
Bridging the Genotype-Phenotype Mapping for Digital FPGAs

Pauline C. Haddow and Gunnar Tufte

The Norwegian University of Science and Technology
Department of Computer and Information Science
O. S. Bragstadsplass 2E, 7491 Trondheim, Norway

pauline@idi.ntnu.no, gunnart@idi.ntnu.no

Abstract

To solve the genome complexity issue and enable evolu-
tion of large complex circuits, the need to move away from a
one-to-one genotype/phenotype mapping is becoming gen-
erally accepted. This involves development of new forms
of representation with features such as growth. Shrinking
the size of the genotype in effect moves complexity from the
genotype representation to the genotype/phenotype map-
ping.

The field of digital evolvable hardware is relatively
young but already researchers have not only had to move
through different technology platforms i.e. 6200, 4000 and
Virtex series, but also evolution friendly features have dis-
appeared. A mass produced evolution friendly reconfig-
urable platform is not likely to be ahead of us and a newer
technology more evolution friendly than traditional recon-
figurable platforms is not around the corner. To be able to
reuse results and lessons learned from today’s technology
on tomorrow’s technology and exploit the power of evolu-
tion, one solution is to provide a virtual evolution friendly
reconfigurable platform which may be mapped onto a given
technology.

We propose a two stage genotype/phenotype mapping us-
ing our virtual evolvable hardware FPGA as the bridge.
The two stages simplify the genotype/phenotype transition
at the same time as the virtual evolvable hardware FPGA
bridge provides a more evolution friendly platform, further
reducing the complexity of the genotype representation.

1. Introduction

The field of evolvable hardware (EHW) is relatively
young but already there have been many changes in the
technology platforms used. The appearance of Xilinx’s
6200 series enabled Thomson [14] to introduce the elec-
tronic design community to the idea of evolvable hardware.
The 6200 series offered many evolution friendly features

such as partial reconfiguration; access to a single cell; con-
figuration unit of a single bit; open architecture and protec-
tion against illegal configurations. This opened for a new
and exciting design possibility - evolvable hardware. Many
other researchers have worked on the 6200 [2, 3, 10]. How-
ever, with the demise of the 6200 series many researchers
worked on the Xilinx 4000 series [12, 16]. The 4000 se-
ries is not partially reconfigurable but available unlike the
promised Virtex series which finally replaced Xilinx 6200
series. Unfortunately when Virtex came, although it of-
fers some of the features of the 6200, not all of the evo-
lution friendly features were retained. However, as shown
by Hollingworth [7], virtex may still be used as an EHW
platform, Virtex 2 is around the corner, still not evolution
friendly but possibly an improvement on Virtex due to the
promised inbuilt processor core. As such, not only have
researchers had to move through different technology plat-
forms but also features have disappeared.

Some researchers have attacked this problem by build-
ing their own platforms. One approach aimed at trying to
find a suitable technology for evolution is that of Layzell
[8] involving the evolvable motherboard. Different logic el-
ements may be placed in the logic blocks for evaluation and
a programmable crossbar switch allows a number of inter-
connection topologies to be realised.

Other approaches involve the creation of chip prototypes
for use in EHW. One such approach is the Processing Inte-
grated Grid (PIG) re-configurable platform [9]. Individuals
are not stored in their genotype form but implemented in
hardware. As such, genetic operations applied to individ-
uals change the implemented configuration of these indi-
viduals. This places a requirement on the technology that
neighbouring cells may change the configuration of a given
cell. As such, this technology offers self-reconfiguration,
although somewhat limited.

Other solutions in the digital field include ETLs GRD
chip [11]. This chip combines different technologies — a
RISC core processor combined with a re-configurable area
on a single chip. At JPL a field programmable transistor ar-

ray (FPTA) [13] has been developed for evolvable hardware
offering reconfiguration at the transistor level. This chip
provides a platform for evolution of both analogue, digital
and mixed signal designs.

Although these platforms may be much more evolution
friendly than standard platforms, what we need is broadly
available technology platforms for research in this area. A
mass produced evolution friendly reconfigurable platform
is not likely to be ahead of us and a newer technology
more evolution friendly than traditional reconfigurable plat-
forms is not around the corner. To be able to reuse results
and lessons learned from today’s technology on tomorrow’s
technology and exploit the power of evolution, one solu-
tion is to provide a virtual evolution friendly reconfigurable
platform which may be mapped onto a given technology.

One of the key challenges in evolvable hardware for
complex circuits is finding new forms of representation i.e.
the genotype challenge. Generally in EHW, a one-to-one
mapping has been chosen for the genotype-phenotype tran-
sition. This means that the genotype needs to include all the
information required to program the phenotype technology
i.e. the FPGA. This includes both logic and routing infor-
mation. Larger and larger FPGAs require more and more
configuration data thus increasing the size of the pheno-
type. Using the one-to-one mapping implies an equivalent
increase in the size of the genotype. A large genotype, in-
creases resource requirements for the evolution process and,
as such, is a disadvantage for evolution.

To solve the genome complexity issues and enable evolu-
tion of large complex circuits, the need to move away from a
one-to-one genotype-phenotype mapping is becoming gen-
erally accepted. We can expect newer features such as in-
cremental evolution [6], ’divide and conquer’ approach [15]
or growth [1] to become more common in the work within
the field of EHW so as to attack the representation problem.

In this work we assume that representation uses a form
of growth. Adding growth to the representation effec-
tively moves the complexity problem over to the genotype-
phenotype mapping thus increasing the complexity of the
mapping.

We propose to simplify the complex mapping process by
splitting the mapping process into two stages using a virtual
EHW FPGA as the bridge between the genotype and the
phenotype.

In this paper we present our virtual EHW FPGA, based
on the structure proposed in [4]. We propose a two
stage genotype-phenotype mapping using our virtual EHW
FPGA as a bridge in the mapping process. The phenotype
technology chosen is Xilinx Virtex and a detailed descrip-
tion of the mapping to Virtex is given.

This paper is laid out as follows. In section 2, we de-
scribe our bridge, the virtual EHW FPGA and in section
3 we describe the phenotype technology - Xilinx Virtex,

chosen as an example of today’s digital platforms. The
two stage mapping is presented in section 4 and section 5
presents the mapping from our virtual EHW FPGA to Vir-
tex in more detail. Finally, in section 6 we discuss the ben-
efits of this approach and in section 7 we describe ongoing
work.

2 Virtual EHW FPGA

The Virtual EHW FPGA contains blocks — sblocks, laid
out as a symmetric grid where neighbouring blocks touch
one another. There is no external routing between these
blocks except for the global clock lines. Input and output
ports enable communication between touching neighbours.
Each sblock neighbours onto sblocks on its 4 sides.

Each sblock consists of both a simple logic/memory
component and routing resources. The sblock may either be
configured as a logic or memory element with direct con-
nections to its 4 neighbours or it may be configured as a
routing element to connect one or more neighbours to non-
local nodes. By connecting together several nodes as rout-
ing elements, longer connections may be realised.

In N Out N

In E
O

ut EIn
 W

O
ut

 W

In SOut S

CLK

Logic/
Memmory

4

SBLOCK

Figure 1. Sblock — Routing and
Logic/Memory Block

Figure 1 illustrates the internal routing of the sblock.
Each sblock is responsible for processing input signals and
routing signals to its neighbouring sblocks. There are 4
pairs of unidirectional wires at each interface. The input
wires are attached through routing logic to the input rout-
ing channel which provides a dedicated wire for each in-
put. This channel is then fed into the logic/memory block.
Output from the logic/memory block is a single wire which
feeds the output routing ring. All the 4 outputs of the sblock
are attached to this output routing ring through the output
routing logic.

5 input
lut

Flip-
flop

D Q

N
E
S
W

CLK

Figure 2. Sblock Logic

A more detailed view of the logic/memory block is
shown in figure 2. Inputs from neighbouring sblocks and
a feedback from the output are connected to a 5 input look
up table (LUT). The LUT may be configured to hold a func-
tion. When Don’t Care (DC) bits are placed at a given input,
then that neighbouring sblock is not connected to it. In this
way the LUT is programmed not only for functionality but
external connectivity of the sblocks. Therefore, to alter the
functionality and connectivity of an sblock only the LUT
content need be reprogrammed.

 o n e s w Out
 0 0 0 0 0 0
 0 0 0 0 1 1
 0 0 0 1 0 0
 0 0 0 1 1 1
 0 0 1 0 0 0
 0 0 1 0 1 1
 0 0 1 1 0 0
 0 0 1 1 1 1
 0 1 0 0 0 0
 :
1 1 1 1 0 0
1 1 1 1 1 1

SOut

W

Sblocks LUTs in the Sblocks

LUT Adr.

WW

S

Out
0
0
1
1
0
0
1
1
0

1
1

Figure 3. Sblock through Routing

When the sblock is used for routing, all inputs apart from
the incoming input to be routed are don’t care inputs. The
LUT is thus set up as shown in figure 3. In this example the
west input is to be routed to the north. The output reflects
the values of the west input thus implying don’t cares at the
other inputs. However, the output values will appear at all
outputs not just the north output. It is up to the sblock to
the north to read its input at this port i.e. its south input, as

shown.
Although this is a virtual FPGA, for a realistic FPGA

it is important that illegal configurations are avoided where
we define illegal configurations as configurations that may
cause damage to the chip. The internal routing of each
sblock only allows inputs to be routed to outputs and the
interface between sblocks only allows outputs to be routed
to inputs.

3 Virtex

A Virtex FPGA consists of an array of configurable logic
blocks (CLBs), input/output blocks (IOBs) and routing re-
sources. A CLB contains 4 LUTs and 4 flip-flops as well
as multiplexers for internal routing. These are arranged to
form two slices, each with 2 LUTs and 2 flip flops. Exter-
nal routing consists of local, non-local and dedicated clock
routing.

Figure 4. One Slice of a Virtex CLB

Figure 4 illustrates the structure of one slice of a CLB. To
illustrate the different functional groups the slice is divided
into three.

� LUTs: The two LUTs LUTF and LUTG are function
generators that can be configured to operate as RAM
or logic. The LUTs can also be used to create shift
registers. When used as logic, each LUT can be a four
input logical function. The output from each LUT is
available as an output signal from the slice.

� Flip-Flops: The two output flip-flops FFX and FFY
can be configured to be positive or negative edge-
sensitive. The reset may be configured as synchronous
or asynchrous. Each flip-flop’s output signal is avail-
able as an output from the slice.

� Multiplexers: There are two types of multiplexers
available: those controlled by logic signals i.e vary-
ing control value, and those controlled by the FPGA
configuration data i.e. fixed control value.

Each CLB consists of a General Routing Matrix (GRM)
for external routing and two switch boxes for internal rout-
ing. Figure 5 illustrates two neighbouring CLBs. As shown,
the GRM connects to its 4 neighbours and the internal
switch boxes. Note that other routing resources are also
available but are not the focus of this work.

General Routing Matrix General Routing Matrix

Switch Box

CLB
Slice 0

CLB
Slice 1

Switch Box

Switch Box

CLB
Slice 0

CLB
Slice 1

Switch Box

Row1 Column 1 Row1 Column 2

Figure 5. Virtex CLBs with Switch Boxes

Top 2
IOB

CLB
R1

CLB
R2

CLB
R32

Bot 2
IOB

18 bit 18 bit 18 bit 18 bit 18 bit

Figure 6. Configuration Data Frame

In Xilinx 6200 partial configuration was achieved
through accessing either a particular cell or a range of cells.
That is that the configuration unit i.e. the smallest amount
of data that can be written to or read from a device, was a
single cell. In the new Virtex series, the configuration unit
is a frame. A frame is organised as a vertical array one bit
wide. A frame represents part of the configuration data for
the top two IOBs, all CLBs and for the bottom two IOBs
of a column. Figure 6 illustrates the structure of the con-
figuration data frame. As shown, the frame contains 18 bits
of configuration data for each element in the column. 48
frames are needed to configure a column.

An LUTs configuration data is stored in 16 of the 48 con-
figuration frames for the CLB. As such, it takes 16 frames
to configure one or more LUTs of a column. However, to
alter a single bit in one or more LUTs of a column, only one
frame of configuration data is needed.

Virtex can be used as a partial reconfigurable device in
two different modes, JTAG or SelectMap. JTAG is a se-
rial protocol and not considered here. The SelectMap mode

uses the SelectMap port on the Virtex. Configuration is
done by writing configuration data and configuration com-
mands to the 8 data bit parallel SelectMap port interface.

4 Two Stage Mapping

Our genotype-phenotype mapping is achieved in two
stages using the virtual EHW FPGA as our bridge. We
begin with our genotype representation, map to our virtual
EHW FPGA and finally map to our phenotype representa-
tion — Virtex.

4.1 Genotype Representation

Our aim is to be able to represent complex circuits. One
possible solution is a 2D structure with connected nodes.
Each node has a re-programmable function depending on
the surrounding nodes and a relative x,y placement. It is
possible to add or remove nodes and to grow side chains
to create possible solutions. That is we are not restricting
the representation to a tree structure as in genetic program-
ming. As the representation is not the focus of this paper
we draw the readers attention to [5] for further informa-
tion. The mapping of the representation to the Virtual EHW
FPGA is of course dependent on the actual representation
used and therefore will not be discussed further in this pa-
per.

4.2 Virtual EHW FPGA Representation

After mapping to the virtual EHW FPGA bridge, repre-
sentation consists of a number of sblocks, programmed to
reflect the mapped individual, within the constraints of the
sblock architecture. That is, each sblock has a maximum of
4 neighbours, a 5-input LUT and an output flip flop.

Sblocks are connected i.e. inputs/outputs activated, in
the pattern given in the individual. The interconnection thus
illustrates the relative placement of the sblocks with respect
to each other. In addition, the sblocks are programmed as
either routing or logic blocks. For routing, only one input
is active. For logic, the chosen inputs are active and the
functionality of the sblock is programmed.

Figure 7, provides an example of a simple digital de-
sign mapped onto a sblock structure. The actual contents of
the LUTs is not shown but a description of their content is
provided. As shown, 3 of the sblocks are used for through
routing and two for logic.

4.3 Virtex Representation

The Virtex representation is a standard physical FPGA
chip. The chip we have chosen is from the Virtex series.
Here two sblocks may be mapped onto a single CLB. Direct

A
B
C

P

A

B

C

P

W

W W

SWN W

Route:

Route: Route:

Logic: Logic:

Figure 7. Sblock Representation of a Digital
Circuit

connections between CLBs along with some of the internal
routing in the CLB are the only routing resources used for
the sblock architecture.

A circuit mapped onto the Virtex chip will now be repre-
sented as actual rather than relative placement. Inputs and
outputs of the virtual architecture are mapped to IO blocks.

5 Mapping the Virtual EHW FPGA to Virtex

Sblock

connection

Sblock Sblock

Sblock Sblock Sblock

Sblock Sblock Sblock

Sblock

Sblock

Sblock

CLB CLB

CLB CLB

CLB CLB

Figure 8. Sblock Structure in a Virtex

To simplify the mapping process further, the Virtex chip
is initialised by configuring it as a sblock grid — see fig-
ure 8, where each sblock occupies one CLB slice.

5.1 Initialisation: Setting up the Sblock Grid

Configuring a Slice

To implement an sblock, a 5 input LUT and a flip-flop
are needed. As illustrated in figure 9, this is achieved by
using both LUTs, multiplexers and one of the flip flops in
the CLB slice shown in figure 4.

A4
A3
A2
A1

LUT
RAM

ROM

D

A4
A3
A2
A1

LUT
RAM

ROM

D

F

G

BX_B
BX
1
0

F5

F
FXOR 1

0
D
CE
CK

INIT

FF
LATCH

Q

HIGH
LOW

REV

CE_B
CE
1
0

1

1
0

OUT BX

N F4
E F3
S F2

W F1

N G4
E G3
S G2

W G1

CLK
CLK

OUT XQ

FXMUX

F5MUX

FFX

LUTG

LUTF

BXMUX

CEMUX

CKINV

DXMUX

Figure 9. Sblock in CLB Slice

The inputs from the neighbouring sblocks connect to
both LUTF and LUTG. The outputs of these LUTs are con-
nected to F5MUX. Control of F5MUX is provided by the
slice output fed back through BXMUX thus providing a 5
input LUT. LUTG provides the 16 low address locations
and LUTF provides the 16 high address locations of the 32
address LUT.

Several multiplexers are used for the sblock internal rout-
ing. BXMUX routes the 5th LUT line to F5MUX; CEMUX
routes a logical ”1” to the FFX flip-flop Clock Enable (CE);
CKINV selects FFX to be positive-edge triggered and FX-
MUX and DXMUX are used to route the 5 input LUT to the
output flip-flop.

Configuring CLB Routing
External routing to an sblock involves routing between

it and its neighbours and feedback of its own output. An
example of routing for a sblock is shown in figure 10 where
routing for the sblock in slice 0 is shown. Signals from the
surrounding sblocks are labelled N, E, S, W and Out for the
sblock output. The inputs are routed from the GRM to the
lower switch box where they are duplicated and forwarded
to the 2 LUTs within the sblock. Out is routed through the
top switch box to the GRM where it is fed back into the
lower switch box as well as being available to the neigh-
bouring sblocks.

5.2 Mapping Individuals

At this stage, sblocks have no programmed functional-
ity. The FPGA can now be configured to reflect a given in-
dividual by addressing sblocks in the pre-configured sblock
architecture.

Out

Out

Out

OutOut to W

Out

Out

To N
neighbour

To E neighbour

E From E neighbour

WS

Out

To S
neighbour

EN

S

From S
neighbour

W

W

N

From N
neighbour

WSEN

General Routing Matrix

Switch Box

Switch Box

Sblock 0W
neighbour

Figure 10. Routing in Virtex for Sblocks

Each sblock is placed in a particular CLB slice so as to
reflect the relative placement of the given sblock in the indi-
vidual. The functionality of the sblock and its connectivity
to its neighbours is achieved by configuring its LUT.

Figure 11 illustrates implementation of an individual
representing a circuit which is the OR of two 2 input AND
gates. The number of gates required i.e. sblocks, their rela-
tive placement and the inputs and outputs required are given
in the Virtual EHW FPGA representation. The sblock struc-
ture is already initialised and configuration at this stage in-
volves programming the respective sblocks as an AND or
OR gate and placing don’t cares at the connections that are
not required. Considering the OR gate, only the north and
south inputs are required, all others will get don’t cares.

and
Sbl
ock

Sbl
ock

or
Sbl
ock

Sbl
ock

and
Sbl
ock

Sbl
ock

Sbl
ock

Sbl
ock

Sbl
ock

Figure 11. Configeration of Connectivity and
Function

Figure 12 illustrates the programmed LUT for the OR

gate of figure 11. From the contents of the LUT it is clear
that only the North and South signals are effecting the LUT
output. The don’t care for East and West means that the
sblock does not respond to these signals and therefore can
be considered unconnected to its East and West neighbours.
Note that physically the complete sblock structure is still
present in the Virtex chip.

or

S

N

Out

 o n e s w Out
 0 0 0 0 0 0
 0 0 0 0 1 0
 0 0 0 1 0 1
 0 0 0 1 1 1
 0 0 1 0 0 0
 0 0 1 0 1 0
 0 0 1 1 0 1
 0 0 1 1 1 1
 0 1 0 0 0 1
 0 1 0 0 1 1
 0 1 0 1 0 1
 0 1 0 1 1 1
 0 1 1 0 0 1
 0 1 1 0 1 1
 0 1 1 1 0 1
 0 1 1 1 1 1
 1 0 0 0 0 0
 :
1 1 1 1 0 1
1 1 1 1 1 1

LUT
Data

Sblock

LUT in the Sblock

LUT Adr.

Figure 12. Sblock with LUT configuration

As stated, to alter a function in a sblock or change its
connectivity, the LUT may be reprogrammed. Considering
again the OR gate of figure 12, a reconfiguration to an AND
function is achieved by altering the LUT to only output log-
ical ”1” when both North and South inputs are logical ”1”.
Similarly by altering the don’t care conditions in the LUT
it is possible to make the sblock sensitive to other input sig-
nals thus alter the connectivity of the sblock.

6 Evaluation

The virtual EHW FPGA is a virtual i.e. not physically
built FPGA, designed for evolvable hardware. That is it in-
cludes features desirable for an evolution platform — see
[4], not available in today’s technology. As this FPGA may
be said to be ’evolution friendly’ then mapping from a new
genotype representation to the virtual EHW FPGA repre-

sentation is simpler than that expected from a non evolu-
tion friendly FPGA such as Xilinx Virtex. Since the virtual
EHW FPGA has many of the characteristics of the physical
FPGA then this stage of the mapping process is much sim-
pler than that which would have been the case with a direct
genotype-phenotype mapping.

Simplicity of the mapping is not the only benefit of
bridging the genotype phenotype mapping. As stated, many
researchers are investigating the genotype representation
problem and we can expect new and better methods of rep-
resentation in the near future. Different representations may
be tested out against the bridge, enabling a chip independent
assessment to be achieved. If an actual physical chip eval-
uation is required then the representation may be mapped
further to the actual technology platform. The second stage
of the mapping, on the other hand, is independent of the
representation which will vary as different representations
may be expected to be tried out to achieve complex designs.
This stage maps a virtual FPGA to a given FPGA.

In the current FPGAs, a vast amount of configuration
data is attributed to routing. All routing must be config-
ured and with the vast amount of routing available this
entails a lot of routing configuration data even if a lot of
the routing resources are unused. The virtual EHW FPGA
is designed with just neighbouring sblock connections and
clocking. When the genotype reflects configuration data,
as is often the case, substantially less configuration data is
required for the virtual EHW FPGA due to the lack of exter-
nal routing. As such, a much smaller genotype results than
that which would be the case for a Virtex genotype. The
virtual EHW FPGA thus not only simplifies the genotype-
phenotype mapping but also further simplifies the genotype
representation itself. Note that all unused Virtex routing is
configured as unused in the initialisation of the Virtex chip
before mapping of individuals begins.

As illustrated in section 5.2, manipulating functionality
or connectivity of sblocks is easily achievable. As such,
individuals are easily mapped from the virtual EHW FPGA
to Virtex.

7. Ongoing work

We are currently working on a new genotype representa-
tion based on L-systems. Each individual will we mapped
through the Virtual EHW FPGA to the Virtex chip to evalu-
ate the new genotype representation on a physical hardware
platform.

References

[1] P. J. Bentley and S. Kumar. Three ways to grow designs:
A comparison of embryogenies for an evolutionary design

problem. In Genetic and Evolutionary Computation Con-
ference (GECCO ’99), pages 35–43, 1999.

[2] T. C. Fogarty, J. F. Miller, and P. Thomson. Evolving digital
logic circuits in xilinx 6000 family fpgas. In Soft Computing
in Engineering Design and Manufacturing, pages 299–305.
Springer, 1998.

[3] F. Gers, H. de Garis, and M. Korkin. Codi: A simplified cel-
lular automata based neuron model. In Artificial Evolution
Conference 1997 (AE97), 1997.

[4] P. Haddow and G. Tufte. An evolvable hardware fpga for
adaptive hardware. In Congress on Evolutionary Computa-
tion(CEC00), pages 553–560, 2000.

[5] P. Haddow, G. Tufte, and P. Van Remortel. Shrinking the
genotype: L-systems for ehw? In submitted to 4th Interna-
tional Conference on Evolvable Systems (ICES01), 2001.

[6] I. Harvey et al. Why evolutionary robotics? Robotics and
Manufacturing: Recent Tends in Research and Applications,
6:293–298, 1996.

[7] S. Hollingworth, G. Smith and A. Tyrrell. Safe intrisic evo-
lution of virtex devices. In The 2nd NASA/DoD Workshop
on Evolvable Hardware, pages 195–202. IEEE, 2000.

[8] P. Layzell. A new research tool for intrinsic hardware evolu-
tion. In 2nd International Conference on Evolvable Systems
(ICES98), Lecture Notes in Computer Science, pages 47–
56. Springer, 1998.

[9] N. Macias. The pig paradigm: The design and use of a
massively parallel fine grained self-reconfigurable infinitely
scalable architecture. In The 1st NASA/DoD Workshop on
Evolvable Hardware, pages 175–180, 1999.

[10] J. Miller and P. Thomson. Aspects of digital evolution:
Evolvability and architecture. In Fifth Intern. Conf. on Par-
allel Problem Solving from Nature (PPSN’98), 1998.

[11] M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N. Kaji-
hara, M. Iwata, and T. Higuchi. The grd chip: Genetic re-
configuration of dsps for neural network processing. IEEE
Transactions on Computers, 48(6):628–639, June 1999.

[12] M. Sipper, M. Goeke, D. Mange, A. Stauffer, E. Sanchez,
and M. Tomassini. The firefly machine: Online evolware.
In Proc. of 1997 International Conference on Evolutionary
Computation (ICEC97), pages 181–186. IEEE, 1997.

[13] A. Stoica, D. Keymeulen, R. Tawel, and C. W.-T. L. Salazar-
Lazaro. Evolutionary experiments with a fine-grained recon-
figurable architecture for analog and digital cmos circuits.
In The 1st NASA/DoD Workshop on Evolvable Hardware,
pages 76–84, 1999.

[14] A. Thompson. An evolved circuit, intrinsic in silicon, en-
twined with physics. In 1st International Conference on
Evolvable Systems (ICES96), Lecture Notes in Computer
Science, pages 390–405. Springer, 1996.

[15] J. Torresen. A divide-and-conquer approach to evolvable
hardware. In 2nd International Conference on Evolvable
Systems (ICES98), Lecture Notes in Computer Science,
pages 57–65. Springer, 1998.

[16] G. Tufte and P. Haddow. Evolving and adpative digital filter.
In The 2nd NASA/DoD Workshop on Evolvable Hardware,
pages 143–150, 2000.

