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Abstract. With the increasing amount of biomedical literature, there
is a need for automatic extraction of information to support biomedical
researchers. Due to incomplete biomedical information databases, the
extraction cannot be done straightforward using dictionaries, so several
approaches using contextual rules and machine learning have previously
been proposed. Our work is inspired by the previous approaches, but
is novel in the sense that it combines Google and Gene Ontology for
annotating protein interactions. We got promising empirical results -
57.5% terms as valid GO annotations, and 16.9% protein names in the
answers provided by our system gProt. The total error-rate was 25.6%
consisting mainly of overly general answers and syntactic errors, but
also including semantic errors, other biological entities (than proteins
and GO-terms) and false information sources.
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1 Introduction

With the increasing importance of accurate and up-to-date databases about
proteins and genes for research, there is a need for efficient ways of updating
these databases by extracting information from biomedical research literature
[21, 20, 8], e.g. those indexed in MEDLINE. Examples of information resources
containing such information are LocusLink, UniGene and Swiss-Prot for protein
info and the Gene Ontology for semantic labels.

Due to the large and rapidly growing amounts of biomedical literature, the
extraction process needs to be more automatic than previously. Current extrac-
tion approaches have provided promising results, but they are not sufficiently
accurate and scalable. Methodologically all the suggested approaches belong to
the information extraction field [3], and in the biomedical domain they range



from simple automatic methods to more sophisticated, but slightly more man-
ual, methods. Good examples are: Learning relationships between proteins/genes
based on co-occurrences in MEDLINE abstracts (e.g. [9]), manually developed in-
formation extraction rules (e.g. [22]), information extraction (e.g. protein names)
classifiers trained on manually annotated training corpora (e.g. [1]), and classi-
fiers trained on automatically annotated training corpora [19]).

1.1 Research Hypothesis

Internet Search Engines such as Google, Yahoo and MSN Search are the world’s
largest readily available information sources, also in the biomedical domain.
Based on promising results from recent work on using Google for semantic an-
notation of biomedical literature [16], we are encouraged to investigate if Google
can be used to find protein interactions that match the Gene Ontology (GO).
This leads to the hypothesis:

Can Internet Search engines such as Google be used to annotate protein in-
teractions in the Gene Ontology framework?

The rest of this paper is organized as follows. Section 2 describes the materials
used, section 3 presents our method, section 4 presents empirical results, section
5 describes related work, section 6 discusses our approach, and last the conclusion
and future work.

2 Materials

See fig. 1 for an overview of the system. As input for our experiments we used
the following:

– 10 proteins that are already well-known to our biology experts.
– 37 verb-templates suggested by Martin et. al (LexiQuest) [12].

Proteins

The following proteins were used as input to the system.

Proteins used
’EGF’, ’TNF’, ’CCK’, ’gastrin’, ’CCKAR’, ’CCKBR’, ’p53’, ’ATF1’,
’CREB’, ’CREM’.

In addition, each protein is also described by several other names or synonyms
in the literature. E.g. gastrin is also known as ’g14’, ’g17’, ’g34’, ’GAS’, ’gast’,
’gastrin precursor ’, ’gastrin 14’, etc. So our biologists compiled a list of roughly
10 synonyms for each protein, giving us about 100 terms total to annotate.



Interaction Verbs

We selected our interaction verb templates from table 1 in [12]. They had a list
of 44 verbs, but we chose to use only 37 of these verbs. The reason for this is
that we are focusing on simple statements like ”gastrin activates ...”, with the
object of the verb following directly after the verb template. The following table
shows the original list of verbs, with the removed ones in parenthesis.

Verb templates used
acetylates, activates, (antagonizes), associates with, (attenuates),
(binding to), binds, blocks, (bonds), (complex), deactivates, decreases,
degrades, dephosphorylates, dimerizes, dissociates from, downregulates,
forms complex with, hydrolyses, inactivates, increases, induces, in-
hibits, interacts with, links, mediates, (oligomerizes), overexpresses,
phosphorylates, potentiates, precipitates with, reacts with, recruits, (re-
duces), regulates, releases, represses, stimulates, transactivates, trans-
duces, transforms, triggers, ubiquitinates, upregulates,

3 Our Approach

We have taken a modular approach where every submodule can easily be replaced
by other similar modules in order to improve the general performance of the
system. There are five modules in the system. The first one sets up the search
queries, the second runs the queries against Google, the third one tokenizes
the results, the fourth parses the tokenized text, and the fifth and last module
extracts all the results and presents them to the human evaluators. See figure 1.

1. Data Selection N (=100) protein names are combined with M (=37) verb
templates, giving a total of N x M (3700) queries to run against Google.

2. Google The queries are fed to the PyGoogle module which allows 1000
queries to be run against the Google search engine every day with a personal
password key. In order to maximize the use of this quota, the results of every
query are cached locally, so that each given query will be executed only once.
If a search returns more than ten results, the resultset can be expanded by
ten at a time, at the cost of one of the 1000 quota-queries every time. We
decided to use up to 30 results for each query in this experiment.

3. Tokenization The text is tokenized to split it into meaningful tokens, or
”words”. We use a simple WhiteSpaceTokenizer from NLTK, where every
special character (like ( ) ” ’ - , and .) is treated as a separate token.

4. Parsing Each returned hit from Google contains a ”snippet” with the given
query phrase and approximately ten words on each side of it. We use some
simple regular grammars to match the phrase and the words following it.
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Fig. 1. Overview of Our Approach (named gProt)

If the next word is a noun it is returned. Otherwise, adjectives are skipped
until a noun is encountered, or a ”miss” is returned.

5. Expert Evaluation The results were merged so that all synonyms were
treated as if the main protein name had been used in the original query. Then
the results were put into groups (one group for each protein-verb pair) and
sorted alphabetically within that group. These results were then presented
to the biologists, who evaluated the usefulness of our results from Google.

4 Empirical results

Fig. 2 and 3 show the results. The first one shows that more than half of the
extracted terms were terms that could be used to annotate the given protein
according to the Gene Ontology (GO). Around one fifth of the results contained
an identifiable protein name that could be stored as a protein-protein interaction.
Only one quarter of the terms were deemed not useful. The different kinds of
”not useful”-errors can be read out of fig. 3.
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Fig. 2. Main Results

5 Related Work

Our specific approach was on using Google and Gene Ontology for annotating
protein interactions. We haven’t been able to find other work that does this, but
the closest are Dingare et al., that uses results from Google search as a feature for
a maximum entropy classifier used to detect protein and gene names [5, 6], and
our previous work on semantic annotation of proteins (i.e. tagging of individual
proteins, not their GO relation) [16]. Google has also been used for semantic
tagging outside of the biomedical field, e.g. in Cimiano and Staab’s PANKOW
system [2] and in [17, 7, 10, 11, 4, 13].

A comprehensive overview of past methods for protein-related information
extraction is provided in [18].

6 Discussion

In the following section we discuss our approach step-by-step. (The steps as
presented in fig. 1.)

1. Data Selection The results were inspected by cancer researchers, so the
focus was naturally on proteins with a role in cancer development, and more
specifically cancer in the stomach. One such protein is gastrin, used as a
running example in this article. In the experiment we used ten such protein
names with around ten synonyms for each. The large number of synonyms
used for each original protein name gave us a valuable increase in the recall
of expected facts from Google.

2. Google Since we decided to download up to 3 (times 10) results for each
query, we had to do around 11.000 queries. This took almost two weeks,
because of Google’s restraint to only run 1000 queries per day. If we want to
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Fig. 3. Breakdown of Errors

scale up this method in the future, we would probably have to pay Google
to let us do more queries per day, or consider using the recently announced
Yahoo API that allows 5.000 queries per day. The number of returned GO-
processes was over 50%, which is very promising for automatic annotation,
considering that no information has been used in the process to match GO-
terms more often than e.g. protein names.

3. Tokenization Most of the ”errors” are syntactic errors, and many of the
syntactic errors occur because of bad tokenization, mainly because a lot of
the returned words are just parts of multi-word-tokens. Also, many of the
words are not nouns at all, so they are not suitable class names in the first
place. In the future more work should be done in the tokenization phase. The
WhiteSpaceTokenizer was used because it is easy and fast, but with some
sort of NP-clustering and parentheses handling, almost half of the errors
could be removed. One example of NP clustering is protein names, such as
”g-protein coupled receptor (GPCR)”.
How to deal with parentheses? Sometimes they are important parts of a
protein name (often part of ”formulae” describing the protein), and other
times they are just used to state that the words within them aren’t that
important. And the worst problem is that they are quite often ”unbalanced”,
either because of typing errors, ”1) 2) 3)”-style numbering, or smileys.

4. Parsing We used a really simple grammar to extract the interacting terms
from what Google returned. It can be summed up as: After the template,
keep reading words until a ”stop-word” is encountered. As ”stop-words” we
used some common prepositions, in addition to full-stop punctuation (.,;?!).
There is obviously room for a lot of improvements here, e.g. using more
advanced Natural Language Understanding techniques.



5. Expert Evaluation The evaluation was quite simple, just focusing on de-
ciding whether this way of using Google to do information extraction is
worth pursuing or not. Since the tokenization and grammar modules aren’t
perfect yet, the biologist also had access to the complete snippets (and the
corresponding homepage) in their evaluation work. It is now obvious to us
that we should keep developing this system, since almost three out of four
results were relevant, and many of them also novel, information.

7 Conclusion and Future Work

This paper presents a novel approach - gProt - using Google to find semantic
(GO-) annotations for specific proteins.

We got empirically promising results - 57.5% semantic annotation classes, and
16.9% protein names in the answers provided by gProt. This means that 74.4%
of the results are useful. This encourages further work, possibly in combination
with other approaches (e.g. rule based information extraction methods), in order
to improve the overall accuracy. In the similar task of protein name identifica-
tion, recently presented precision scores ranges from 70 to 75% [1]. Hopefully,
more advanced methods will greatly reduce the number of errors (useless infor-
mation), which is currently at 25.6%. Disambiguation is another issue that needs
to be further investigated, because sometimes different search-results are really
just one single identity, because of synonyms and acronyms for example. Other
opportunities for future work include:

– Improve tokenization. Just splitting on whitespace and punctuation charac-
ters is not good enough. In biomedical texts non-alphabetic characters such
as brackets and dashes need to be handled better.

– Search for other verb templates using Google. E.g. Which templates give the
best results, and what about negations (“does not activate ...”)?

– Investigate whether the Google ranking is correlated with the accuracy of the
proposed semantic tag. Are highly ranked pages better sources than lower
ranked ones?

– Test our approach on larger datasets, e.g. using all the returned results from
Google.

– Combine this approach with more advanced natural language parsing tech-
niques in order to improve the accuracy, [14, 15].

– In order to find multiword tokens, one could extend the search query (” X
activates ”) to also include neighboring words of X, and then see how this
affects the number of hits returned by Google. If there is no reduction in
the number of hits, this means that the words are ”always” printed together
and are likely constituents in a multiword token. If you have only one actual
hit to begin with, the certainty of the previous statement is of course very
weak, but with increasing number of hits, the confidence is also growing.

– In this experiment very crude Part Of Speech (POS) tagging is done, so our
results can be seen as a baseline for this kind of experiment. In the future



we want to improve the results, for example by utilizing better grammars,
and more advanced natural language understanding techniques.
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