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Abstract. With the increasing amount of biomedical literature, there
is a need for automatic extraction of information to support biomedical
researchers. Due to incomplete biomedical information databases, the ex-
traction is not straightforward using dictionaries, and several approaches
using contextual rules and machine learning have previously been pro-
posed. Our work is inspired by the previous approaches, but is novel in
the sense that it is using Google for semantic annotation of the biomed-
ical words. The semantic annotation accuracy obtained - 52% on words
not found in the Brown Corpus, Swiss-Prot or LocusLink (accessed using
Gsearch.org) - is justifying further work in this direction.
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1 Introduction

With the increasing importance of accurate and up-to-date databases for biomed-
ical research, there is a need to extract information from biomedical research
literature, e.g. those indexed in MEDLINE [34,33,15]. Examples of information
databases are LocusLink, UniGene and Swiss-Prot [24,23,3].

Due to the rapidly growing amounts of biomedical literature, the information
extraction process needs to be (mainly) automated. So far, the extraction ap-
proaches have provided promising results, but they are not sufficiently accurate
and scalable.

Methodologically all the suggested approaches belong to the information ex-
traction field [8], and in the biomedical domain they range from simple auto-
matic methods to more sophisticated, but manual, methods. Good examples
are: Learning relationships between proteins/genes based on co-occurrences in
MEDLINE abstracts (e.g. [16]), manually developed information extraction rules



Examples of biological name entities in a textual context

1. “duodenum, a peptone meal in the”
2. “subtilisin plus leucine amino-peptidase plus prolidase followed”
3. “predictable hydrolysis of [3H]digoxin-12alpha occured in vitro”

(e.g. [35]), information extraction (e.g. protein names) classifiers trained on man-
ually annotated training corpora (e.g. [4]), and our previous work on classifiers
trained on automatically annotated training corpora [32]).

Semantic Annotation

An important part of information extraction is to know what the information
is, e.g. knowing that the term “gastrin” is a protein or that “Tylenol” is a
medication. Obtaining and adding this knowledge to given terms and phrases is
called semantic tagging or semantic annotation.

1.1 Research Hypothesis

Our hypothesis is based on ideas from our preliminary experiments using Google
to generate features for protein name extraction classifiers in [?], i.e. using the
number of search hits for a word as a feature.
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Fig. 1. Google is among the biggest known “information haystacks”

– Google is probably the world’s largest available source of heterogeneous elec-
tronically represented information. Can it be used for semantic tagging of
textual entities in biomedical literature? And if so, how?



The rest of this paper is organized as follows. Section 2 describes the mate-
rials used, section 3 presents our method, section 4 presents empirical results,
section 5 describes related work, section 6 discusses our approach, and finally
the conclusion and future work.

2 Materials

The materials used included biomedical (sample of MEDLINE abstract) and
general English (Brown) textual corpora, as well as protein databases. See below
for a detailed overview.

MEDLINE Abstracts - Gastrin-selection

The US National Institutes of Health (NIH) grants a free academic licence for
PubMed/MEDLINE. It includes a local copy of 6.7 million abstracts, out of the
12.6 million entries that are available on their web interface. As subject for the
expert validation experiments we used the collection of 12.238 gastrin-related
MEDLINE abstracts that were available in September 2004.

Biomedical Information Databases

As a source for finding already known protein names we used a web search system
called Gsearch, developed at Department of Cancer Research and Molecular
Medicine at NTNU. It integrates common online protein databases, e.g. Swiss-
Prot, LocusLink and UniGene, [24,23,3].

The Brown Corpus

The Brown repository (corpus) is an excellent resource for training a Part Of
Speech (POS) tagger. It consists of 1,014,312 words of running text of edited
English prose printed in the United States during the calendar year 1961. All the
tokens are manually tagged using an extended Brown Corpus Tagset, containing
135 tags (Lancester-OsloBergen-tagset). The Brown corpus is included in the
Python NLTK data-package, found at Sourceforge.

3 Our Approach

We have taken a modular approach where every submodule can easily be replaced
by other similar modules in order to improve the general performance of the
system. There are five modules connected to the data gathering phase, namely
data selection, tokenization, POS-tagging, Stemming and Gsearch. Then the
sixth and last module does a Google search for each extracted term. See figure
2.
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Fig. 2. Overview of Our Approach (named Alchymoogle)

1. Data Selection The data selection module uses PubMed Entrez online
system to return a set of PubMed IDs (PMIDs) for a given protein, in our
case ”gastrin” (symbol GAS). The PMIDs are matched against our local
copy of MEDLINE, to extract the specific abstracts.

2. Tokenization The text is tokenized to split it into meaningful tokens, or
”words”. We use the WhiteSpaceTokenizer from NLTK with some extra
processing to adapt to the Brown Corpus, where every special character
(like ( ) ” ’ - , and .) is treated as a seperate token. Words in parentheses are
clustered together and tagged as a single token with the special tag Paren.

3. POS tagging Next, the text is tagged with Part-of-Speech (POS) tags using
a Brill tagger trained on the Brown Corpus. This module acts as an advanced
stop-word-list, excluding all the everyday common American English words
from our protein search. Later, the actually given POS tags are used also as
context features for the neighboring words.

4. Porter-Stemming We use the Porter Stemming Algorithm (also from NLTK)
to remove even more everyday words from the ”possibly biological term” can-



didate list. If the stem of a word can be tagged by the Brill tagger, then the
word itself is given the special tag ”STEM”, and thereby transferred to the
common word list.

5. Gsearch Identifies and removes already known entities from the search,
but after the lookup in Gsearch, there are still some unknown words that
are not yet stored in our dictionaries or databases, so in order to do any
reasoning about these words it is important to know which class they belong
to. Therefore, in the next phase they are subjected to some advanced Google-
searching, in order to determine this.

6. Google Class Selection We have a network of 275 nouns, arranged in a
semantic network on the form ”X is a kind of Y”. These nouns represent the
classes that we want to annotate each word with. The input to this phase is
a list of hitherto unknown words. From each Word a query on the form in
the example below is formed (query syntax: Word is (an|a)”)
Then these queries are fed to the PyGoogle module which allows 1000 queries
to be run against the Google search engine every day with a personal pass-
word key. In order to maximize the use of this quota, the results of every
query are cached locally, so that each given query will be executed only once.
If a solution to the classification problem is not present among the first 10
results returned, the resultset can be expanded by 10 at a time, at the cost
of one of the thousand quota-queries every time.
Each returned hit from Google contains a ”snippet” with the given query
phrase and approximately 10 words on each side of it. We use some simple
regular grammars to match the phrase and the words following it. If the next
word is a noun it is returned. Otherwise, adjectives are skipped until a noun
is encountered, or a ”miss” is returned.

4 Empirical results

The table below shows the calculated classification scores for the expert eval-
uation phase. The first column shows correct predictions (True Positives and
Negatives), the second column shows incorrect predictions (False Positives and
Negatives), the third column gives Precision and Recall, the fourth gives the
standard (balanced) F-Score number, and the last column presents the overall
classification accuracy (correct classifications vs. incorrect ones).

Table 1. Semantic classification of untagged words

Classifier TP/TN FP/FN Prec/Rec F-score CA

Alchymoogle 24/80 31/65 43.6/27.0 33.3 52.0



5 Related Work

Our specific approach was on using Google for direct semantic annotation (search-
ing for is-a relations) of tokens (words) in biomedical corpora. We haven’t been
able to find other work that does this, but Dingare et al. is on using the num-
ber of Google hits as input features for a maximum entropy classifier used to
detect protein and gene names [10,11]. Our work differs since we use Google
to directly determine the semantic class of a word (searching for is-a relation-
ships and parsing text (filtering adjectives) after (a/an) in “Word is (a|an), as
opposed to Dingare et al.’s indirect use of Google search as a feature for the infor-
mation extraction classifier. A second difference between the approaches is that
we search for explicit semantic annotation (e.g. “word is a protein”) as opposed
to their search for hints (e.g. “word protein”). The third important difference is
that our approach does automatic annotation of corpuses, whereas they require
pre-tagged (manually created) corpuses in their approach.

Other related works include extracting protein names from biomedical liter-
ature and some on semantic tagging using the web. Under, a brief overview of
related work is given.

Work describing approaches for semantic annotation using the Web can be
found in [27,12,18,19,9,22].

Semantic Annotation of Biomedical Literature

Other approaches for (semantic) annotation (mainly for protein and gene names)
of biomedical literature include:

– Rule-based discovery of names (e.g. of proteins and genes), [13,29,36,35]
– Methods for discovering relationships of proteins and genes, [2,16].
– Classifier approaches (machine learning) with textual context as features,

[4,5,6,14,1,20,30,21,17]
– Other approaches include generating probabilistic rules for detecting variants

of biomedical terms, [31]

A comprehensive overview of such methods is provided in [28].
The paper by Cimiano and Staab [7] shows that a system (PANKOW) similar

to ours works, and can be taken as a proof that automatic extraction using
Google is a useful approach. Our systems differ in that we have 275 different
semantic tags, while they only use 59 concepts in their ontology. They also have
a table explaining how the number of concepts in a system influences the recall
and precision in several other semantic annotation systems.

6 Discussion

In the following section we discuss our approach step-by-step. (The steps as
presented in fig. 2.)



1. Data selection Since the results were inspected by cancer researchers the
focus was naturally on proteins with a role in cancer development, and more
specifically cancer in the stomach. One such protein is gastrin, and even
though a search in the online PubMed Database returned more than eighteen
thousand abstract IDs, only twelve thousand of these were found in our local
academic copy of MEDLINE. Therefore only 12.238 abstracts were used as
input to the tokenizer. Another important question is if the gastrin collection
is representative for MEDLINE in general or for the ”molecular biology” part
of MEDLINE in particular.

2. Tokenization into ”words” The tokenization algorithm is important in
the sense that it dictates which ”words” you have to deal with later in the
pipeline. Our choice of using the Brown Corpus for training the Unigram and
Brill taggers also influences our choice of tokenizing algorithm. For example,
in the Brown Corpus all punctuation characters like comma, full stop, hyphen
and so on are written with whitespace both before and after them. This turns
them into separate tokens, disconnected from each other and from the other
tokens. How to deal with parentheses is another question. Sometimes they
are important parts of a protein name (often part of ”formulae” describing
the protein), and other times they are just used to state that the words within
them aren’t that important. We decided to keep the contents of parentheses
as a single token, but this kind of parentheses clustering is a hard problem,
especially if the parentheses aren’t well balanced (like smiley and ”1), 2),
3)” style paragraph numbering). Parentheses in MEDLINE are usually well
balanced, but still some mistokenization was introduced at this point. Other
tokens that require special attention are the multi-word-tokens. They can
sometimes be composed using dash, bracket etc. as glue, but are at other
times single words separated with whitespaces, even though they should
really be one single token. One example is protein names, such as g-protein
coupled receptor (GPCR).

3. a) Brown Corpus and tagging To train the Unigram and Brill taggers, an
already tagged text is needed as a training set. We used the Brown Corpus,
an American English corpus made from texts from 1961. They are rather
old, and might not be as representative of ”MEDLINE English” as we want.
There is also the challenge of how quote symbols and apostrophes are used
for protein names in MEDLINE abstracts, e.g. as a marker for the five-prime
or three-prime end of a DNA formula. Also, there are only one million words
in the corpus, so not all lowercase and capital letter combinations of every
word are present.

b) POS tagging with Brill algorithm and the Brown Corpus The
Brill tagger doesn’t tag perfectly, so maybe classifier-based taggers such as
SVM could perform better. The performance of the Brill tagger could be
better if we used a higher-ordered tagger than the unigram tagger as input
to Brill, but the memory need for n-gram taggers are O(mn), where m is
the number of words in the dictionary. So with million word training- and
test sets, even the use of just a bi-gram tagger gets quite expensive in terms



of memory and time-use. Tagging itself may also introduce ambiguous tags
(e.g. superman is a protein, but it may be tagged as a noun/name earlier in
the pipeline, because that’s the most common sense mentioned in the Brown
Corpus).

4. Porter-stemming turns out to work poorly on protein and biological names,
since they are often rooted in Latin or have acronyms as their name or sym-
bol. E.g. the symbol for gastrin is GAS, and the porter stem of GAS becomes
GA, which is wrong, and too ambiguous.

5. Gsearch The indexing algorithm of Gsearch also contains some stemming
of the search terms, leading to some ”strange” results when removing well-
known proteins from the unknown words list. It should be extended with a
larger selection of databases and dictionaries covering biological terms, so
that protein names like ”peptone” could also be found in the database. In
other words there are ”precision and recall” issues also at this stage, but our
program should be able to solve ”half of this problem” automatically. The
worst problem is actually how to handle names with ”strange characters”
like ([]) in them, since these characters are usually not taken into account
during the index-building in systems like Gsearch (or Google).

6. Google Search The precision of (positive) classification and the total clas-
sification accuracy is close to 50%, which is really good considering that no
context information has been used in the classification process. By using
context information in the way that is done in [?] it should be possible to
increase the classification accuracy further. We had a lower recall than ex-
pected (24/89 = 27.0%), mainly because a lot of our unknown words are
parts of a multi-word-tokens, and can only be sensibly classified using the
context which contains the rest of the multi-word-unit. Also, many of the
words are not nouns, so they are not suitable class names in the first place,
but still expert biologists often think of them in a concrete way. One example
of this is ”extracardiac”, which were tagged as a place (outside the heart),
even though nobody would actually write ”extracardiac is a place outside
the heart”. (Except, I just did! And that really illustrates the problem of
freedom, when dealing with Natural Language Understanding.)
We did another test using 1500 semantic classes, instead of the 275 strictly
molecular biology related classes. Then we got more hits among the 200
words, so this may be a method to increase the coverage of our system. It is
of course much harder to manually evaluate these results, and there is also
the danger of lowering the precision this way.
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7 Conclusion and Future Work

This paper presents a novel approach - Alchymoogle - using Google for semantic
annotation of entities (words) in biomedical literature.

We got empirically promising results - 52% semantic annotation accuracy
((TP+TN)/N, TP=24,TN=80,N=200) in the answers provided by Alchymoogle
compared to expert classification performed by a molecular biologist. This en-
courages further work possibly in combination with other approaches (e.g. rule-
and classification based information extraction methods), in order to improve
the overall accuracy (both with respect to precision and recall). Disambiguation
is another issue that needs to be further investigated. Other opportunities for
future work include:

– Improve tokenization. Just splitting on whitespace and punctuation charac-
ters is not good enough. In biomedical texts non-alphabetic characters such
as brackets and dashes need to be handled better.

– Improve stemming. The Porter algorithm for English language gives mediocre
results on biomedical terms (e.g. protein names).

– Do spell-checking before a query is sent to Google, e.g. allowing minor vari-
ations of words (using the Levenshtein Distance).

– Search for other semantic tags using Google, e.g. “is a kind of” and “resem-
bles”, as well as negations (“is not a”).

– Investigate whether the Google ranking is correlated with the accuracy of the
proposed semantic tag. Are highly ranked pages better sources than lower
ranked ones?

– Test our approach on larger datasets, e.g. all available MEDLINE abstracts.
– Combine this approach with more advanced natural language parsing tech-

niques in order to improve the accuracy, [25,26].
– In order to find multiword tokens, one could extend the search query (” X

is (an|a) ”) to also include neighboring words of X, and then see how this
affects the number of hits returned by Google. If there is no reduction in
the number of hits, this means that the words are ”always” printed together
and are likely constituents in a multiword token. If you have only one actual
hit to begin with, the certainty of the previous statement is of course very
weak, but with increasing number of hits, the confidence is also growing.
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