
From Here to There :
Future Robust EHW Technologies for Large Digital Designs

Pauline C. Haddow � Piet van Remortel �

� The Norwegian University of Science and Technology
Department of Computer and Information Science
O.S. Bragstadsplass 2E, 7491 Trondheim, Norway

� Vrije Universiteit Brussel
COMO - Department of Computer Science

Pleinlaan 2, 1050 Brussels, Belgium
pauline@idi.ntnu.no,pvremort@vub.ac.be

Abstract

Fault-tolerance may be expected to gain more and more
importance in the future. Extremely harsh and changing en-
vironments, like outer space, already force us to think about
this issue today, but issues like production of large-scale
devices might put the same requirements on the devices of
tomorrow.

Imagine a mixture of chemical substances in a reser-
voir, together with a circuit-implementing shell that has
self-repairing properties based on the maintainance of the
chemical equilibrium. Could this type of solution be the ba-
sis for a robust future technology for evolvable hardware?

A long term goal of evolvable hardware is to evolve large
complex designs for large devices. However, both evolv-
ing large complex designs and manufacturing large reliable
devices is technologically out of reach due to the resource
greedy nature of GAs and low device yield rates.

In this article we explore the technological requirements
of digital design, design by evolution and development and
the reliability issue in the light of today’s digital evolvable
hardware technology, FPGA and a proposed fault tolerant
technology, Amorphous Computers. Considering the limi-
tations of these platforms, we project these findings towards
possible future technology platforms.

1 Introduction

During the last 3-5 years the field of Evolvable Hardware
(EHW) has matured considerably. One of the goals of EHW

0The order of the author’s names is purely alphabetical

has been to evolve large designs, not achievable with tradi-
tional design methods. This goal is still beyond our reach. A
further traditional problem, not due to the methodology but
the technology itself, is achieving large scale devices with
reasonable yields. In this work we consider the problems of
evolving large digital designs on larger reliable platforms.

Apart from being suited for implementing digital de-
signs, a new technology should be compatible with the evo-
lutionary design methodology. This issue has been consid-
ered with respect to today’s technologies in our work pre-
sented in [7]. Facing the challenge of larger and more com-
plex designs, adopting more powerful ways of expressing
circuit layouts is fundamental. This might involve some
form of biological development principles incorporated into
the design methodology [4].

A general property of future technologies is that they
should offer some kind of robustness against faults thus en-
suring continuous operation after critical events or unit fail-
ures. This may be achieved by robust ways of computation
or by an underlying fault-detection and repair from within
the technology. As a source of inspiration for a new EHW
fault tolerant platform, we consider a fault tolerant platform
proposed by MIT termed Amorphous Computers (AComp)
[1].

A number of noteworthy efforts have already been con-
ducted within fault detection and repair based on the prin-
ciples of biological development. In the embryology work
conducted at York [5] and EPFL [12], experiments have
been conducted, using FPGAs with extended CLBs to con-
tain a complete genotype of the circuit. Through repeated
cell divisions a circuit develops from a single cell into a
full-grown phenotype. An interesting approach was taken
in [5] where principles of biological immune systems were



adopted to attain fault-tolerance.
The text is organised as follows. In section 2 we present a

short description of todays digital EHW technology, FPGA
and MIT’s proposed AComps. We then consider the re-
quirements of digital circuits in section 3. In section 4 we
highlight the technological requirements imposed by design
by evolution and evolution with developmental principles.
We then consider fault-tolerance in section 5. To conclude,
in section 6, we extract a summary of the main ideas of the
earlier sections and suggest possible future implementation
platforms.

2 Technology Platforms

In this section we present two technologies — FPGAs
and Amorphous Computers representing two fundamen-
tally different ways of approaching computation. FPGAs
are well-known electronic devices for implementing digital
circuits. An AComp is a proposed platform for amorphous
computing which is based on biological development prin-
ciples. Although both are based on a cellular architecture
and thus quite similar at first, they are fundamentally differ-
ent in many ways.

2.1 Field Programmable Gate Arrays (FPGAs)

In digital EHW, FPGA’s may be seen to be the tar-
get technology as they provide a re-configurable platform
and chips are commercially available. The main elements
of FPGA chips are configurable logic blocks (CLBs) con-
nected together in a grid format and configurable routing
resources. In addition, configurable input/output blocks
(IOBs) are connected to the grid at the perimeter of the chip
as shown in Figure 1.

Figure 1. Typical Topology of Today’s FPGA

To offer the possibility for complex designs, FPGAs are
both expanding in size i.e. increasing the number of com-
binational logic blocks per chip, increasing the complexity
of these blocks and introducing vast and varied routing re-
sources.

Configuration can be categorised into non-partial or par-
tial configuration. The former may be applied to any FPGA
and enables the complete chip to be configured. The latter is
offered on some devices and allows a portion of the chip to
be reconfigured whilst the remaining parts of the chip retain
their current configurations.

Illegal configurations are avoided by constraining con-
figurations. To date two different methods to solve this
problem may be seen. Either the logic blocks themselves
have an architecture where it is not possible to configure
them illegally (as seen in XILINX 6200 series) or the users
themselves do not have direct access to the routing re-
sources during the evolution process (such as in XILINX
Virtex series).

2.2 An Amorphous Computer (AComp)

Amorphous computing [1] was developed in anticipation
of the fast evolving fields of micro-fabrication and cellular
engineering. In these fields large collections of small com-
putational units or cells can easily be produced. Amorphous
computing is a computational paradigm for such collections
and is based on the following assumptions:

� large number of computational units

� limited computational power per unit

� unreliable units

� units are not perfectly aligned geometrically

� wireless connections

� only local communication within a certain range

� asynchronous operation

� possibly movable units

� no global system knowledge

Figure 2 illustrates a collection of processing units in an
AComp. The darker unit in the centre has a communication
radius r. As highlighted, all units either within or overlap-
ping the circle defined by r are within broadcasting distance
of the unit.

While producing a system composed of such units is
within reach, as yet there exists no programming paradigms
applicable to it. Amorphous computing aims to fill the gap
between the construction and the programming techniques



r

Figure 2. Communication Radius in an Amor-
phous Computer

required for an AComp. More concretely, the important task
in amorphous computing is the identification of appropriate
organising principles and programming methodologies for
obtaining predefined global behaviour through local inter-
actions.

Sciences such as biology and physics have been adopted
as a source of metaphors for the field of amorphous com-
puting, which amongst others led to the development of the
Growing Point Language(GPL) [6]. This is a language
that is loosely based on botanical growth. A GPL Program
is compiled to a finite state machine which is identical for
all the units in the amorphous computer. The units are able
to “differentiate” to different types, thus forming the prede-
fined pattern intended by the programmer.

The basic unit in GPL is a “growing point”, which is
a shared activity and state of a group of cells which can
be propagated to an overlapping neighbourhood. Growing
points can split, die or merge with other growing points.
Where a growing point passed through, the states of the
processors are adjusted to represent the “material” left be-
hind. Growing points move around following the rules of
a programmed tropism. This can be towards a source of
a diffusing message, away from it or in such a way that
the concentration of this “pheromone” remains more or less
constant.

To illustrate GPL, as a means to grow low-level electron-
ics, we can consider the example given by Coore [6] of the
generation of a pattern representing a connected series of
CMOS inverters.

Figure 3 illustrates the schematic of a CMOS inverter
with different colours representing different physical mate-
rials. To represent such a schematic on an AComp, growing
points will move across the collection of processing units
dropping AComp ’materials’ along their path. Pheromones
are secreted from key locations to guide i.e. attract, the

Figure 3. Model of a CMOS Inverter

Figure 4. Resulting CMOS inverter [6]

growing points. As an example, a pheromone secreted from
locations on the upper and lower blue material-lines (source
and drain potential for the inverter) instantiates a north-
south coordinate system, used to draw the vertical parts of
the inverter. Figure 4 illustrates a sample inverter from the
resulting inverters. Note that all inverters are not exactly
identical, as they are grown on a non-uniform substrate of
cells where some cells may be malfunctioning. The shared
GPL program, however, assures a robust generation of fun-
damentally alike patterns of inverters.

3 Digital Design Requirements

Digital design as opposed to analogue design does not
use the full properties of the underlying technology. It
works at an abstract level where signal values above or be-
low given thresholds are categorised as logic values. This
means that circuit design is easier to achieve since slight
variations in the low-level signal values do not effect the
logic values. However, a produced signal must be given
time to stabilise before the correct value can be used by
the next unit. Today we talk about synchronous or asyn-
chronous design techniques used to achieve this stability.
In asynchronous design a particular challenge is to attain



stability in sequential circuits, since these incorporate feed-
back loops.

A digital design assumes the possibility to send a di-
rected message from one output to a designated input over
some communication path. Inconsistencies in signal levels
can arise if a such a communication path e.g. a wire, is
simultaneously driven by more then one signal.

The properties discussed above place requirements on
the underlying technology. It assumes the presence of an ab-
straction mechanism and methodologies to control it. Con-
sidering FPGAs, programming the technology is based on
the abstracted logic levels i.e. a string of 1’s and 0’s. An on-
chip oscillator may be provided, but it is up to the designer
whether he uses it to control the design. Compared to ASIC
technology, FPGAs constrain the design as the circuit has
to be mapped onto a fixed structure of logic and routing re-
sources. On the other hand, it makes the designers job much
easier. Synthesis and mapping tools are used to move the
designers high level circuit representation to an FPGA rep-
resentation, thus atomising a part of the design process. It is
at these latter stages that technological constraints are met.
The same design may be implemented on an ASIC platform
and achieve better performance. However, whether using
traditional or evolutionary design methods, the reconfigura-
bility feature of FPGAs makes design changes much easier
and thus provides an advantage over ASIC design.

Whether we consider ASIC or FPGA design, we are con-
sidering fixed communication, either decided at design time
(ASIC) or at mapping time (FPGA). What if we free our-
selves from the rigidity of ASIC and especially FPGAs and
move towards an AComp style structure? Here we have
non-uniformly distributed processors in a 2D plane, an in-
creased number of possible neighbouring processors and a
freer communication medium. Can we design efficient digi-
tal designs on such a technology? Which limitations related
to digital circuits will this extra freedom impose?

Looking again at the digital requirements we need some
form of control. In an AComp like structure, a clock is not
the way to go i.e. placing a centralised control on an inher-
ently decentralised system. Therefore, control would have
to be asynchronous and requires an asynchronous method-
ology suitable for local broadcasts. Using local broadcasts,
we also require a methodology for preventing collisions.

By using radio communication as the medium for the lo-
cal broadcasts, as suggested in [1], larger neighbourhood
sizes would result. This opens new possibilities for imple-
menting a digital circuit on an AComp. A task or subtask
may be broadcast over the large neighbourhood, looking
for a processing unit to pick it up. In this way no fixed
mapping of tasks to processing units is required. As such,
the designer takes advantage of the flexible communication
medium as well as the redundancy of the processing units.

To achieve stability on an AComp, it will be important to

abstract from the properties of the processing unit technol-
ogy such that a logic ’1’ or ’0’ can again be above or below
some kind of threshold. This off course assumes that the
digital design is implemented using a standard digital com-
putation model. Moving towards distributed AComp style
computation may give improved results.

4 Suitability for Evolution and Development

For a technology to be suitable for digital design, a
methodology has to be found to aid the design process. The
design productivity gap in the electronic industry is a well
known fact. How can the design community utilise the de-
sign capacity that technology is offering and at the same
time ensure its correctness? To find solutions to the problem
of developing large complex designs new design paradigms
are required [3][2].

By using evolutionary techniques in the development of
hardware, a larger design space may be searched than that
searched by more traditional techniques. This is achieved
by removing some of the design constraints built into tra-
ditional design techniques which are often built into tra-
ditional design tools. In addition, evolution removes con-
straints imposed by the human designer. These constraints
are limitations to the designer’s thought process which limit
the ability to think out all possible solutions for a given de-
sign.

If evolution aims to reduce the constraints of traditional
design, is it possible to reduce the constraints of the tech-
nology itself by introducing technologies better suited to
evolution? In digital EHW today, FPGAs may be seen to
be the main target technology. They not only provide a re-
configurable platform, essential for realistic evaluation of
individuals but also chips are commercially available. How-
ever, are today’s FPGAs ”evolution friendly”? Do they ex-
hibit features which enable us to fully utilise the power of
evolution?

To answer this question we need to look at the character-
istics of evolvable hardware. Four important characteristics
are the size of the phenotype required, flexibility and speed
of configuration and robustness of the evolved design.

When we consider programmable technology, the actual
phenotype is a result of the direct translation of a program
for the technology. In the case of FPGAs we are talk-
ing about configuration data. Today’s FPGAs offer more
and more resources, requiring more and more configuration
data. Using a typical one-to-one mapping from genotype
to phenotype implies that the size of the genotype required
is getting larger and larger. A large genotype increases re-
source requirements for the evolution process and, as such,
is a disadvantage for evolution.

In intrinsic evolution we wish to test each individual on
the technology platform itself to obtain a more realistic fit-



ness evaluation than that obtained through simulation i.e.
extrinsic evolution. Considering today’s FPGAs and using
the Xilinx Virtex series as a case study we see that config-
uration of a chip takes approximately 20 to 30 seconds. To
evolve more complex design solutions we can expect that
the combination of population size i.e. the number of indi-
viduals to be evaluated per generation, and the number of
generations required to reach a solution will make evolu-
tion of a solution to the problem infeasible due to this slow
interface.

Fitness evaluation is often the bottleneck of the evalu-
ation process. In addition to this slow interface, the large
phenotype resulting from the large genotype also slows
down the evaluation phase. Fitness evaluation is particu-
larly important when dealing with real time solutions which
require that fitness evaluation be faster than the incoming
data rate.

FPGA features such as partial-reconfiguration may be
used to speed-up the evaluation phase as a smaller amount
of configuration data is required to program the device for
the new individual. Another feature in the fitness evaluation
is the ease in which test data may be fed into the design and
results extracted. This is possible with FPGAs but requires
planning. The required signals must be mapped onto output
pins since access to internal data is not possible.

To fully exploit evolution, the evolution process should
be able to fully exploit the underlying technology parame-
ters i.e. push the circuit behaviour beyond that of a typical
digital circuit. However, taking advantage of the physical
parameters may give chip dependence problems and/or re-
liability problems.

To summarise, we need a technology where complex
circuits may be implemented without requiring a large
amount of program data, fast programmability and re-
programmability perhaps with some kind of partial pro-
gramming, access to evolution data in the phenotype tech-
nology and more robustness.

If we look to amorphous computer technology do we
have these features? This is of course hard to say since an
amorphous computer doesn’t exist today. However, from
the principles of amorphous computing and the proposed
amorphous computers we can attempt to answer this ques-
tion. It will of course be programmable and therefore re-
programmable.

The computer is designed around the notion of an abun-
dance of processing units. Initially this suggests a very large
phenotype. However, most of the phenotype information on
an FPGA is routing data due to the vast amount of routing
resources. Note this pressure on the configuration data is
reduced drastically in an FPGA structure such as that pro-
posed in [7] and extended in [8]. In the AComp, although
there is a greater routing freedom, not having a physical
abundance of routing means that no configuration data is

wasted on configuring unused routing resources. Not being
able to identify a particular processing unit also indicates
that unused processing units will not have to be configured.
As such, intuitively, an AComp style structure should re-
duce the size of the phenotype.

Access to particular data is likely to be a problem. The
amorphous computing paradigm itself relies on the fact that
the user does not have access to particular processing units.
As such, access to information within the design will not
be possible. This also means that the feature of partial pro-
grammability will not be feasible. This feature relies on the
fact that you can access the exact part of the design required
so as to only make changes to the parts of the design that
differ from the individual implemented. One main feature
of the amorphous computers, however, is robustness and is
discussed in detail in section 5.

Evolutionary techniques are seen to be limited due
to their resource-greedy nature i.e. limited to small non-
complex circuits. Firstly this is due to the problem related
to genotype/phenotype mapping. As the circuit complexity
increases so does the genotype, assuming a one-to-one map-
ping from genotype to phenotype. Secondly, we have a slow
evaluation phase due to the large phenotype required for to-
day’s technology. We know that partial evaluation may ease
the slow evaluation since configuration is speeded up. How-
ever how can we improve the genotype/phenotype problem?

If we can shrink the genotype, we reduce the resource
requirements of the evolution process but move the com-
plexity over to the mapping process. It should be noted that
a bridging evolution friendly FPGA may be used to sim-
plify the mapping process as proposed in [8]. This assumes
that the genotype is mapped to this bridge and the bridge is
mapped further to the phenotype.

We see two possible ways to shrink the genotype in-
volving different aspects of biological development. As a
smaller step towards replicating biological development, we
may include some form of growth in the genotype represen-
tation. An example of such an abstraction are growth rules
based on L-systems [10][11]. A first attempt at achieving
growth based on L-systems for digital design may be found
in [8]. Here rules fire when their conditional clause is
matched to produce additions and/or changes to the growing
phenotype. A problem here is that it is hard to control the
size of the phenotype eventually grown. Can it actually be
implemented on the resources offered by the implementa-
tion technology? That is, the underlying technology places
constraints on the grown phenotype to within the limits of
the technology.

Considering FPGAs we are talking about a finite amount
of CLBs and routing resources and a non-infinite number of
ways of mapping the design to the technology. An AComp
style technology also has a limited amount of resources but
with the freer structure, achieving routing may be seen as al-



most infinite and with redundant processing elements there
is a non-finite but expandable amount of computational re-
sources. As such, an AComp style structure may offer an
advantage for this type of growth method over an FPGA.

As a next step, the developmental process can be taken
closer to the principles of real biological cellular develop-
ment. This would then not only incorporate the increase in
size (real biological “growth”), but also add the possibility
to describe enormous complexity in the phenotype. This
description would be based on a limited language and using
local messaging, the intricate interaction of cellular states
would be achieved.

In general, An initial unit holds the building plan (DNA).
As opposed to a descriptive plan, this plan is generative,
meaning that it describes what lower-level, local actions
have to be performed to build the global phenotype. Dur-
ing the building process units can communicate with other
local units, move, change shape, multiply or die. All units
hold the same building plan, have an internal state and can
exhibit group-wise behaviour patterns as a result of shared
states and signalling. Again this form of development may
lead to a large phenotype. This method would also require
that each cell holds the building plan for the design i.e. a
large genotype is stored in every cell. In FPGA technology
this would be a problem as there is very little memory in a
single CLB. On the other hand, an amorphous computer is
designed based on developmental principles and each pro-
cessing unit should be built with sufficient memory to hold
the genotype.

5 Fault Tolerance

Why do we need fault tolerance? As a first and general
fact, it makes a designed system operate more reliably. This
is true for a system designed using traditional techniques,
but also for results of non-traditional design methods such
as evolution. For the domain of EHW, it is interesting to in-
vestigate the advantages that a fault-tolerant platform might
offer over a non-fault tolerant one.

In a conventional, non fault-tolerant technology, unfore-
seen events may occur which prevent proper operation of an
implemented design. For a technology to be fault-tolerant,
the implemented design should continue to operate undis-
turbed by the events, requiring no fault detection mecha-
nism from the design itself. Ideally, this property should be
present, independent of the design that will be implemented.

In an amorphous computer, correct functionality will be
attained despite the possibility of a limited amount of mal-
functioning units. In other words, the computational nature
of an AComp has built-in fault-tolerance. It will not repair
a broken unit but distribute functionality in such a way that
the failure does not interfere with an implemented applica-
tions behaviour.

When considering amorphous computers, we are inter-
ested in finding out which mechanisms are behind this fault-
tolerance. In order to answer this, we have to abstract the
basic properties of GPL and relate them to the properties of
the implementation layer i.e. the AComp.

The first property is that a task is defined at a level of
groups of units instead of singular units. This automatically
means that for each subtask of the task (for example draw-
ing a line segment), a multitude of underlying units of the
AComp are involved. Another way to put this is that the
level of abstraction at which the task is specified is higher
than the individual units of the implementation platform.
This redundancy thus ensures robustness against processing
unit breakdown.

A second property is that communication in GPL di-
rectly uses the underlying communication model of local
broadcasts. In GPL, an example communication is the long-
range pheromone broadcast. This is implemented using lo-
cal broadcasts. Since there are many neighbours for a given
processing unit, there are many neighbours that may for-
ward the local broadcast. As such, we have an inherent
local communication redundancy exploited for long-range
communication. This redundancy ensures the fault-tolerant
arrival of a long-range message.

Although not commercially available, producing an
AComp in the form of a device like a digital chip is within
reach. Compared to the properties of traditional digital de-
vices the fault-tolerant nature of the AComp has interesting
advantages for the manufacturer. Indeed, since production
of 100% functional devices is a difficult task due to low
yield rates, producing a device that is tolerant of limited
deficiencies is an interesting prospect. Assuming a simi-
lar view to manufacturing a digital chip, we would obtain a
considerable increase in yield rates. In addition, and in our
view more interesting, this offers the possibility of building
larger devices, not constrained by the obligation to produce
them 100% functional.

One thing to note about a device manufactured without
a 100% functional guarantee is that the exact specification
that we are used to today, will be replaced by a non-exact
specification. Specifications will not provide the designer
with guaranteed data figures or ranges of figures but will
provide the designer with guidelines for achieving contin-
uous operation. In the case of an AComp this might for
example be a minimal neighbourhood size to adopt in order
to include enough working processors.

A digital design implicitly assumes that the implementa-
tion platform is 100% functional and each gate has a crucial
role to play in the overall behaviour of the circuit. A support
mechanism is therefore required, to attain this flawless be-
haviour in the presence of faults. This may be required over
a longer lifetime or in difficult environmental conditions.



6 Putting It All Together

Let’s first consider today’s digital EHW platform —
FPGAs. As stated, this platform does not fully exploit evo-
lution. Neither does it support any form of genotype expan-
sion mechanism like growth rules or developmental princi-
ples. It is, however, very suitable for digital design but does
not protect the design against technology failures such as
CLB or routing switch failures.

Taking a step towards a more evolution friendly FPGA,
our group proposed a simplified FPGA architecture (sblock
architecture) [7]. An essential feature of a realistic plat-
form for EHW is that it is available. This architecture is
not likely to be mass produced due to its limited routing re-
sources which, although a benefit to design by evolution, is
a disadvantage for traditional design methods.

Much research is looking at new methods of representa-
tion including the development principles discussed. These
new representations will help to reduce the complexity of
the genotype but increase the complexity of the genotype-
phenotype mapping. The sblock FPGA architecture is fur-
ther proposed as an evolution friendly bridge to today’s
FPGA chips e.g. Virtex. This both simplifies the genotype-
phenotype mapping problem and enables new representa-
tions to be tested out on a virtual evolution-friendly FPGA.
Further mapping to a physical FPGA is available, if re-
quired. A further description of this virtual FPGA and
the mapping solution may be found in [9]. Intuitively,
this sblock architecture may be said to be developmentally
friendly in its communication structure as routing is re-
stricted to local neighbour communication — a feature of
biological development. This issue is further discussed in
[8].

A next step, to both bridge the genotype-phenotype gap
and introduce a mechanism usable in fault detection and re-
pair, is to incorporate a much more complete version of bi-
ological development in the technology i.e. to provide the
ability to re-grow a circuit. One requirement is to provide
sufficient memory at each CLB to store the full building
plan. A second requirement is a two layer communication
system. The first layer, the digital layer is for communi-
cating logic signals i.e. typical design signals. The second
layer handles the biological signals, simulating biological
cell-to-cell signalling in order to let interpretation of genes
be influenced by the neighbourhood the cell is in. A local
highly connected system is appropriate with e.g. 8 neigh-
bours per cell, communicating over multiple parallel wires.

Going further in the direction of inherent fault-tolerance,
an AComp offers some fundamental advantages. Rather
than having to re-grow the circuit itself, the distributed na-
ture of the Amorphous Computing computational model
makes a design less vulnerable. This is due to the abun-
dance of units which protect the design from being depen-

dent on individual units. Clearly the price to be paid here
is the apparent incompatibility of digital circuits and the
Amorphous Computing way of implementing a design i.e.
different computational models.

In section 3, we proposed a way of mapping a digital
design to an AComp. However, instead of trying to trans-
late from a digital to an Amorphous Computing model, we
could consider moving towards a new computational model
for digital design similar to that of Amorphous Computing.
A reason for this move is that fault-tolerance is expected to
gain more and more importance in the future. Moreover,
since AComps are based on biological cellular systems,
they are quite well suited to implement developmental prin-
ciples, already mentioned under the need to evolve larger
designs. In this way, both large designs and large devices
seem more attainable on an AComp like device. The major
bottleneck in producing large-scale AComps seems to be
the implementation of the communication system. Sugges-
tions like RF-communication were already made by MIT
[1]. Other possibilities might be communication through
light or ultra-sound.

Although AComps might offer reasonable evolution-
friendliness (section 4) together with fault-tolerance, it is
rewarding to investigate the architecture of a platform that
would offer almost all properties wanted and moreover be
suited to implement a digital circuit. Although this seems
technologically unattainable at the moment, we propose the
general principles of an implementation platform that ex-
hibits these properties.

Imagine a mixture of chemical substances in a reservoir,
together with a circuit-implementation surface. The surface
is made of individual cellular structures, comparable to a
CLB in an FPGA. The total of the chemical substances and
the computational units on top instantiate a certain chemi-
cal equilibrium. If a computational unit fails, this equilib-
rium is disrupted, and a new working unit is spontaneously
re-instantiated in order to re-attain the equilibrium. State
information for a computational unit is redundantly stored
on its neighbours and fed back onto the new unit to ensure
continuous operation.

This mechanism is related to the fault-detection and re-
pair architecture with two communication layers proposed
above. In the architecture discussed here, however, the en-
tire task of detecting a failure and replacing the part is taken
care of using chemical principles, which makes re-growing
around broken parts no longer necessary. Again, this seems
technologically improbable in the near future, but might be
a starting point for experts in chemistry and materials to ex-
tend this to a working prototype.



7 Acknowledgements

� The authors would like to thank Ellie D’Hondt for her
time and input in the discussions related to Amorphous
computers.

� Piet van Remortel is funded by a PhD grant from the
Flemish Institute for the promotion of Innovation by
Science and Technology in Flanders (IWT).

References

[1] H. Abelson et al. Amorphous computing. Technical report,
Massachusetts Institute of Technology, 1999.

[2] R. Åserud and I. Nielsen. Trends in current analogue design.
Analogue Integrated Circuits and Signal Processing, 7(1),
1995.

[3] S. I. Association. The National Technology Roadmap for
Semiconductors. 1997.

[4] P. J. Bentley and S. Kumar. Three ways to grow designs:
A comparison of embryogenies for an evolutionary design
problem. In Genetic and Evolutionary Computation Con-
ference (GECCO ’99), pages 35–43, 1999.

[5] D. Bradley, C. Ortega-Sanchez, and A. Tyrell. Embryonics +
immunotronics : A bio-inspired approach to fault-tollerance.
In The 2nd NASA/DoD Workshop on Evolvable Hardware,
pages 215–224, 2000.

[6] D. N. Coore. Botanical Computing : A Developmental
Approach to Generating Interconnected Topologies on an
Amorphous Computer. PhD thesis, Massachusetts Institute
of Technology, 1999.

[7] P. Haddow and G. Tufte. An evolvable hardware FPGA for
adaptive hardware. In Congress on Evolutionary Computa-
tion(CEC00), pages 553–560, 2000.

[8] P. Haddow, G. Tufte, and P. van Remortel. Shrinking the
genotype: L-systems for EHW? In submitted to 4th Interna-
tional Conference on Evolvable Systems (ICES01), 2001.

[9] P. C. Haddow and G. Tufte. Bridging the genotype-
phenotype mapping for digital FPGAs. In submitted to the
3rdt NASA/DoD Workshop on Evolvable Hardware, 2001.

[10] A. Lindenmayer. Mathematical Models for Cellular Interac-
tions in Development. Journal of Theoretical Biology, 1968.

[11] A. Lindenmayer. Developmental Systems without Cellu-
lar Interactions, their Languages and Grammars. Journal
of Theoretical Biology, 1971.

[12] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward
self-repairing and self-replicating hardware : the embryon-
ics approach. In The 2nd NASA/DoD Workshop on Evolv-
able Hardware, pages 205–214, 2000.


