic programming [14].

The work of Mjolsness et al [15] focuses on software modelling of morpho-
genesis in plants to better understand the morphogenesis stage of development.
The long term goal of this work is not just single electronic circuits but more
towards much more complex systems such as self-sustaining space industry.

One of the reasons for this interest in biology is due to a move from optimi-
sation to exploration [16]. That is from improving existing solutions to finding
novel solutions. If we want to explore for novel solutions one approach is to pro-
vide knowledge-poor representations and give evolution a greater area of freedom
to explore for solutions [16]. In a knowledge-poor representation we allow evolu-
tion to find solutions that we haven’t thought of ourselves. Using knowledge-rich
representations we lead evolution to solutions where we think they can be found
and in this way limit the search space of evolution to our own specified search
space. Using context insensitive L-systems for the representation may be said to
be a form of knowledge-poor representation.

To enable growth, one solution is to follow the working of DNA and combine
rules into our representation. That is, the genotype includes rules telling how,
where and which gene i.e. component in a component representation, should
grow to develop a solution [17]. In DNA, instructions fire and suppress other
instructions in an increasingly more complex network of activations. L-systems
are a mathematical formalism based on this concept.

In this work our goal is to shrink the genotype. Shrinking the genotype effec-
tively moves the complexity problem over to the genotype-phenotype mapping
thus increasing the complexity of the mapping. However, in [6], we proposed a
solution to this complex mapping problem which includes splitting the mapping
process into two stages using a virtual EHW FPGA as the bridge between the
genotype and the phenotype. The mapping from the virtual EHW FPGA to a
physical FPGA is a simpler mapping as both architectures are based on FPGA
principles. The development process itself is the first stage of the mapping. In-
stead of developing to our complex organism (phenotype) we are developing to

a simpler organism the intertype i.e. the configuration data for our virtual EHW
FPGA.

3 Biological Development

Biological development enables complex organisms to be built in a robust way.
What are the features of this reliable system design?

An initial unit, a cell, holds the complete building plan (DNA). It is important
to note that this plan is generative — it describes how to build the system,
not what the system will look like. Units have internal state, can communicate
locally, can move, spawn other units or die. Groups of units may also exhibit
group-wise behaviour i.e. a group state.



The global developmental stages from the zygote (fertilised egg) to the mul-
ticellular organism, although interdependent and not strictly sequential, may be
categorised as pattern formation; morphogenesis; cell differentiation and growth.

During pattern formation cells are organised in different regions according
to their cell types (set of cells with the same gene activity pattern) in order to
become distinct parts (body segments) of the eventual organism. One could say
that this is a group-wise change of state due to activation of certain codes after
local communication or reaction to globally available signals.

Some cells may change shape (expand/contract) exerting a force on other
cells. This process is termed morphogenesis and is crucial in the formation of
general shape in the organism.

The differentiation process is where cells become structurally and function-
ally different from each other. This includes both intra-cellular factors (cell lin-
eage) and inter-cellular interactions (cell induction).

The final step is growth. This is the true enlarging of the almost completely
formed organism. This is achieved by multiple cell divisions and expansions.
During growth, programmed cell death or apoptosis can help generate special
structures like fingers and toes from continuous sheets of tissue.

4 L-systems

An L-system is a mathematical formalism used in the study of biological de-
velopment. One of the main application areas is the study of plant morphology.
Phenotypes are branching structures attained through the derivation and graph-
ical interpretation of the development process, described by a set of rules. The
rules describe how the development should grow and specialise and interpreta-
tion of the development itself enables morphogenism to be studied.

An L-system is made up of an alphabet, a number of ranked rules and a start
string or axiom. Applying a rule means finding targets within the search string
which match the rule condition. This condition is a pattern on the left hand side
(LHS) of the rule. This condition is also a string and the string is made up of
elements from the alphabet. Firing the rule means replacing the targets, where
possible, with the result of the rule i.e. the right hand side (RHS) of the rule. A
more complete description of rule replacement may be found in section 6.2.

Firing of the rules continues until there are no targets found for any rule
or until the process is interrupted. In the context of genetic algorithms, the
axiom and the associated rules are the genotype and the developed string is the
phenotype.

5 Virtual EHW FPGA - Sblock Architecture

The Virtual EHW FPGA contains blocks — sblocks, laid out as a symmetric
grid where neighbouring blocks touch one another. There is no external routing
between these blocks except for global clock lines. Input and output ports en-
able communication between touching neighbours. Each sblock neighbours onto



sblocks on its 4 sides. Each sblock consists of both a simple logic/memory com-
ponent and routing resources. The sblock may either be configured as a logic or
memory element with direct connections to its 4 neighbours or it may be config-
ured as a routing element to connect one or more neighbours to non-local nodes.
By connecting together several nodes as routing elements, longer connections
may be realised. A detailed description of the sblock architecture may found in
[6] and a discussion around evolution requirements leading to this structure are
given in [18].
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Fig. 1. Sblock Configuration : An OR gate (OR) and Routing from the West (R)

The main element of an sblock is its 5 input LUT. Configuration of the
sblock consists of configuring the response to the inputs of the LUT. With a
5-input LUT, 32 configuration bits are required. The sblocks are programmed
as either logic or routing blocks. Figure 1 illustrates the response for a logic —
two input OR gate (OR), and a routing — west router (R) sblock. For logic,
the output response programmed reflects the active inputs and the functionality
of the LUT. Looking at the LUT contents it can be seen that the OR gate of
the north and south inputs is achieved by ignoring the west and east inputs. For
routing, only one input is active, the others are don’t care. In the example given,
a west routing sblock is indicated as the response matches the west input.

The configuration string of the sblock architecture consists of all the sblock
configurations (32 bits), starting at the top left hand corner and crossing the
grid a column at a time. That is, for a 16x16 grid, the configuration string will
consist of 32x16x16 bits.

6 Development

As stated in section 2, a knowledge-poor representation may free evolution to
explore for solutions in a large search space. Our interpretation of knowledge-



poor in an L-system context, is that the rules do not have any chosen meaning
with respect to improving connectivity or logic. Also the rules are not context-
sensitive, relying on neighbouring sblock information. During evolution, the rules
themselves evolve.

The application of the rules to the developing intertype has been designed
with determinism in mind. As such, the individual representation provides a
reliable representation of the resulting phenotype.

We have added technology constraints where our intertype technology is the
virtual EHW FPGA. Following the principles of biological development and
treating an sblock as a cell, then growth steps are limited to 32 bit sblocks i.e.
a complete cell. As any other developing organism we wish to introduce shape
and our goal is the shape of an sblock architecture — a grid. Therefore growth
is limited to the grid size chosen for our virtual EHW FPGA. Change rules
both effect connectivity of the architecture — in biological terms communication
between cells, as well as functionality — specialisation.

6.1 Change and Growth Rules

There are two types of rules : change and growth rules. Figure 2 illustrates part
of the rule list used in the experiments of section 8. Change rules have a RHS
string of equivalent length to their LHS string. This is to avoid any growth due
to the application of a change rule. These rules are ranked from the most to the
least specific, as shown. The growth rules are given a random priority and ranked
accordingly. In this example change rules have been ranked before growth rules.
It may be noted that since these rules are random generated and then evolved,
more than one rule may have the same LHS. A don’t care feature, typical of
digital design, has been introduced to the change rule concept. Don’t cares are
represented by a 2, as shown. To retain determinism don’t cares are only allowed
on the LHS of a change rule.

21200110101212 -> 10110100001110
000012110111 -> 100001110011
010121121222  -> 100100010100

2220021022 -> 0111001110

01001 -> 00101110011101100110000000100111
10111 -> 10010111000111010101000110010110
01011 -> 10101100111111011101100100011100
10101 -> 01011110111001100100001011101010
00011 -> 11111011001000011001011001101010
01011 -> 10111101001010010011011110000101
01110 -> 11010001001000110101011001000001
01100 -> 11111100101100111000101010111001
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Fig. 2. Change and Growth Rules

Through change rules, the contents of one or more sblocks are changed. A
change rule targets the locations in the intertype where the string on the LHS
matches. Firing the rule means replacing this string at the different targets with



the RHS of the rule. The LHS string may be found within a single sblock or
overlapping two or more sblocks as illustrated in figure 3.
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Fig. 3. Applying Change and Growth Rules

As illustrated in figures 3, each sblock has an associated seed. If a seed in
the array matches the LHS of a growth rule then this means that the associated
sblock is a target for the growth rule. If there is no available space to grow
into i.e. the sblock is surrounded by configured sblocks, then there will be no
growth at this point. Firing the growth rule means placing an sblock in the
first free location according to the priority rule : north, south, west and then
east. In introducing a new seed it is important that determinism is maintained.
Therefore, the new seed is given the first 4 bits of the sblock which was targeted
and its bits 5 to 8 are used to replace its own seed. As shown, the new sblock is
configured by the RHS of the growth rule.

6.2 Rule Firing Sequence

To ensure fairness, we propose firing the rules in batches. The rules are still
ordered from the most to the least specific but all rules will have a chance of
firing before a given rule can fire again.

Figure 4 illustrates this firing sequence. Once any rule in the batch has fired
on a target then no other rule can fire on the same target area. As such, these
target areas are reserved for the remainder of the current firing batch, as il-
lustrated in what is termed the update string. The default value of the update
string is the configuration of the input and output sblocks.

We assume, as shown, that rule 1 (the top ranked rule) has found targets
in the intertype i.e. matching strings to its LHS. However, checking the update
string, one of its targets can’t fire as the target overlaps an input sblock. The
rule fires on the other targets in the normal way by writing its RHS string over
the target bits at each target point. In addition, it sets the equivalent bits in
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the update string. Rule 2 finds 5 targets but only 2 are free. Again the rule fires
and sets the respective bits in the update string. The last rule of the ranked
list finds one target and therefore can fire on that target. The update string can
now be reset to its default value and the firing process continues beginning again
with the most specific rule. In the example illustrated in figure 2, growth rules
are ranked after change rules and therefore don’t effect the firing of the change
rules within a given batch. However, their effect will be seen at the next batch
where the update string will reflect the size of the grown intertype. The firing
process may be stopped either when there are no more rules to fire or when the

Fig. 4. Rule Firing Sequence

developed string meets some other chosen condition.

7 Experimental Platform
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Fig. 5. Platform for Intrinsic Evolution with Development

Figure 5 illustrates the workings of our experimental platform. The genetic
algorithm (GA) is implemented using GAlib. Our genotype may consist of one or



more 32 bit axioms and a ranked list of rules. The GA works on a population of
individuals where each individual consists of one or more axioms and the ranked
list of rules. Genetic operations applied to individuals affect both its axiom(s)
and its list of rules.

The individual is then placed in the fitness module in its genotype form, as
shown. To start the evaluation phase, the individual is sent to the development
process.

The development process is given the constraints of the required design.
These include the technology constraint — sblock grid size, and the design fea-
tures — the number and position of inputs and outputs. The sblocks specified in
the design features are protected from further changes during the development
process. The axiom(s) is allocated to an sblock location(s). The development
process may then begin firing rules, according to the method described in sec-
tion 6.2 and, as such, develop the genotype to the intertype string.

A simulator is available to generate fitness values based on the intertype
representation. This simulator enables initial studies of the interplay between
the L-system rules and the GA to be conducted at the intertype level. Fitness
values generated are fed back to the fitness module.

The next stage involves mapping the virtual sblock FPGA design (intertype)
to a circuit description for Xilinx Virtex FPGA (phenotype). The phenotype
mapping is a translation process from the configuration data expressed in the
intertype, to Virtex configuration data format. The intertype and the phenotype
are configured in columns. In the intertype each sblock’s 32 bits is a continuous
string, enabling interpretation and growth of the sblock architecture in 32 bit
blocks. However, in the Virtex configuration, configuration data is split into
frames where configuration of a single CLB is split over several frames. Mapping
involves translation between these two formats. In addition, all outputs from the
mapped sblock grid are routed to their respective edges so as to be available on
the Virtex pads.

To down-load the configuration data to our Virtex chip we have tested out
two solutions using Xilinx interfaces. The first is a serial configuration using
the USB port of the PC, through Xilinx’s multilink port. The second, which is
slightly faster uses a JTAG parallel cable.

For fitness evaluation we need feedback of fitness values from the implemented
phenotype. The fixed location of the inputs and outputs during the development,
process means that test vectors may be applied and responses monitored. A
number of internal probes on the Virtex chip are also available to provide ad-
ditional information for fitness evaluation. Responses are fed through the logic
analyser, to generate fitness values for fitness evaluation.

8 Experimentation and Evaluation

The experimental goal may be expressed as follows. The ”circuit” has no specified
function. From a single axiom in the centre of the sblock grid, an sblock solution



consisting of north, south, west or east routing modules is grown. The maximum
grid size is 16 by 16.

The experiments were conducted using the development platform in extrinsic
evolution mode. That is, fitness values were generated from the simulator and
not from the Virtex chip itself. The GA parameters were as follows: population
300; roulette wheel selection with elitism; crossover 0.8 or 0 (2 cases); mutation
0.1 and maximum number of generations 150.

Although our goal is to evolve routing sblocks, fitness evaluation is also pro-
vided information about how close non-routing blocks are to routing blocks.
That is low-input sblocks are credited more than high input sblocks except for
the case of zero-input sblocks. These are given a low weighting as they do not
offer any routing possibilities. Fitness is expressed in equation 1.

F =15%xR+[6%(C — R)—(6%6in+5%5in+4x4in+3+3in+2%2in+1«N1lin)] (1)

where R is the number of routing sblocks; C'the number of configured sblocks;
Xin the number of sblocks with X inputs and NIin the number of inverter
sblocks. A pure router sblock has only one input and no inverter function.

Little growth was achieved in the initial experiments before the rules stopped
firing. To aid growth and ensure that firing continued, we both increased the ratio
of growth to change rules and made the change rules less specific i.e. shorter LHS.
A significant improvement in growth was seen but the results presented no clear
trend and seemed almost random.

Studying the results more closely, it was obvious that the present setup had
inherent epistasis properties. To further test our assumptions, we removed the
crossover operator which we believed was forcing the results to jump around
in the fitness landscape. As a result the population gradually found better and
better solutions and the average fitness improved gradually. Figure 6 illustrates
one of our runs where a typical pattern of fitness improvement is seen. Decreasing
number of inputs is illustrated from dark gray to white. White boxes with a
cross are router modules. Black boxes indicate either zero-input sblocks or non-
configured sblocks i.e. not grown. In general our solutions achieved 30 to 50%
routers in less than 100 generations. Limitations in our current simulator have
not allowed us to run enough generations to study further improvements.

The achievement of a trend towards increasing routing modules indicates
that the combination of the GA and L-systems can at least approach a solution,
although the solution achieved may be said to be closer to hill climbing than
evolution.

We discussed in section 2 the idea of a knowledge-poor representation. How-
ever, our experimental results indicate that our current representation might not
be as knowledge-poor as we intended. Figure 6 shows that most router blocks
achieved are west router blocks, indicating that west router blocks were favoured
over other router blocks. In an earlier set of experiments where zero-inputs were
omitted from the fitness calculation, zero-inputs were favoured over the poorly
weighted high-input blocks resulting in grids with a large number of zero-inputs.
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Fig. 6. Configured sblocks after 3, 23 and 57 generations

In both cases, our fitness function did not give special credit to the favoured
configurations. As such, this tendency towards a specific type of sblock must lie
in our representation i.e. in our rules

9 Ongoing and Future Work

As stated, the goal of our work is to shrink the genotype by using some form of
growth to an intertype representation and map to a phenotype representation
for fitness evaluation. The platform status is that we can test out individuals and
obtain detailed feedback for fitness evaluation. However, running generations for
a reasonable population is limited due to the slow Virtex interface. For intrinsic
experimentation a better interface is essential and is the focus of our attention
at present. The new interface will have the advantage that it will allow us to
take more control over placement and routing.

We have presented our representation as an adaptation of L-systems. A num-
ber of assumptions have been made based on how the development might proceed
and how the many different factors might interact. Issues such as, to name but
a few: how many axioms? resolving overlapping growths, where to grow from on
the chip, how to apply crossover to rules, seed size required and many more are
unresolved. As such, we are not in a position to say whether this representation
will lead to the possibility to evolve complex circuits. As such, much experimen-
tation is needed to investigate this representation further. However, intuitively
we feel that an L-system based representation is worth further investigation.
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