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Abstract. The exploitation of the physical characteristics has already been dem-
onstrated in the intrinsic evolution of electronic circuits. This paper is an initial
attempt at creating a world in which "physics" can be exploited in simulation.
As a starting point we investigate a model of gate-like components with added
noise. We refer to this as a kind of messiness. The principal idea behind these
messy gates is that artificial evolution makes a virtue of the untidiness. We are
ultimately trying to study the question: What kind of components should we use
in artificial evolution? Several experiments are described that show that the
messy circuits have a natural robustness to noise, as well as an implicit fault-
tolerance. In addition, it was relatively easy for evolution to generate novel cir-
cuits that were surprisingly efficient.

1   Introduction

Natural evolution has produced the most subtle and complex bio-chemical information
processing machines known (i.e. living creatures). In addition to this complexity living
systems possess a remarkable degree of  fault tolerance and robustness. At this point it
is necessary to clarify the exact meanings of the terms: fault-tolerance and robustness.
Robustness deals primarily with problems that are expected to occur and must be
protected against. By contrast, fault tolerance primarily deals with problems that are
unexpected. Humans can design systems to be robust but true fault tolerance is a much
more difficult problem. This is particularly acute in digital electronics. Digital gates
are robust from the point of view of minor changes in input voltages but systems built
from them are fragile to stuck-at faults.

Another aspect of human designed systems is that they are usually built from pro-
duction line components (especially if they are electronic).  Living systems are built
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from components (i.e. cells) that vary considerably in their properties. It is now recog-
nised that many of the advantageous properties of living systems emerge from the way
in which the individual properties of the components is exploited.

Artificial neural networks (ANN) were one of the first bio-inspired circuits to be
developed. It has been suggested that ANNs exhibit graceful degradation in the pres-
ence of faults [1]. However more recent work has indicated that ANNs are not intrin-
sically fault tolerant [7,12].

In recent decades the use of design algorithms that employ the principles of Dar-
winian evolution have been applied to the design of electronic systems [2,5,13,14].
Such work has become known as Evolvable Hardware. One of the most intriguing
findings in this field is that of Adrian Thompson [8]. He showed that it was possible
for artificial evolution to create FGPA designs that exploited the physical characteris-
tics of the silicon substrate to efficiently carry out a particular task. Thompson found
that unconstrained artificial evolution explored very unusual ways of solving problems
precisely because it was able to exploit the subtle and incidental physical characteris-
tics. It can be argued that evolution has produced such complex systems because it can
make use of the full, unmodellable richness of the physical world.

Another question raised from Thompson’s work is the following: What basic com-
ponents should we be using in artificial evolution? It does not seem very likely that the
electronic components that have been created for human design should happen to be
particularly useful in artificial evolution. Indeed it could be seen as a testament to the
power of evolution that using them, artificial evolution could produce anything useful
at all. If one is going to build practical systems using artificial evolution it appears that
one has to go back to basics and try to design radically new forms of electronic com-
ponents, or use existing components in novel configurations [e.g. 15] that might assist
the artificial evolutionary process. This could be done in two ways. First, one could
search for special materials and then subject them to intrinsic artificial evolution, and
second, one could try to define new kinds of components in simulation and subject
them to extrinsic evolution. The former is obviously a good approach, however it is
potentially very expensive and  likely to be very difficult. The latter though, perhaps, is
not as exciting, however it is feasible and could actually assist the former goal by
helping us to identify what kinds of properties are important.  These thoughts were the
starting point for the work reported in this paper.

The paper is divided as follows: Section 2 is concerned with the definition of the
new component model (which is described as messy). Section 3 describes the genotype
representation and evolutionary algorithm that was used. Section 4 describes the ex-
periments performed. In section 5 the experimental results are presented. In section 6
the concluding remarks are made. The paper finishes with a description of possible
future work in section 7.



2   Messy gates

Since the aim is not only to create new types of components for use in artificial evolu-
tion but also to understand exactly how they work, it was necessary to choose a new
model that was adjustable. It was desirable to be able to change a parameter continu-
ously so that the new component model could become the same as a familiar tradi-
tional component. A natural choice of traditional component was a digital logic gate.
Accordingly, a model that was that of a digital multiplexer with additional randomness
on the output was created. The new model  took real valued input combined the inputs
to give a real valued output and random noise was then superimposed on the output
(figure 1). These gates are being referred to as messy and as having a degree of messi-
ness.
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Fig. 1.  Model of messy MUX

 The equation below describes the messy MUX:

bccamry ++=  . (1)

where m represents the constant value of messiness chosen for the entire circuit and r
represents a real random number uniformly sampled from the interval [-1.0, 1.0]. The
inputs to the messy MUX are a and b, and c is the control input. The bar over c refers
to 1-c. All variables are real-valued. Clearly when m=0 and a, b, and c are only al-
lowed to be 0 or 1, the digital MUX is recovered and all the rules of Boolean logic
apply. In the experiments a messy MUX with one input inverted (input b would then
become 1-b) was used as well. Once real values for variables are allowed it is not
clear how to decide real-valued equivalence of the Boolean operators. Arithmetic add
and multiply are the closest analogues of the inclusive-OR and the AND operators.
The model we have used was not designed to be a feasible electronic model, since the
primary aim was to investigate the ability of artificial evolution to use any chosen
model. No claims are made about the "correctness" of the model we used other than it
possessed the property of being a superset of the digital case.

3   Evolutionary algorithm and genotype

The genotype representation is the same as that used for evolving digital designs [3,4].
It is best explained with a small example. In figure 2 are shown four messy MUX
(mMUX) gates.  The numbers (0-3) refer to the four primary inputs of the target func-
tion. The numbers on the inputs to the mMUX refer to the connections to the primary



inputs or the outputs of other mMUX. The outputs of the mMUX are labeled (sequen-
tially following on from the inputs). Thus the second mMUX on the left has the "a"
input connected to the output of the first mMUX, the other two mMUX inputs are
connected to the two primary inputs 3 and 0. In this example it is assumed that the
target function has four outputs. Thus the genotype has four output connections (4 5 7
3). The figures in bold refer to which of the two mMUX were being used (0 refers to
mMUX with no inputs inverted, 1 refers to the "b" input being inverted ). The figures
printed in grey refer to inactive genes or mMUX (i.e the third mMUX does not have
its output connected). This paper only considers feed-forward circuits. The represen-
tation allows any mMUX to have its input connected to any other mMUX on its left.
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Fig. 2.  Example genotype and resulting circuit with four inputs and four outputs

The evolutionary algorithm employed was a simple form of  (1+4) evolutionary strat-
egy (ES). In this case a population of 5 random chromosomes is randomly generated
and the fittest chromosome selected. The new population is then filled with mutated
versions of this. Random mutation is defined as a percentage of genes in the popula-
tion that were mutated. The mutation operator respects the feed-forward nature of the
circuits and also the different alphabets associated with connections and functions.

Each circuit has a fixed value of messiness m. However each gate has its own ran-
dom value r (equation 1). This is illustrated in figure 3.
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Fig. 3. Circuit schematic with individual random values

The fitness of an individual is measured by testing the chromosome with all possible
combinations of inputs and comparing the output values with the target Boolean truth
table. For all experiments described in this paper, the target is a 2-bit multiplier. Thus,
there are 4 inputs, 4 outputs and 24 possible input test vectors yielding a total of 64
output bits in the truth table.

Fitness is equal to the number of output bits of a circuit being equal to the corre-
sponding bit in the target truth table. This is referred to as bitwise correctness. A per-
fectly functional circuit would have all its output bits equal to the output bits of the
truth table, and thus the bitwise correctness would equal 64 in the case of the 2-bit



multiplier. In the case of messy circuits, the real valued internal signals were rounded
at the output before being compared to the target truth table.

4   Experiments

Several experiments were performed to investigate the nature of the mMUX and its
influence on the evolved circuits and the evolutionary algorithm. These experiments
are described below.
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Fig. 4. Experimental setup

The setup for the experiments is shown in figure 4. The evolutionary algorithm pro-
duces a circuit consisting of a chromosome, a set of random values Rc and the messi-
ness used (mc=me). A test bench allows measuring the performance of a circuit by
using different values of messiness (mt), different sets of random values (Rt) and in-
troducing stuck-at faults.

The first two experiments investigated whether it was feasible to evolve circuits
that exhibited a natural robustness to internal random noise within some specified
range.

A set of about 500 chromosomes was evolved for six different values of m. The fit-
ness measure was based on taking an average of the bitwise correctness over 15 sets of
random values r (for each gate). Evolution was halted each time the fitness was equal
to 64 (all 15 chromsomes had bitwise correctness equal to 64). This set of chromo-
somes was used to generate the results of the first three experiments. Thus, these ex-
periments investigates different configurations of the testbench, with the fitness of
each circuit measured as an average over 50 trials. This was done both to introduce
new randomvalues Rt for every test performed, as well as testing different randomly
chosen gates for stuck-at faults in the case of the third experiment.



4.1   First experiment

The first experiment sought to investigate how computationally demanding it is to
evolve circuits with high values of m, as well as the general performance of the cir-
cuits in an environment equally noisy to the one in which it was evolved (mt=mc). In
all other respects the experiment was the same as that described previously.

4.2   Second experiment

Thompson has demonstrated that it is possible to evolve robust circuits intrinsically by
exposing them to various environments [9, 10]. In the second experiment, the same set
of chromosomes were tested with the messiness of the test bench mt, being set to in-
creasingly higher values. This simulates the circuits running in increasingly more
noisy environments, and disregards whatever value me used when the chromosomes
were evolved. This was done to investigate the robustness of the chromosomes with
regards to the amplification mt of the internal noise, and its relation the value of me

used in the evolution of the different chromosomes.

4.3   Third experiment

An interesting property of a digital circuit is its fault tolerance. An experiment was
carried out to measure the tolerance in the evolved circuits to stuck-at faults.

The test bench was set up to subject the circuits to stuck-at-1 faults. Stuck-at-1
faults were selected since their impact on a multiplier is on average more severe then
stuck-at-zero faults. This is due to the fact that the output part of the 2-bit multiplier
truth table contains 14 zeros and 50 ones. Thus, increasing numbers of stuck-at-0
faults force the bitwise correctness towards 50. On the other hand, increasing the
numbers of stuck-at-1 faults force the bitwise correctness towards 14.

4.4   Fourth experiment

The last experiment sought to investigate how evolution would be capable of exploit-
ing individual characteristics of given gates. This was done by generating random
values for Re for each gate only once for each run of the evolutionary algorithm. The
algorithm would then try to utilize the properties of each individual mMUX in the
circuit to solve the problem.

The set of random values was saved with each chromosome as Rc, and the test
bench was configured to use the saved random values as the values to be used under
test (Rt=Rc).

The fitness function was modified by adding the number of redundant nodes to the
bitwise correctness (provided the bitwise correctness equalled 64). This was done to
investigate if it would be possible to evolve smaller circuits for higher values of m.



5   Results

This section presents the results obtained through the experiments carried out in sec-
tion 4. The results are breifly discussed within the limits of the scope of this paper.

5.1   First experiment

Evolving chromosomes with bitwise correctness equal to 64 was more computation-
ally expensive for large values of m. Purely digital circuits (m=0) took an average of
2000 generations to evolve. On the other hand, it required an average of more then
30000 generations to evolve circuits with a messiness value of m=0.25.

Even though all chromosomes are evaluated 15 times to distribute the random val-
ues creating noise at the gate outputs, the same chromosome may not obtain perfect
fitness if a new set of random values are introduced. In such a way, the number of
evaluations during evolution can be considered a choice between computational effort
and robustness of the evolved circuit (with regards to random values introduced).

The resulting average fitness is shown in figure 5.
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Fig. 5. Average fitness measured through tests

Even though this figure shows a negative trend, it implies that messy circuits are
pretty robust to variations in the internal noise within the range me used when the
particular circuit was evolved, as the drop in fitness was quite small.

Finally, this experiment revealed another property of evolving messy circuits. Fig-
ure 6 illustrates how chromosomes evolved with high values of m tend to produce
smaller circuits then those produced when messiness is low. This is probably due to
the fact that evolution finds a way to reduce the amount of noise the circuit is exposed
to. Each new gate means a new noisy value to cope with.
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Fig. 6. The number of gates tend to be small for larger values of m

5.2   Second experiment

When the evolved circuits were tested in increasingly more noisy environments, a
clear trend showed increased robustness for circuits evolved with higher messiness
(me). This trend is shown in figure 7. The graph shows the deviation from the average
fitness over all evolved circuits, when exposed to increasing noise in the environment.
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Fig. 7. Average fitness when exposed to more noisy environments

5.3   Third experiment

It was difficult to see any clear trend on whether messy circuits were more tolerant
then pure digital ones when they used a small number of gates. It was desirable to
investigate whether larger circuits with high messiness would be more fault tolerant.
To reliably obtain large circuits (using the maximum number of gates =30) a term had
to be added to the fitness that favoured larger circuits. This meant that circuits without



a bitwise correctness of 64 had to be accepted. However it was observed that these
circuits proved to be largely more fault tolerant to the stuck-at-1 faults and showed a
more graceful degradation when compared to the zero messiness case. This trend is
shown in the graph in figure 8. Note that the test bench in this case introduced the
faults in the same environment that each chromosome was originally evolved (same
value of m). So the circuits had to cope with intrinsic randomness associated with the
messiness mc, in addition to the introduced faults.
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Fig. 8. Difference in degradation of large circuits

An interesting aspect of this graceful degradation is the fact that this tolerance is im-
plicit, since these circuits were never evolved explicitly with fault tolerance to stuck-at
faults as a part of the EA. A comparison of the fault tolerance of the evolved digital
case (m=0) and conventional circuits was not carried out. However, certain evolution-
ary systems may inhibit natural mutation tolerance due to the workings of the evolu-
tionary process [11]. Such tolerance is unlikely to have any effect on the EA used in
this paper, as a result of the steep hill-climbing nature of the algorithm.

The results where compared to circuits evolved explicitly for fault tolerance (i.e.
tolerance to stuck-at fault was included in the fitness function). This comparison
showed that explicit fault tolerance could be evolved to display stronger tolerance, but
at a higher computational cost.

5.4   Fourth experiment

The fourth experiment revealed that evolving circuits with permanent sets of values Rc

for each chromosome, was slightly more computationally demanding for higher values
of m.

Figure 9 shows the percentage of evolved circuits having a particular number of
gates for various messiness values. The low values of m tended to yield circuits with 7
gates, higher values of m had a wider distribution of evolved circuits.
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For increasing values of m, a larger amount of the evolved circuits consisted of only
six gates, suggesting that only sets of random values with sufficient range allow such
small circuit. The small circuits are interesting, since it appears the minimum number
of gates (of the two types of multiplexers used) that can be used to solve the problem
in a pure digital manner is 7 [4]. An example of a circuit of this type is shown in fig-
ure 10. A and B are the two 2-bit numbers being multiplied, while P is the output
product. Subscripts on the inputs and outputs refers to the significance of the bits (0
being least significant). A circle at an input illustrates an inverted value. The shown
circuit was evolved with m equal to 0.4.  It demonstrates the ability of a blind evolu-
tionary process to exploit all the "physical characteristics" of the components. This is
reminiscent of Thompson’s findings in [10] where he found that robust evolved
clocked digital circuits exploited glitches, even though these are shunned in conven-
tional human design.
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6   Conclusions

In this paper a new model of a gate-like component with added random noise was
proposed. The experiments carried indicated that such components are beneficial in
several ways. Firstly the new gate-like models naturally offered a robustness to noise.
Secondly circuits that were evolved using these messy components exhibited implicit
fault tolerance. Finally experiments indicated that in creating a simulateable world,
"physical" characteristics (intrinsic random values) could be exploited to create sur-
prisingly efficient designs (the six mMUX 2-bit multiplier). Artificial evolution ap-
pears to be quite adept at exploiting such things. It is not easy to imagine a human
design process that could exploit such random differences. One advantage of such a
simulation is that it is possible to inspect every detail of the "physics". In addition all
the designs are replicable and the functionality of the evolved circuit can be verified
mathematically. It may be that one cannot design a model with sufficient richness to
allow artificial evolution to find really innovative ways of building circuits. In these
cases intrinsic evolution may be the only way forward. However this appears to re-
quire the use of conventional technology (i.e. FPGAs, programmable-logic). One way
forward might be to deliberately disrupt the silicon (perhaps by radiation) in order to
enrich the natural physics. Another approach would be to look for novel materials for
intrinsic evolution (i.e. evolvable matter arrays [6]). It should also be noted that at
present the algorithms that are used in artificial evolution are very far from the so-
phistication and complexity of real biological evolution processes.

7   Future work

This paper is a preliminary study into an area that to the knowledge of the authors is
relatively unexplored. The model of messiness discussed here is really just a starting
point. It is likely that more complex models of components would be much more suit-
able for use in an evolutionary design process.

Further on, a study into the general principles on how evolution exploits properties
of the underlying hardware would be interesting. This paper attempts to initiate
thoughts directed at issues that could be important in a search for more suitable media
for evolutionary systems.
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