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Abstract

With the increasing amount of biomedical literature,
there is a need for automatic extraction of informa-
tion to support biomedical researchers. Due to incom-
plete biomedical information databases, the extraction is
not straightforward using dictionaries, and several ap-
proaches using contextual rules and machine learning
have previously been proposed. Our work is inspired by
the previous approaches, but is novel in the sense that it is
fully automatic and doesn’t rely on expert tagged corpora.
The main ideas are 1) unigram tagging of corpora using
known protein names for training examples for the pro-
tein name extraction classifier and 2) tight positive and
negative examples by having protein-relatedwords as neg-
ative examples and protein names/synonyms as positive
examples. We present preliminary results on Medline ab-
stracts about gastrin, further work will be on testing the
approach on BioCreative benchmark data sets.

1. Introduction

With the increasing importance of accurate and up-
to-date protein/gene information databases and on-
tologies for biomedical research, there is a need to ex-
tract protein information from biomedical research lit-
erature, e.g. those indexed in Medline [20].

Methodologically these approaches belong to the
information extraction field [5], and in the biomed-
ical domain they range from learning relationships be-
tween proteins/genes based on co-occurrences in Med-
line abstracts [9] to manually developed protein infor-

Examples of protein names in a textual
context

1. “duodenum, a peptone meal in the”

2. “subtilisin plus leucine amino-
peptidase plus prolidase followed”

3. “predictable hydrolysis of [3H]digoxin-
12alpha occurred in vitro”

mation extraction rules [21] and protein name classi-
fiers trained on manually annotated training corpora
[2].

1.1. Research Questions

Two of the main issues in information extraction in
general are: 1) how to automate the generation of an-
notated training data needed to create extraction rules
and classifiers and 2) how to select appropriate neg-
ative examples that are closely related but disjoined
from the positive examples in order to ensure high ac-
curacy for the information extraction of protein names.
This leads to the following hypotheses:

1. Can existing protein information databases be used
for fully automatic generation of tagged training
data for protein name extraction classifiers?

2. Can existing protein information databases be used
to create appropriate negative examples for infor-
mation extraction of protein names?



The rest of this paper is organized as follows. Sec-
tion 2 describes the materials used, section 3 presents
our method, section 4 describes related work, section 5
presents empirical results, section 6 discusses our ap-
proach, and finally section 7 contains the conclusion
and future work.

2. Materials

The materials used included biomedical (sample of
Medline abstract) and general English (Brown) textual
corpora, as well as protein databases, see below for a
detailed overview.

As subject for the expert validation experiments we
used the collection of 12.238 gastrin-related Medline
abstracts that were available in September 2004. Gas-
trin was selected to fit the field of expertise of the re-
searchers who evaluated our findings.

As a source for finding known protein names we
use a web search system called Gsearch, developed at
Department of Cancer Research and Molecular Medi-
cine at NTNU. It integrates three common online pro-
tein databases, namely Swiss-Prot, LocusLink and Uni-
Gene.

The Brown repository (corpus) is an excellent re-
source for training a Part Of Speech (POS) tagger. It
consists of 1,014,312 words of running text of edited
English.

3. Our Approach

We have taken a modular approach where every sub-
module can easily be replaced by other similar modules
in order to improve the general performance of the sys-
tem. The main modules correlate with the main tasks
that have to be solved in an information extraction
setting. There are four modules connected to the data
gathering phase, namely data selection, tokenization,
POS-tagging and Stemming. Then three modules deal
with classification, namely Gsearch, feature extraction
and Classification. The last three modules are evalua-
tion modules that handle cross-validation, expert eval-
uation and dataset statistics. See figure 2.

1. Data Selection The data selection module uses
PubMed Entrez online system to return a set of
PubMed IDs (PMIDs) and abstracts for a given
protein, in our case ”gastrin” (symbol GAS).

2. Tokenization The text is tokenized to split
it into meaningful tokens, or ”words”. We use
the WhiteSpaceTokenizer from NLTK. Words in
parentheses were clustered together and tagged
as a single token with the special tag Paren.
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Protein?
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Figure 1. Overview of Our Approach

3. POS tagging using a Brill tagger trained on the
Brown Corpus. This module acts as an advanced
stop-word-list, excluding all the everyday common
American words from our protein search. Later,
the actual POS tags are also used as context fea-
tures for their neighboring words.

4. Porter-Stemming If the stem of a word can be
tagged by the Brill tagger, then the word itself is
given the special tag ”STEM”, and thereby trans-
ferred to the common word list.

5. Gsearch.org tagging is our way of automatically
creating positive and negative examples for the
protein name extraction stage. Classifiers in gen-
eral follow the rule “garbage in equals garbage
out”. One way to improve this is to do careful fea-
ture selection (out of the scope of this paper). An-
other is in the selection of positive and negative
training data - which is what we are focusing on.
The idea is that if an information extraction clas-



sifier should be able to discern between protein
names and other entities, it in particular needs to
handle entities that are as close to protein names
as possible, i.e. protein-related entities. We select
negative examples (i.e. protein-related entities) by
using words (not filtered out by past modules) de-
scribing proteins, and positive examples by using
protein names and synonyms. The proteins, syn-
onyms and corresponding descriptions are found
using the Gsearch.org search engine. It enables si-
multaneous searches in the Swiss-Prot, UniGene
and LocusLink protein databases.

The remaining words are the untagged words
that need to be classified (with the classi-
fier trained on the positive and negative data
generated in this step).

Figure 2. ”Sharp edge” between positive and
negative examples might improve classification
accuracy

6. Feature Selection The features we use are the
word itself (TEXT), the given tag (POS) from
Brill or Gsearch (or None if the word is un-
tagged), and other True/False features like
HASBRACKET, HASFIRSTUPPER, HASNON-
ALPHANUMPREFIX, ISLOWERCASE, ISNU-
MERIC, ISUPPERCASE. The features are col-
lected for the word in question, and for the n
nearest neighbors (we use n = 3 in our experi-
ments).

7. Classifier Performance The positive and neg-
ative examples connected with the features de-
scribed above are then used as training data for
classification of untagged tokens as part of a pro-
tein name or not. Our selection of classifiers is
quite pragmatic due to the no free lunch theorem
[7], i.e. “there is no best classifier for all problems”.
We used the following classifiers: Support Vector
Machines (with lin., pol., sig. and rbf kernels) in

the SVM-Light tool [11], Naive Bayes in the Or-
ange tool [6] and a Proximal Support Vector Ma-
chine (PSVM) in the Incridge tool [19] (PSVM is
also known as Regularized Least Squares Classifi-
cation)

8. Automatic Evaluation In order to efficiently
test our extraction approach we first try to clas-
sify known data. If this gives extremely poor re-
sults there is no reason to pursue in classifying
untagged tokens. The methods applied were ”train
and test” sets of 2500 examples each with various
feature set combinations, as well as 10-fold cross-
validation in order to test whether the ”train and
test”-set approach was ok.

9. Expert Evaluation The whole purpose of the
extraction approach is to find proteins among un-
tagged tokens. In order to do this we gave a sam-
ple of untagged tokens and their surrounding tex-
tual context to molecular biologists1 so they could
say if each token was a part of a protein name
or not. We then used this as the golden standard
to test our classifier performance and to measure
true/false positives/negatives and to calculate F-
Score and classification accuracy.

10. Post Mortem Analysis In order to character-
ize the size of the untagged protein names prob-
lem, we used the expert tagging from the molecu-
lar biologists in order to estimate a confidence in-
terval for i) the probability of an untagged token
being part of a protein name, and ii) the probabil-
ity of a token being untagged, given our tagging
sources.

4. Related Work

Our specific approach was on using existing data-
bases to automatically annotate information extraction
classifiers in biomedical corpora, and at the same time
using these databases to create both positive and nega-
tive examples. We haven’t been able to find other work
that does this, but there are quite a few approaches on
extracting protein names from biomedical literature.
Below, a brief overview is given. See [17] for a more
comprehensive overview.

Bunescu et al. present a method similar to ours, ex-
cept that they train their classifiers on manually cre-
ated corpora [2, 3, 4]. Ginter et al. describe a method
weighting words by positions for resolving gene/protein
name disambiguation, but they use a manually devel-
oped corpus for training [8]. Bickel et al. describe an

1 co-authors



Acronym Description

F1 3 neighbors w/all
F2 3 neighbors w/text
F3 3 neighbors w/text & POS
F4 3 neighbors w/POS & word-has-bracket

Table 1. Feature approaches

approach using Support Vector Machine classifiers for
gene name recognition, but it is also trained using a
manually generated biomedical corpus [1].

Mukherjea et al. describe a method that com-
bines manually generated rules with rules learned
using UMLS to do biomedical information extrac-
tion [12]. Torii and Vijay-Shanker use an unsupervised
bootstrapping technique from Word Sense Disam-
biguation [18]. This resembles our approach in the
sense that it is fully automatic, but differs in the sense
that they use an unsupervised bootstrapping tech-
nique on names found using the manually developed
rules presented in [13]. Jiampojamarn et al. de-
scribe a supervised method using comprehensive
domain knowledge and dictionaries together with clas-
sifiers for biological term extraction [10].

5. Empirical results

Since our motivation is to test the feasibility of 1)
automatic creation of training data for protein name
classifiers and 2) selection of appropriate negative ex-
amples in the training data, we didn’t put much em-
phasis on the optimal selection of features for the in-
formation extraction classifiers. That is a natural next
step, but outside the scope of this paper. The differ-
ent feature sets we used are described in table 1, and
more details about the features are given in our ap-
proach.

5.1. Automatic Evaluation

In order to get an overview of which classifier per-
formance to expect, we first tested them on already
tagged data, using protein names and symbols found
in Gsearch as positive examples and other words from
Gsearch (assumed to be protein-related) as negative ex-
amples (results in table 2). The data was first divided
into a training and test set with 2500 examples each,
and later we did a 10-fold cross-validation (XV) on all
5000 examples (train+test set) to verify the train and
test approach.

Classifier F1 F2 F3 F4

Majority 75.9 75.9 75.9 75.9
SVM Lin. t 75.9 75.9 75.9 75.9
SVM Pol. 76.4 75.9 75.9 75.9
SVM RBF 76.1 75.9 75.9 75.9
SVM Sig. 75.7 75.9 75.9 75.9
PSVM(ν = 100) 68.0 N/A N/A N/A
PSVM(ν = 1) XV 74.2 N/A N/A N/A

Table 2. Automatic Evaluation Results

Classifier TP/TN FP/FN Prec/Rec/F CA

Naive Bayes 6/120 67/7 8.2/3.2/4.6 63.0
Majority 0/187 0/13 N/A/0.0/N/A 93.5
SVM Lin. 0/187 0/13 N/A/0.0/N/A 93.5
SVM Pol. 6/159 28/7 17.7/3.2/5.4 82.5
SVM RBF 3/174 13/10 18.8/1.6/3.0 88.5
SVM Sig. 0/186 1/13 0.0/0.0/N/A 93.0

Table 3. Protein classification - untagged words

5.2. Expert Evaluation

The main purpose of our extraction approach is to
detect which untagged words that are part of protein
names. In order to do (and test) this, we first tagged
using the Brown Corpus (regular English words) and
Gsearch (protein names and protein related words) and
then we selected a sample of 200 words that hadn’t been
tagged. These words and their corresponding textual
contexts were classified using the classifier, and com-
pared to manual annotations done by biologists (table
3).

5.3. ”Post Mortem” Analysis

In order to say something more general about the
number of protein names that cannot be tagged with
LocusLink, Swiss-Prot and UniGene, we used the re-
sults after stage 5 (Gsearch tagging) and the expert’s
classifications of untagged words. We created confi-
dence intervals for the probability of a word being un-
tagged after stage 5, and for the probability that an
untagged word is a part of a protein name.

The total number of unique tokens in the 12000 ab-
stracts covering gastrin is N = 76359, and 26885 of
them were untagged. This gives an estimated probabil-
ity of an untagged token pu = 26885/76359 = 35.21%
and σu =

√
(pu(1−pu)

N ) ≈ 0.0017. The 95% confi-



dence interval is [0.3521−1.96×0.0017, 0.3521+1.96×
0.0017] ≈ [34.88%, 35.54%]

The expert found 13 protein names among a ran-
dom sample of n = 200 untagged tokens (random sam-
ple from 26885 unique untagged tokens in total), this
gives an estimated probability that an untagged word
is a part of protein name pp = 13/200 = 6.5% and σp =√

(pp(1−pp)

n ) ≈ 0.0173. The 95% confidence interval of
[6.5− 1.96× 1.73, 6.5 + 1.96× 1.73] = [3.11%, 9.89%]

6. Discussion

In the following section we discuss our approach on
a step-by-step level (steps as presented in figure 2).

1. Data selection Since the results were inspected
by cancer researchers the focus was naturally on
proteins with a role in cancer development, and
more specifically cancer in the stomach. One such
protein is gastrin, and even though a search in the
online PubMed Database returned more than eigh-
teen thousand abstract IDs, only twelve thousand
of these were found in our local academic copy of
Medline. Another important question is if the gas-
trin collection is representative for Medline in gen-
eral or for the ”molecular biology” part of Medline
in particular?

2. Tokenization into ”words” The tokenization
algorithm is important in the sense that it dictates
which ”words” you have to deal with later in the
pipeline. How to deal with parentheses is another
question. Sometimes they are important parts of a
protein name (often part of the formula describing
the protein), and other times they are just used to
state that the words within them aren’t that im-
portant. We decided to keep the contents of paren-
theses as a single token, but this kind of parenthe-
sis clustering is a hard problem, especially if the
parentheses are not well balanced (e.g. smiley and
”1), 2), 3)” style paragraph numbering). Parenthe-
ses in Medline are usually well balanced, though,
so only very few tokens were missed because of er-
roneous clustering. Other tokens that require spe-
cial attention are the multi-word-tokens. They can
sometimes be composed using dash, bracket etc.
as glue, and are at other times just normal sin-
gle words separated with space, even though they
should really be (grouped as) a single token. An
example is protein names, such as ”g-protein cou-
pled receptor (GPCR)”.

3. a) Brown Corpus and tagging We used the
Brown Corpus, an American English corpus. It is

rather old (1961) and maybe not completely repre-
sentative of ”Medline English”. There is also the
challenge of how quote symbol and apostrophes
are used for protein names in Medline abstracts,
e.g. as a marker for the five-prime or three-prime
end of a DNA formula. Also, there are only one
million words in the corpus, so not all lowercase
and capital letter combinations of every word are
present.

b) POS tagging with Brill algorithm and
the Brown Corpus The Brill tagger doesn’t tag
perfectly, so maybe classifier-based taggers such
as SVM could perform better. The performance of
the Brill tagger could be better if we used a higher-
ordered tagger than the unigram tagger as input
to Brill, but the memory need for n-gram taggers
are O(mn), where m is the number of words in
the dictionary. So with million word training- and
test sets, even the use of just a bi-gram tagger gets
quite expensive in terms of memory and time-use.
Tagging itself may also introduce ambiguous tags
(e.g. superman is a protein, but it may be tagged
as a noun/name earlier in the pipeline, because
that’s the most common sense mentioned in the
Brown Corpus).

4. Porter-stemming turns out to work poorly on
protein and biological names, since they are often
rooted in Latin or have acronyms as their name
or symbol. E.g. the symbol for gastrin is GAS,
and the porter stem of GAS becomes GA, which
is wrong, and too ambiguous.

5. Gsearch The indexing algorithm of Gsearch also
contains some stemming of search terms, leading
to some ”strange” results when creating the pos-
itive and negative training examples. The protein
names found also cover ”regular words” leading
to other ambiguity problems, for example when
”legal” protein names are removed earlier in the
pipeline by the Brill tagger. Another weakness of
Gsearch is that it isn’t ”complete enough” (yet). It
should be extended with a larger selection of data-
bases and dictionaries covering biological terms, so
that protein names like ”pentagastrin” could also
be found in the database.

6. Feature Selection Features in Information Ex-
traction are usually ad-hoc and fosters creativity.
It seems that all the ones we created made some
sense, and that all the features took part in op-
timizing the classification of ”untagged” test pro-
tein names.

7. Classifier performance Our selection and tun-
ing of classifiers was quite limited due to our pri-



mary focus on automatic generation of training
data as well as ensuring high quality of the nega-
tive examples. An opportunity for further improve-
ment is to try other classifiers, e.g. C5.0, the Maxi-
mum Entropy classifier or the Instance-Based clas-
sifier.

8. Automatic Evaluation The automatic evalua-
tion used two approaches: train+test set (SVM,
Majority and PSVM) and 10-fold cross validation
(PSVM). They gave ok, though not incredibly ac-
curate, results. Natural improvements are to in-
corporate more (available) domain knowledge and
additional features. An interesting observation is
that the Majority and SVM classifiers always gave
the same accuracy when syntactic clues (e.g. HAS-
FIRSTUPPER) were left out. This is probably be-
cause our naive features don’t catch the essence of
protein names and their context.

9. Expert evaluation of untagged data Even
though our (part- of-) protein name classification
accuracy is relatively high (≈ 80 − 90%), the re-
sults for most of the classifiers provide low pre-
cision and recall. The most promising classifier,
from a precision and recall (F-Score) perspective,
is Support Vector Machines with a Polynomial
Kernel. It gives relatively many true positives, that
can later be used as input for more advances nat-
ural language parsing techniques, like the ones
used in [15]. Precision and recall results also suffer
from being very unbalanced (i.e. relatively few pro-
tein names compared to the number of untagged
words). In order to improve precision and recall re-
sults (as well as accuracy) we probably also need to
improve filtering of untagged words before they be-
come candidates for being part of protein names.

We also know for a fact that our selection of
positive and negative examples using protein in-
formation databases leads to slightly biased train-
ing data, since many common biological words
are part of protein names (not found in our Eng-
lish corpus). This may lead to ambiguities when
processing the corpus since most of the occur-
rences of these biological words are not part of
protein names. In further work we could poten-
tially gain from adding the bootstrapping meth-
ods for handling disambiguation presented in [18].
Testing our approach on benchmark datasets, like
GENIA, would be a natural next step.

10. Post mortem Dataset characterization Why
finding protein names at all? Aren’t they all in the
major protein information databases? No, we found
that approximately between 1 and 3 % of all words

found in our gastrin abstract selection were pro-
tein names (by multiplying the two confidence in-
terval boundaries presented). If these estimates are
representative for other biomedical texts in Med-
line this means that this problem is rather large.
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7. Conclusion and Future Work

This paper presents a novel method for automati-
cally creating both positive and negative training data
for protein name extraction classifiers. Since we focused
on the automatization of creating training data and rel-
evant negative examples, we only used relatively sim-
ple domain modeling and feature extraction/selection
approaches. This leads to promising, though not yet
highly accurate, empirical results. So in the next round
we need additional work on i) feature extraction and se-
lection, and ii) incorporating domain knowledge. The
approaches presented in [10, 12] seems to be comple-
mentary to ours and might increase accuracy in future
versions of ProtChew.

To sum up the contributions:

1. fully automatic extraction of protein names

2. ”tight” negative examples using existing
protein information databases (served by
Gsearch.org) in order to get a ”sharp clas-
sifier”

Opportunities for future work are:

• improved tokenization (splitting on space and
punctuation characters is not good enough.)

• stemming (the Porter algorithm for English lan-
guage gives mediocre results on biological terms.)

• improved detection of sentence boundaries might
be used to get more accurate context boundaries
for classification of terms (splitting on punctua-
tion characters gives slightly erroneous results).
One possibly approach could be to train classi-
fiers for sentence boundary detection on the Brown
Corpus, or better on the GENIA biomedical cor-
pus.

• combine the presented approach with traditional
search engines such as Google as an additional in-
formation source about protein names e.g. as a fea-
ture for the input classifier, [16].



• part-of-speech tagging of Protein names (the com-
plete protein names, frequently combined of many
words) and then use inductive algorithms in order
to find common grammars of protein names can
potentially increase accuracy on detecting com-
plete protein names, and not only part of protein
names as we have focused on this work. (We have
found that protein names often look like small sen-
tences themselves, [14]).

• strongly improve the evaluation of our ap-
proach by applying it on the BioCreative datasets
(http://www.mitre.org/public/biocreative/).
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