
GeneTUC v2
A Biolinguistic Project, Next Generation

Rune Sætre

IDI, NTNU

June 17, 2002

 iii

Abstract

The purpose of GeneTUC v2 is to apply the “The Understanding
Computer” (TUC) architecture to biolinguistic texts (about genes and
protein interactions). Anders Andenæs started this work in the
GeneTUC project two years ago, and he focused on collecting all
known genes, proteins and substance names into the system’s
database, together with common “interaction”-verbs. In this follow-
up project, the main goal has been to parse one abstract 100%. That
means that GeneTUC v2 is a little more qualitative linguistic oriented
than its predecessor, which used a large corpus and measured the
success rate of parsed sentences (known as recall rate). The
qualitative approach is used in order to discover particular
weaknesses in the grammar, and to monitor if the semantic
interpretation of any of the other sentences is affected by changes
done in the grammar.

By the end of this project three of the original sentences had to be
slightly modified, in order to be able to parse the entire abstract.
These unsolved grammatical problems are linked to punctuation, the
word “indicating”, and a particular use of the word “and”.

None of the grammatical changes that were done during the
project affected the other sentences in a negative way. That means
that all the changes improved the total quality of the grammar.

 v

Acknowledgements

I would like to thank Tore Amble for all his support, and for
inventing the term “Biolinguistics”. Astrid Lægreid has helped me
understand all the complex names and terms in the biological texts.
Per Kristian Lehre and Jörg Cassens have engaged in fruitful and
inspiring discussions. And finally, Anders Andenæs have answered
all my email questions about the work he did with the GeneTUC
system last year.

I also want to thank Tore Bruland for volunteering to proofread
this report, even though he had his own report to think about. And,
as always, last (but not least!) my mother for thinking of me when
I’m working late nights, encouraging me to keep doing my best, and
making me good and healthy dinners when I need it the most.

 vii

Preface

When I started this project I didn’t think it was going to be that
hard. After all, Anders Andenæs had already done much of the
foundation work, and I thought of this project as a comprehensive
GeneTUC Tutorial (which is always a good idea to start with, when
you’re introduced to a new system).

It turned out that the TUC system was much more complex than I
had imagined, and it took quite some time to understand how all the
files, predicates and debugging commands are connected, and works
together.

Thanks to Tore Amble, who spent many hours walking me
through the complex process of debugging and adding code, I slowly
started to see the greater picture. We decided early that I should
focus on the semantics, while he should fix the grammar definitions
as needed. As I started working more independently with the
semantics, a new problem showed up: The semantics of the
biolinguistic text we got (Appendix A, ICER-manus) were by no
means obvious to my un-trained (not biologically educated) eye.

Even though I have taken quite a few “crash courses” in
microbiology by now, I still had a hard time making the correct
semantic network based on the text alone. This shows that one needs
much more than just commonsense knowledge in order to create a
biolinguistic expert system. Also, there is not yet full consensus in
the biological community about what the exact correct knowledge is,
but important work is being done (E.g. GO and others)!

This report is written in MS Word, using font Palatino Linotype
12pt.

Rune Sætre, June 17, 2002

 ix

Contents

1 Introduction...1
1.1 Different approaches ..1
1.2 The task specification ..2

1.2.1 Natural language processing of gene information.............2
1.2.2 Goals..2

1.3 Constraints ...3
2 Background ...5

2.1 Previous work ..5
2.2 Other work ...5
2.3 Contacts..5

2.3.1 NLP ...6
2.3.2 Biological ..6

2.4 Sources ...6
2.4.1 WordNet®..7
2.4.2 Gene Ontology TM (GO) ...7
2.4.3 PubMed MEDLINE...8

2.5 The abstract ..8
3 GeneTUC ...9

3.1 Source code ..9
3.1.1 Unzipping and unpacking the files9
3.1.2 Compiling...9

3.2 Implementation ..10
3.2.1 Grammar ..10
3.2.2 Semantic network..10

3.3 Changes made to the system ..11
4 Biolinguistics..13

4.1 Greek letters ...13
4.2 Punctuation (in the middle of a word) ...14
4.3 Gene-to-protein correspondence ..14

5 Results ..15
5.1 Changes in TUC...15

5.1.1 Grammar ..15

 x

5.1.2 Semantics..16
5.2 “Changes” in the programmer ...17
5.3 Translating and testing...18
5.4 Question answering..19

6 Discussion ..21
6.1 Semantics ...21
6.2 Syntax ..22
6.3 Punctuation ..22

7 Conclusions..23
7.1 Possibility analysis...23
7.2 Ontology tools..23
7.3 Usefulness analysis ..24

8 Future work...27
8.1 Pre-parsing ...27

8.1.1 Use IR to find only specific relations (verbs)27
8.1.2 Use Perl to solve the punctuation problems27

8.2 Problematic grammar constructs ...28
8.3 Partial parsing ..28

References..31
A ICER-manus..33

A.1 Original version ...33
A.2 Modified version..33

B Changes in the code ..35
B.1 Important files..35
B.2 database/facts.pl:..35
B.3 database/semantic.pl: ...36
B.4 tuc/dict_e.pl..37
B.5 tuc/fernando.pl ...37
B.6 tuc/gram_e.pl ...38

C Extracted facts...39
D TUC commands...43

D.1 Sicstus Prolog ..43
D.2 GeneTUC mode ...43

E Dictionary ..45
E.1 Biological...45
E.2 Natural Language Processing ..45

INTRODUCTION

 1

1 Introduction

PubMed, a service of the (American) National Library of
Medicine, provides access to over 11 million MEDLINE citations
back to the mid-1960's and additional life science journals. PubMed
includes links to many sites providing full text articles and other
related resources [PubM]. This enormous resource of answers in
plain text form is extremely valuable to biomedical researchers, but
at the same time, they find it almost impossible to search for and find
exactly the answers they need. It can best be described as the
problem of finding a needle in a haystack.

1.1 Different approaches

The current approach to searching the MEDLINE Database (DB)
is called Information Retrieval (IR). IR basically means to enter
keywords into the search engine, and then a list of all articles
containing the keywords are returned. In GeneTUC something called
Information Extraction (IE) is used. IE, in this case, means that a full
parser parses all the sentences in the DB, transforming each sentence
into some logical formulae that represents the meaning of the original
sentence. This transformation is called text mining. Then the
researchers can state their questions using natural language
sentences, and the system should be able to find the right answer to
the question, or give a list of only the abstracts/articles that are
semantically relevant to the question.

The purpose of this project is to find out if this kind of text
mining (full parsing) works in the biomedical domain. The purpose
is not to meet several end-user demands, or to create a commercial
product (yet). It should also be shown that this method works better

 THE TASK SPECIFICATION

 2

than for example the statistical approach used in PubGene [Jen02] or
syntactic pattern matching as in Entrez [PubM]. In PubGene a
relation will connect two genes if there are many examples that they
are usually mentioned in the same abstract. Entrez is just another
example of IR, as described above.

Because of the computational complexity of the full parsing, some
pre-processing might be needed before all the text can be parsed in a
reasonable amount of time. One example of pre-processing that
would be useful in an on-line system is to find a subset of articles
that we want to do full parsing on, in a sorted order. In that case, less
parsing would be needed before an answer is found. Such a system
will be a hybrid between plain text searching and strict grammar
parsing.

1.2 The task specification

1.2.1 Natural language processing of gene information

Current knowledge about genes and their interactions exist largely only
as free text. Searching and cross-linking such information rely largely on
existing indexes created either manually or by syntactic pattern matching.
As a first step we want a tool that is able to correctly recognize occurrences
of a gene in free text, e.g. in an article abstract, and the context in which
the gene is mentioned. The project will be in cooperation with Biomedical
research at NTNU, and will partly be building on existing prototypes for
text mining of biomedical texts (GeneTUC).

1.2.2 Goals

The main goal is to successfully parse all the sentences in an
entire article. The article (see Appendix A) was given to us, by Astrid
Lægreid at the Medical Research Center (MTFS) at NTNU. It is a
typical example of the type of article that the system will have to deal
with. Parsing all the sentences is a difficult problem. In addition to all
the “usual” problems with NLP, like synonyms, homonyms,
ambiguities etc, biolinguistics are even harder, mainly because of the
complex syntax in this kind of articles. Still TUC is relying on full
parsing, so this is a necessary first goal.

INTRODUCTION

 3

The next goal is to try to make use of the semantics in the parsed
sentences. GeneTUC should be able to answer questions like “what
represses ATP-B”, if this is stated in the input article. When we can
make GeneTUC do this, then the next step is to evaluate if the system
is useful to the biomedical society. That means that GeneTUC will
have to solve actual problems, given to it by our contacts at MTFS or
other biologists. The last step when making a commercial system is
to make sure the system is better than other existing approaches. In
other words GeneTUC should be compared to other systems that use
for example, statistical analyses.

To sum it up, this is the path to follow:
1) Is our approach possible?
2) Is the system useful?
3) Is the system better than other systems?
The main goal of this project is to answer question 1).

1.3 Constraints

One side-goal is to keep the old bus-grammar to maintain
backward and sideways compatibility with other TUC applications.
There is no point in removing working parts of the system, as long as
they don’t create many extra problems and the system can benefit
from improvements done by other TUC-programmers. The bus
semantics database can be removed, since nobody ever needs to ask
GeneTUC about busses or their schedules. Later one should think
about modularizing the semantics database, so that at least parts of it
could be reused from one project to another. That could save
someone a lot of definition work in the future.

The semantic database in TUC is in English. That means that
Norwegian sentences have to be translated to English, and then
analyzed. This is not a problem in GeneTUC, since virtually every
biologist in Norway (and the rest of the world) use English as his or
her publishing language.

BACKGROUND

 5

2 Background

2.1 Previous work

In order to work with GeneTUC one needs to know about both
linguistics and human genetics. Chapters 3 and 4 in [And00b]
provide an excellent introduction into these two fields, and chapter
5.1 in the same report gives some good historical notes on the
GeneTUC system.

2.2 Other work

There are about 20 groups in the world trying to extract protein-
to-protein interactions from abstracts using NLP (according to
linguistic Prof. Franz Guenthner, University of Munich). The two
most relevant works are “[Yak01]: Event extraction from biomedical
papers using a full parser” and “[Par01]: Using Combinatory
Categorial Grammar to Extract Biomedical Information”. [Yak01]
uses a full parser, just like GeneTUC does, and [Par01] uses a
Categorial Grammar, also just like TUC. It is very encouraging to us
that [Par01] mention full parsing as probable future work, in order to
increase the precision-rate (at the cost of lower recall-rate) in certain
precision sensitive applications.

2.3 Contacts

A lot of people have come up with ideas, help and inspiration the
last year. Here a list of people that should be called upon as the
project proceeds later.

 SOURCES

 6

2.3.1 NLP

Tore Amble has been the main NLP resource in this project.
Another student, Tore Bruland, has also been working on TUC this
year, and he has also been giving useful input.

In March the “Human Language Technology” Conference were
held in San Diego [HLT02], and quite a few of the participants there
were working with Biolinguistics. The main focus was on protein
name discovery, and protein-interactions (verbs) mined from
biomedical abstracts. The most interesting of the systems presented
at this conference were by Kristofer Franzén and his fellows from the
Swedish Institute of Computer Science (SICS). They are doing
protein name discovery, and they are using Prolog, like us.

2.3.2 Biological

Astrid Lægreid at MTFS has been the main source of biomedical
input. Jan Komorowski (IDI) and Finn Drabløs (SINTE Unimed) have
been helpful and accessible through a class on “Data Mining and
Knowledge Discovery” that was taught last semester. Komorowski is
now starting a Bioinformatics center at the University in Uppsala,
Sweden.

2.4 Sources

TUC’s semantic network needs to be upgraded with more
medical terms, and there are several places to look for these new
words. One possible source is WordNet, which defines word
contexts and semantically connected clusters of lexical words.
Another source is Gene Ontology, which defines identified molecular
functions, biological processes and cellular components in context
with other functions, processes or components. Part of this project
will be to incorporate words from these sources into TUC. Amble
and Andenæs have already done much of this earlier. For example
all adverbs and adjectives were imported into TUC from WordNet a
few years ago. The verbs were not imported in this way, since it is
believed that the group of relevant verbs is small enough to allow for
manual insertion, which gives better precision than automatic
definitions.

BACKGROUND

 7

Some of the new words may be defined only in the abstract
currently being parsed. These words must then be added manually
to the TUC system. Our contacts at the biomedical center will help us
get the semantics of these words right. Other terms may be general
and well-established definitions that one might hope to find by
searching Gene Ontology or some other online biology DB.

2.4.1 WordNet®

WordNet is an online lexical reference system whose design is
inspired by current psycholinguistic theories of human lexical
memory. English nouns, verbs, adjectives and adverbs are organized
into synonym sets, each representing one underlying lexical concept.
Different relations link the synonym sets together, see [WNet].

It is possible to do online searching to find the synonym sets of
specific words from the WordNet homepage. Just go to this Internet
address: http://www.cogsci.princeton.edu/cgi-bin/webwn1.7.1

2.4.2 Gene Ontology TM (GO)

The goal of the Gene Ontology Consortium is to produce a
dynamic controlled vocabulary that can be applied to all organisms
even as knowledge of gene and protein roles in cells is accumulating
and changing [Gene].

They are partly succeeding in doing this, and the GO have
already been used in several projects by the DIS group at IDI, NTNU.
Some critique have been made though, that the old data in the GO is
never updated, so every time someone puts a “false” annotation in
the database, it will be there forever, even if someone later discovers
that the assumptions were not true.

The GO can be searched online by using one of many browsers,
for example the QuickGO: http://www2.ebi.ac.uk/ego/QuickGO. In
order to find out what one of the terms used in the abstract means, a
search with the keyword “PKA” was done. The result told us that it
means protein kinase (as expected), and in addition explained that it
is cAMP-dependent. Other searches for acronyms were less fruitful.
An example is CCK, which were not found. But searching for the full
name “cholecystokinin” gave the expected information. This means
that CCK is not defined as a synonym in the same way that PKA
was, even though it should have been. This goes to show that the GO
is by no means complete.

 THE ABSTRACT

 8

2.4.3 PubMed MEDLINE

The best source of abstracts is the MEDLINE Database, which is
maintained by the American association “National Center for
Biotechnology Information” (NCBI). NCBI was established in 1988 as
a national (American) resource for molecular biology information,
but their resources are now widely used throughout the world. NCBI
creates public databases, conducts research in computational
biology, develops software tools for analyzing genome data, and
disseminates biomedical information - all for the better
understanding of molecular processes affecting human health and
disease [NCBI].

2.5 The abstract

The main goal of this project was to do a complete parsing of one
given abstract. The abstract that was used will be referred to as the
“ICER-manus”, and it can be found in the Appendix A.

GENETUC

 9

3 GeneTUC

GeneTUC is a large system. Only the grammar alone covers more
than 30.000 lines of Prolog code. This section is meant to give
newcomers a quick tutorial on the system: How to install, use and
modify it.

3.1 Source code

The source code is stored on the “~busstuc” user on IDI’s
computers. Tore Amble is in charge of distributing the password to
worthy programmers. The TUC part of the system is no longer to be
freely distributed, because it has been sold to Team Trafikk, by the
company LingIT.

3.1.1 Unzipping and unpacking the files

The file “GENETUC2.tar.gz” contains all the files needed, and it
can be unzipped and extracted by typing:

1) gunzip GENETUC2.tar.gz <enter>
2) tar –xvf GENETUC2.tar <enter>
This will place all the extracted files in a folder “GENETUC2”.

3.1.2 Compiling

To create a fresh executable version of the program the following
commands must be executed (as user busstuc @ vier.idi.ntnu.no).
Note the trailing periods in statements 3-5:

1) cd GENETUC2 <Enter>
2) sicstus <Enter>
3) [gtbase]. <Enter>
4) [genetuc]. <Enter>

 IMPLEMENTATION

 10

5) save_program (genetuc). <Enter>
Next time, substituting lines 2-5 with just “genetuc <Enter>” will

start this compiled and saved program.

3.2 Implementation

As stated earlier, GeneTUC is implemented in Prolog. The system
has mainly two parts: The general-purpose grammar, and the
domain specific semantic network.

3.2.1 Grammar

The grammar is meant to be the same for all applications of TUC,
e.g. GeneTUC, BusTUC, LexTUC and so on. The main reason for
doing this is that the grammar is not yet finished, and it is being
updated quite often. As long as we manage to use the same grammar
in all TUC projects, it’s an easy task to “upgrade” the system
whenever a new grammar is released/available. Sometimes one
change in the grammar leads to unforeseen problems in other parts
of the system, but that is something we have to deal with, until we
get to the point where the grammar is complete and stable. Until
then extra caution and testing is needed to make sure a change is not
“a step backwards”.

So far, it has been possible to keep the same grammar for all
application, with a little help of “switches”, or flags, that can be
turned on or off. The most important one is called “busflag” and is
turned off in all other applications than BusTUC. This causes the
grammar rules that are very specific to bus questions to stay inactive
in the other TUC applications.

3.2.2 Semantic network

The semantic network and the rest of the content in the files
semantic.pl and facts.pl contains “all the knowledge” in the system,
and can be thought of as the Knowledge System’s (KS’s) database.
The KS’s concepts and relations are defined in semantic.pl, while the
leaf nodes of the semantic network are defined in facts.pl. Updating
the semantic network is supposed to be a simple task, and Tore

GENETUC

 11

Bruland has recently made a Graphical User Interface (GUI) that can
generate the semantic.pl file automatically, to make life even simpler.

The main biological challenge in GeneTUC is that it’s not always
obvious how the different concepts relate to each other. Therefore it’s
important with good and frequent communication with
knowledgeable biologists, in order to get the semantic network right.
This communication should be done in some neutral language that is
easily understood and agreed upon by both biologists and computer
scientists. One example of such a language is semantic network
diagrams.

3.3 Changes made to the system

TUC is slowly turning into a big multi-developer project, where
different programmers work both in parallel, on the same files or on
different files, and serially, picking up where someone else left off.
Because of this, it’s very important to keep track of all the changes
that are made, since some of them might need to be propagated to
other TUC applications. It’s also important because every time a
change is made it’s a hazard to other previously working parts of the
system, and in case some bug is discovered after a grammar change
we want it to be easy to backtrack (rollback) the changes.

In Appendix B (Changes in the code) a list of all the recent
changes can be seen. Note that every change is stamped with the
initials of the programmer, and the date that the modification was
done.

BIOLINGUISTICS

 13

4 Biolinguistics

Biolinguistics is the most concise way to describe the GeneTUC
project, so far. As the name suggests, it involves both NLP and
biomedical texts. Below is a summary of the problems that were
encountered because of the complex grammar/syntax of the medical
language.

4.1 Greek letters

In order for GeneTUC to be able to “read” the ICER-manus, the
document had to be converted from Word to Text format. The most
obvious choice was to use the “save as txt”-function in Word, but
then it was discovered that all the Greek letters were transformed
into question marks.

In biolinguistics there are many Greek letters, mainly because
they are used in protein naming, among other things. Fortunately
there were no Greek letters in the abstract-part of the article, so we
didn’t have to deal with the problem in this project. In the future,
though, it will be necessary to find a smart solution to this problem.
One suggestion is as follows:

1) Save the text in some format that keeps the language codes
for the Greek letters (e.g. RTF).

2) Use some kind of preprocessing language (e.g. Perl) to
substitute α with a, βwith b, γ with g, and so on.

3) Save the preprocessed text as plain text, and there should
be no more fake question marks present in the text.

 PUNCTUATION (IN THE MIDDLE OF A WORD)

 14

4.2 Punctuation (in the middle of a word)

One particular problem that was encountered in the abstract was
the use of a period in the middle of a word (e.g. the antagonist
L740.093). This is a tough problem for TUC, because the only legal
use of period is as an End-of-Sentence (EoS) symbol. The only way
this could be solved was by rewriting the sentence, because it’s
important to keep period as a reserved symbol. Without having
period as the EoS-marker, sentence segmentation would be an
extremely complex task to solve.

Another problem with punctuation was encountered in the
“Gq/G11”-construct. Usually TUC ignores all other punctuation than
periods, but since “/” is used as a delimiter in the TQL-language,
they make it into the inner loops in TUC’s parsing algorithms, and
cause havoc there. Again, rewriting the sentence without using “/”
was the only simple solution. In this case the “/” was just substituted
by a hyphen, which in turn is just ignored (and treated like a space)
in the actual parsing algorithm.

4.3 Gene-to-protein correspondence

In many cases there is a one-to-one correspondence between gene
and protein, but of course there are exceptions. Because of splice-
variants, one gene can give rise to several similar proteins with
potentially very different functions.

Often the same name is used both for the gene and the most
common variant of the protein it describes. Then, only through
analyzing the context of the name, can we find out if it refers to a
gene or a protein.

RESULTS

 15

5 Results

Some of the sentences in the original ICER manus had to be
changed because of the punctuation rules in TUC among other
things. Much effort were made to keep the abstract as unchanged as
possible, but to meet the deadline, and to work around some of the
inherent problems in TUC, a few of the “hard” problems like
“sentence, indicating something” and “L740.093” were rewritten.
These problems should be handled properly by the TUC grammar in
a later version.

5.1 Changes in TUC

The most important result of this project is of course the modified
version of the program GeneTUC. Only through steady refining can
this system hope to finally one day be really useful to the biologists.

5.1.1 Grammar

A lot of changes were made in the grammar during this project.
Tore Amble did all the programming of grammar definitions, after I
had discovered the specific problems. Most of the grammar changes
were done in the files fernando.pl and gram_e.pl. Look in Appendix B
(Changes in the code) for a list of changes.

The grammar is better now than it was before the project. The
reason is that a few standard, but hitherto, unused grammar
constructs were “discovered” in the abstract, and then added to the
TUC grammar. This was done in a way that did not “destroy” any of
the constructs that were already working.

 CHANGES IN TUC

 16

5.1.2 Semantics

Many changes were made in the semantic part of the system; see
Appendix B (Changes in the code) for a complete list of them. In
addition to the problems that were solved, a few other important
problems have also been identified, but not yet fixed. Some of the
problem sentences that were identified, but not yet fixed, are listed
here:

1) Gastrin- and cck-response.
2) Sentence, indicating something
3) Gq/G11 –protein coupled receptor (G-protein is a signaling

protein)
They are all caused by punctuation problems, or at least they

would be easier to solve if TUC had some proper treatment of
punctuation.

The problem with 1) is the special use of a hyphen (“-“) between

“gastrin” and “and”. This means that the word that ends the last
complex NP (e.g. -“response”) is supposed to be added to the first
NP, too, making it “gastrin-response”.

TUC is not “trained” to handle this kind of grammatical
constructs yet, and it’s not trivial to implement it either. One has to
be very careful not to “break” any other grammar rules, when one is
trying to “fix” this specific problem.

Another problem with giving TUC to many choices about how to
parse an NP high up in the parse tree is that it leads to a lot of re-
parsing of several sentence fragments further down in the tree. This
might potentially slow down the parsing a lot.

The problem with sentence type 2) is again based on the fact that

TUC ignores all punctuation except periods. What should be
extracted from this sentence is an “indicating” relation from the main
event in the left sentence to the main event/fact in the right sentence. So
far, TUC have no mechanism for doing this, but this should be
possible to implement. It should be easy to identify and parse this
construct in a text, even without using the comma (“,”) to help
recognizing this special use of indicating. Since the use of the word
“indicating” almost always indicates that a comma is present. We

RESULTS

 17

can usually just assume that there is a comma to the left of the word
indicating, meaning that it is the entire left sentence that is indicating
something.

As always in NLP there are some exceptions. An obvious one
here is the following sentence: “The man was indicating that
something was wrong.”

There are two problems with fragment 3). The first one is again

connected to punctuation. The slash (“/”) is not ignored like the other
types of punctuation. Like mentioned in chapter 4.2, slash is used as a
separator in the TQL syntax. This means that the sentence has to be
rewritten, since slash is a reserved symbol. In this project a hyphen
was used, and it is just ignored when TUC parses the sentence. That
in turn means that a compword (in the file dict_e.pl) must be defined,
to cluster “Gq” together with “G11” as one word.

After the problem with the slash was solved, a new one emerged.
“G-protein coupled receptors” are actually a well know class of
proteins (they even have their own Internet domain, see [GPCR]).
The correct semantic interpretation of 3) should have been

• gq_g11 isa gpcr

Or possibly
• sk(1) isa pcr
• adj/gq_g11/sk(1)/real

This is currently not possible to do in TUC, since there is no way
to add a name (“Gq-G11”) to this already complex NP (“protein
coupled receptor”). As before, it is not impossible to implement this
in the grammar, but it could cause a computational explosion if too
many ways to parse a NP is added (high/early) in the parse tree. That
means that this is also something that will be solved in a later version
of TUC.

5.2 “Changes” in the programmer

A less obvious result of the GeneTUC project is the fact that I (the
programmer) know a lot more about TUC now than I did before this
project. This is important since the plan is to pursue a PhD degree in
biolinguistics. So even if (or maybe just because) the project resulted
in more questions than answer, this is a good starting point for
further investigation and programming. The next step coming up is
to find out how much more effort is needed to parse the second

 TRANSLATING AND TESTING

 18

abstract we got from Astrid Lægreid. See the next section for more
details.

5.3 Translating and testing

After a successful parsing of the (modified) ICER-manus had
been achieved, we got some more abstracts for testing purposes. The
same authors wrote one of these abstracts, and all the abstracts were
about the same biological phenomenon as the first one.

The other abstracts should be used as control texts, to see how
useful our work with the first training text has been, in terms of
improving the performance on unseen data. A very brief test was
done at the end of the project, trying to parse 5 new abstracts without
any preparation at all. Even though this is an extremely optimistic
approach, it was somewhat disappointing that none of the sentences
were parsed correctly. Almost all of the sentences failed because they
introduced new words that were currently unknown to GeneTUC,
but that is easy to fix by just adding one line per word into the
semantic file.

To see if these unknown words were the real major problem, a
second brief test was done with the unknownflag set to true. This
means that the parser will not crash because of undefined words.

Even after setting the unknownflag, none of the sentences in the
new abstracts would parse correctly. A little close inspection
discovered that many of the sentences tended to fail largely because
of the same reasons that made us rewrite the ICER-manus before:
Problems with the use of punctuation ({}. /) and the difficult way of
using the word “and”. In addition there were a number of new
grammatically constructs, that need to be identified and inserted into
the general TUC grammar (as soon as possible).

Also, a problem similar to the “Greek letters” problem surfaced.
This time it was because of curly braces (“{“ and “}”). It turns out that
these braces are translated into “æ” and “å” when the word-
document is stored as plain text. This problem affected several of the
new sentences, and the solution is the same as for the “Greek letters”
case: Using some sort of text preprocessing and a proper conversion
of the special characters should solve this problem.

RESULTS

 19

5.4 Question answering

There has not been much focus on question answering in this
project, but in its present state GeneTUC can still answer some very
simple questions. To prove this a couple of examples are shown:

1) E: what blocks gastrin.

..
[Which (A)::(gastrin isa substance, (block)/A/gastrin/B,
event/real/B)]
..
L740093.

2) E: what is cck.
..
[which (cck):: cck isa gene]
..
cck

Example 2) is a little flawed, since the correct output should of
course be “gene”, and not “cck”, but this will be fixed in the next
version.

DISCUSSION

 21

6 Discussion

6.1 Semantics

The changes and add-ons to the semantic part of the system
should have been easy to do, but this was not the case after all. The
main reason for this is that the biologists themselves haven’t done
enough standardization work yet, especially when it comes to gene-
ontologies and protein interaction naming.

This means that every time something is added to GeneTUC’s
semantic network, there’s a chance that it will have to be changed
later, because our “view of the world” is still changing. This is the
same problem that were describe with the GO. Some “guesses” turn
out to be erroneous, but nobody ever bothers to correct the entries.

In other cases you find that you get different answers about how
to build the semantic network, depending on which sources you go
to. A good example of this is the fact that in the old GeneTUC
system, process is modeled as ako activity. When this was discussed
with Astrid Lægreid, she spontaneously said that activity ako process,
and not the other way around. Her statement was based on the fact
that biological process is actually one of the general top three nodes in
the Gene Ontology, while activity is describing smaller and simpler
(sub) processes.

This is an old problem in NLP; you go from a language that is
highly ambiguous, to the language of logic, with only one acceptable
interpretation. In order to be able to do this, there must be some sort
of consensus about what the actual meaning of the NL constructs are.
This consensus is not yet established in the biolinguistic domain, but
work is underway. Efforts like the Gene Ontology seek to identify
and classify all processes, functions and locations of genes and
proteins in the cells.

 SYNTAX

 22

6.2 Syntax

The same thing can be said in many ways. TUC requires
questions to be stated with the same form/syntax as the
corresponding input fact was stated with, in order to be able to find
the answer. This is an argument for using entire articles, and not just
abstracts, since the same important facts will usually be stated many
times, in different forms, throughout the article. This should make it
easier to ask question, since there will usually be a couple of accepted
ways to state the question.

6.3 Punctuation

It might be worth taking at least some punctuation into the TUC
language. Especially commas would have the potential to solve a lot
of ambiguity problems.

A good argument against starting to deal with punctuation,
though, is that it will also be a new source of problems, not only
solutions. The way people use punctuation is as ambiguous as the
way they use the language in general. Still, it would probably be well
worth the time looking into what positive solutions punctuation (or
just comma) treatment would bring with it.

CONCLUSIONS

 23

7 Conclusions

7.1 Possibility analysis

In this project we (almost without changing it) managed to parse
one entire biolinguistic abstract using the TUC architecture. So it can
be said that the TUC approach to biolinguistic is possible, but it is
very time-consuming. If it turns out that the same amount of work is
needed to parse the next (similar) abstract by Lægreid and her
colleagues, one has to ask if this approach is efficient enough.

In this project the entire abstract had to be manually digested and
understood by the programmer, in order to be able to make the right
entries into the semantic network. If this much work is needed for
every single future abstract (meaning that there are always new
terms emerging), there is no way the programmers are going to keep
up with the publishers.

7.2 Ontology tools

What is needed is a more automatic way of building the semantic
network. One approach is to rely on the GO, WordNet and other
ontologies. That way more people will be involved in keeping the
semantic network updated, and TUC would only need to download
fresh semantics every once in a while.

A tool that is supposed to support simple interchange of
ontologies is the Resource Description Framework (RDF). The RDF
specifications provide a lightweight ontology system to support the
exchange of knowledge on the Web [RDF]. It is also a part of a bigger
project, namely the “Semantic Web”. As more people start using this
standard, one can imagine a scenario where it would be possible to
just “download” the appropriate semantic network for a given

 CONCLUSIONS

 24

domain from the Web. This would save the programmer a lot of time
when doing the “common sense” coding for any new project.

7.3 Usefulness analysis

Franz Günther from Hamburg University said that around 20

groups in the world are doing this kind of protein interaction NLP
work, so obviously someone believes that the systems are going to be
useful. One of the groups is located at Korea Advanced Institute of
Science and Technology, and they are working with Categorial
Grammars, like the one TUC is using [Par01]. The main difference
from TUC is that they use partial parsing.

First of all they filter the sentences by preprocessing, keeping only
sentences that contain one of the ten or so predefined verbs, which
denote interesting relations. Then they have a simple Regular
Grammar that finds all possible subject and object Noun Phrases (NPs)
to the left and right of the current verb (the Key Word, KW). During
the search for NPs, all adverbs and adverbial phrases are skipped,
except negative ones, like never, which are needed to get the correct
semantic interpretation of the relation. Finally they give all candidate
NPs to their Categorial Grammar parser, and lets it pick the longest
semantically meaningful NPs that can be subject and object for the
current KW.

With this approach, [Par01] gets a much better recall than
GeneTUC (48% against 8%), but one thing that they will never be
able to do with this approach is to capture modifiers like when
authors say: “We think this indicates that…” or “Previously it was
assumed that…” and so on. This can only be done using a full parser.

At the same time, [Yak01] prove that they can get 23% recall
using full parsing and a simple preprocessor. If they accept
ambiguous sentences, the recall goes to 47%. Their next project now
is to design and implement a postprocessor. When this postprocessor
is fed with all the results from the parser, including partial results,
they expect to extract argument structures with a recall of 74%.

Another important result from [Yak01] is that full parsing can be
done in a reasonable amount of time, even on just a single PC in the

CONCLUSIONS

 25

top range. TUC solves the processing complexity problem using cuts
that sometimes cause problems, especially with garden path sentences.
It is reassuring to think that these problems can also be solved in
depth without cuts, just using one of the powerful PCs on the
market.

Based on all this, it seems that at least some of the biolinguistic
research in the rest of the world is converging at full parsing and
Categorial Grammars. So even if GeneTUC is still struggling with
low recall numbers and some serious grammatical problems, it is to
early to give up on this approach. It is probably about time we
started looking at pre- and post- processors to help TUC take full
advantage of the parts of the grammar that already well developed.

FUTURE WORK

 27

8 Future work

8.1 Pre-parsing

8.1.1 Use IR to find only specific relations (verbs)

Information Retrieval (IR) is just pure text searching (aka pattern
matching). When I spoke to Franz Günther from Hamburg
University he gave me a new idea to a way of pre-parsing the
abstracts. His claim is that it’s better to focus on one specific relation
at a time, instead of trying to completely analyze every sentence in
every abstract. The reason for this is that the language is ever
expanding, and there are hopelessly many ways of (miss-) writing
anything. Therefore it seems we have to build something that is
robust enough to cover “everything”, which is more or less
impossible. This is basically the same argument that motivated
[Par01] in their focus on certain verbs.

The situation is not so hopeless if we focus on only one specific
relation at a time; then there is probably a finite amount of possible
word configurations and misspellings to consider, and as soon as all
of them are programmed, the system will be robust, considering just
that specific relation. Another advantage of this is that the biologists
will then immediately have some useful sub-program to start their
exploring with. And this, in turn, will lead to useful feedback to the
programmers.

8.1.2 Use Perl to solve the punctuation problems

Many of the punctuation problems can be solved with a good
text-manipulation system like Perl. That way the punctuation can
already be standardized by the time TUC starts chewing on the

 FUTURE WORK

 28

sentences, and TUC would not fail because of ungrammatical use of
periods or slashes. This preprocessing approach is possible since there
is a finite amount of words with periods in them, or at least a finite
amount of templates for these words (E.g. The LetterNumber.Number
template for all terms like L740.093). Preprocessing is also a good
thing to do, since it separates the strange biolinguistic punctuation
problem from the general TUC grammar/parsing problems. Also
worth noting is that Perl has much more powerful syntactic text
manipulation functions than Prolog.

8.2 Problematic grammar constructs

A few of the difficult sentences that were abandoned in this
project should definitely be made working in later versions. The
most obvious example is the following template: “sentence, indicating
something”. This is a very standard and legal way, in terms of English
grammar, to express that one complex event points to another one.

The reason that this sentence is not already working in TUC is
that it’s never been encountered before, in any of the simpler TUC
applications. It is also a little trickier to solve than some of the other
general problems that were identified in this project, so it was put on
the “waiting list” (future work).

The biggest challenge in GeneTUC will probably be to build a
grammar that is good enough to deal with all the complex language
constructs that the biologists uses in their reports.

In this project it’s been shown that it is possible to do full parsing
on a relevant text abstract, even though it took quite an effort to do it.
The next step is to find out if the effort to parse a similar abstract will
be less than the work already done with the first one. This is what
has happened to BusTUC, as the same types of questions are
repeated over and over again in the long run.

8.3 Partial parsing

Other research communities seem to have great success with
partial parsing of biolinguistic texts. The average biomedical
sentence is very long, and very often it contains more than one fact.
Common examples of this are the use of “and” to join two sentences

FUTURE WORK

 29

into one, or apposition like in this construct: “L740093, a specific CCK-
B receptor antagonist blocks …”. Even if the rest of this sentence
cannot be parsed, some useful facts are already discovered. But the
present version of TUC cannot handle this scenario. When the parser
fails, nothing is returned.

A better solution would be to return as many facts/events as
possible, together with a warning that this is just part of the facts
represented by the sentence. The advantage of this is that it would
almost double the recall rate, since most sentences represent more
than one extractable event.

REFERENCES

 31

References

[And00] Anders Andenæs. GeneTUC - /j&’-ne-tük/. Technical
report, Department of Computer and Information
Science, Norwegian University of Science and
Technology, 2000.

[And00b] Anders Andenæs. GeneTUC – An NLP System for
Biomedical Texts. Master’s thesis, Department of
Computer and Information Science, Norwegian
University of Science and Technology, 2000.

[Bra97] Jon S. Bratseth. Bustuc – a natural language bus traffic
information system. Master’s thesis, Norwegian
University of Science and Technology, 1997.

[Gene] Gene Ontology Consortium. Official webpage:
http://www.geneontology.org/

[GPCR] GPCRDB: Information system for G protein-coupled
receptors (GPCRs). Official Home Page:
http://www.gpcr.org/

[HLT02] Human Language Technology Conference, San Diego,
March, 2002. Webpage: http://www.hlt2002.org/

[Jen01] Jenssen T-K, Lægreid A, Komorowski J, Hovig E, A
literature network of human genes for high-throughput
nalysis of gene expression, Nature Genetics, 28:21-8,
May 2001.

 REFERENCES

 32

[NCBI] National Center for Biotechnology Information.
Webpage: http://www.ncbi.nlm.nih.gov/

[Par01] Jong C. Park. Using Combinatory Categorial Grammar
to Extract Biomedical Information, Intelligent Systems
in Biology, 1094-7167/01 IEEE Intelligent Systems, 2001.

[RDF] Resourse Descriptive Framework, by the World Wide
Web Consortium, W3C. Official Webpage:
http://www.w3.org/RDF/

[PubM] PubMed, a service of the National Library of Medicine,
provides access to over 11 million MEDLINE citations.
Webpage: www.ncbi.nlm.nih.gov/PubMed/

[WNet] The WordNet Project. Official webpage:
http://www.cogsci.princeton.edu/~wn/

[Yak01] Yakushiji et al., “Event Extraction from Biomedical
Papers Using a Full Parser,” Proc. Pacific Symp.
Biocomputing 2001, World Scientific Publishing, River
Edge, N.J., 2001, pp. 408-419.

ICER-MANUS

 33

A ICER-manus

A.1 Original version

The CREM gene encodes both activators and repressors
of cAMP-induced transcription. ICER (Inducible cAMP
Early Repressor) isoforms are generated upon
activation of an alternative, intronic promoter
within the CREM gene. ICER is proposed to down-
regulate both it’s own expression and the expression
of other genes that contain cAMP responsive elements
(CREs) such as a number of growth factors. Thus, ICER
has been postulated to play a role in proliferation
and differentiation. Here we show that ICER gene
expression is induced by gastrin, cholecystokinin
(CCK) and epidermal growth factor (EGF) in AR42J
cells. The time course of gastrin- and CCK-mediated
ICER induction is rapid and transient, similar to
forskolin- and PMA- induced ICER expression. The
specific CCK-B receptor antagonist L740.093 blocks
the gastrin- but not the CCK -response, indicating
that both the CCK-B and the CCK-A receptor can
mediate ICER gene activation. Noteworthy, CREB is
constitutively phosphorylated at Ser 133 in AR42J
cells, and ICER induction proceeds in the absence of
increased CREB Ser 133 -P. Gastrin-mediated ICER
induction was not reduced in the presence of the PKA
inhibitor H-89, indicating a PKA independent
mechanism. This is the first report on ICER
inducibility via Gq/G11 –protein coupled receptors.

A.2 Modified version1

(1) The CREM gene encodes both activators and
repressors of cAMP-induced transcription.

(2) ICER (Inducible cAMP Early Repressor) isoforms
are generated upon activation of an

1 The changes are marked with italics and a leading * before the sentence.

 APPENDIX A

 34

alternative, intronic promoter within the CREM
gene.

(3) ICER is proposed to down-regulate both it’s
own expression and the expression of other
genes that contain cAMP responsive elements
(CREs) such as a number of growth factors.

(4) Thus, ICER has been postulated to play a role
in proliferation and differentiation.

(5) Here we show that ICER gene expression is
induced by gastrin, cholecystokinin (CCK) and
epidermal growth factor (EGF) in AR42J cells.

(6) The time course of gastrin- and CCK-mediated
ICER induction is rapid and transient, similar
to forskolin- and PMA- induced ICER
expression.

(7) * The specific CCK-B receptor antagonist
L740093 blocks the gastrin- but not the CCK –
response. This indicates that both the CCK-B
receptor and the CCK-A receptor can mediate
ICER gene activation. (“gastrin-“ should be
"gastrin response", semantic problem?)

(8) Noteworthy, CREB is constitutively
phosphorylated at Ser 133 in AR42J cells, and
ICER induction proceeds in the absence of
increased CREB Ser 133 -P.

(9) * Gastrin-mediated ICER induction was not
reduced in the presence of the PKA inhibitor
H-89. This indicates a PKA independent
mechanism.

(10) * This is the first report on ICER
inducibility via Gq-G11 protein coupled
receptors.

CHANGES IN THE CODE

 35

B Changes in the code

Here is “a map” to the most needed files in this GeneTUC project,
and also a list of changes that were done in the different files.

B.1 Important files

Below is a brief explanation of the content in the most important
files, regarding this project:

database/facts.pl
• Contains the leaf nodes in the semantic network, written on the form “constant isa

concept.”

database/semantics.pl
• Contains the semantic network concepts, written on the form “concept ako

concept.”
• Also contains the templates for how to combine concepts with verbs, adverbs &

adjectives.

tuc/dict_e.pl
• Contains rules for how to read complex words that are made up by more than one

word.

tuc/fernando.pl
• Changed by Tore Amble a few times.
• Deals with complex NPs like “the antagonist l740093 exists.”
• Deals with sentences like “GenaX, GeneY and GeneZ exists.”

tuc/gram_e.pl
• Contains all the grammar rules in consensical form.
• To many things were fixed in this file to include all of them in the list below.

B.2 database/facts.pl:

%% REVISED RS-020614
serin isa amino_acid. %% RS-020529
l740093 isa antagonist. %% RS-020515
ar42j isa cell. %% RS-020529

 APPENDIX B

 36

pka isa kinase. %% RS-020529, Protein Kinase A??
h_89 isa pka_inhibitor. %% RS-020531
%% To be moved to protein.pl?! RS-020523
crem isa protein. %% RS-020515
g11 isa protein. %% RS-020529
gq isa protein. %% RS-020529
gq_g11 isa protein. %% RS-020603
gq_g11_pcr isa gpcr. %% RS-020603 G-Protein coupled receptor
%% To be moved to substance.pl?! RS-020523
epidermal_growth_factor isa substance. %% RS-020523

B.3 database/semantic.pl:

%% REVISED RS-020614
activator ako protein. %% RS-011018
cckbr_antagonist ako antagonist. %% RS-020527
%% expression ako process. %% RS-020513 %% iflg Astrid Lægreid
pka_inhibitorako inhibitor. %% RS-020531
process ako activity. %% AAn-000404 %% RS-020510 opposite!, ref Lægreid
%% protein ako agent. %% AAn-000320 %% RS-020528 GIVEN by marker ?!
protein ako substance. %% RS-020528 Biologically correct, ref Lægreid
repressor ako protein. %% RS-011018, Eg. substance; men hva med attr
gpcr ako receptor. %%RS-020603
adj_templ(cck_mediated,activity). %% RS-020527, løste et annet problem ;-O
adj_templ(forskolin_pma_induced,activity). %% RS-020525
adj_templ(gastrin_cck_mediated,activity). %% RS-020525
adj_templ(gastrin_mediated,activity). %% RS-020515
adj_templ(increased,protein). %% RS-020527
adj_templ(pka_independent,abstract). %% RS-020603, eg.mechanism
%%adj_templ(pka,inhibitor). %% RS-020531, Comp_word!
adj_templ(pma_induced,activity). %% RS-020527
adj_templ(gq_g11_protein_coupled,protein). %% RS-020603
%% Hva med generelt adjname_templ(Gene, agonist). %%RS-020527
%% adjname_templ(cckbr,antagonist). %% RS-020527,->compword!
adjname_templ(creb,protein). %% RS-020525 What's wrong???
%%adjname_templ(gq_g11,receptor). %% RS-020603
adjname_templ(icer,activity). %% RS-020524 Includes activation
%%n_compl(by,activity,gene). %% RS-020524 ikke n_compl (passiv!)
iv_templ(phosphorylate,protein). %% RS-020525 (transitiv!, by agent)
iv_templ(proceed,activity). %% RS-020525
tv_templ(induce,gene,activity). %% RS-020513
tv_templ(mediate,agent,thing). %% AAn-000914 %%RS-020524 (gene/prot etc)
tv_templ(normalise,agent,thing). %% AAn-000921, RS-020527 modified
tv_templ(phosphorylate,agent,protein). %% RS-020525
tv_templ(play,agent,role). %% TA-011203, RS-020514 modified
n_compl(of,course,activity). %% RS-020524
adv_templ(constitutively,phosphorylated). %% RS-020528
v_compl(phosphorylate,agent,at,amino_acid). %% RS-020525

CHANGES IN THE CODE

 37

B.4 tuc/dict_e.pl

synword(constitutively, constantly). %% RS-020529 Riktig, Astrid?
synword(ser, serin). %% RS-020529, amino_acid
%%noisew(constitutively). %% TA-011025, rem RS-020528 kontinuerlig
synword(cholecystokinin, cck). %% RS-020515 (juks...?)
synword(similar, equal). %% RS-020525
compword(cck,[a,receptor], cckar). %% RS-020527
compword(cck,[b,receptor,antagonist], cckbr_antagonist). %% RS-020527 Juks!
compword(cck,[b,receptor], cckbr). %% RS-020525
compword(cck,[mediated], cck_mediated). %% RS-020515 "garden path"
compword(creb,[ser,133,p], creb). %% RS-020527 Riktig??
compword(epidermal,[growth,factor], epidermal_growth_factor). %% RS-020522
compword(forskolin,[and,pma,induced], forskolin_pma_induced). %% RS-020525
compword(gastrin,[mediated], gastrin_mediated). %% RS-020515 "garden path"
compword(gastrin,[and,cck,mediated], gastrin_cck_mediated). %% RS-020525 Juks!
compword(gq,[g11,protein,coupled,receptor], gq_g11_pcr). %% RS-020603 Juks
compword(gq,[g11,protein,coupled,receptors], gq_g11_pcr). %% RS-020603 Juks!
compword(h,[89], h_89). %% RS-020529
compword(icer,[gene], icer). %% RS-020514
%%compword(icer,[isoforms], isoform). %% RS-020521 rem
compword(pka,[independent], pka_independent). %% RS-020603
compword(pka,[inhibitor], pka_inhibitor). %% RS-020531
compword(pma,[induced], pma_induced). %% RS-020527
compword(protein,[coupled], protein_coupled). %% RS-020603
compword(ser,[133], ser). %% RS-020525 Riktig?? Semantisk?
compword(Word,List,WholeWord) :-
 user:gene_cmpl(Word,List,WholeWord). %% RS-020525, Slow?? Ok!

B.5 tuc/fernando.pl

%% REVISED TA-020527
constrain0(_:thing,_):-!. %% TA-020103 "det" koster
%% NEW PREDICATE %% TA-020419
bealign(X,Y,S, P, Q):- %% Explicitly X is Noun // not Noun X

\+ value(textflag,true),
!,
align(X,Y,S, P, Q).

bealign(X:MT,Y:WT,S,P,P and be2/X/Y/S):- %% TA-020312
bottom(MT,Program),
bottom(WT,Person),
alignable0(Program,Person),
!.

bealign(X,Y,S, P, Q):-
align(X,Y,S, P, Q).

align(X:MT,Y:WT,S,P,P and be2/X/Y/S):- %% TA-020312
bottom(MT,Program),
bottom(WT,Person),
alignable(Program,Person),
!.

align_noun_name(XT,YT,P,XT,Q):- %% The person John %% TA-020527
align4(XT,YT,P,Q).

/* %%TA-020527
align_noun_name(X:Man,John:Man, John isa Man,John:Man,John isa Man):-

 APPENDIX B

 38

John=X.
*/
%% TA-020313
align5(X:MT,Y:WT,P,P):-

bottom(MT,Program),
bottom(WT,Person),
alignable(Program,Person),
 (\+ flounder(X,Program)

; % NOT both are variables
 \+ flounder(Y,Person)), % is (bus)4 a number ?
!,
X=Y. %% both will be instantiated

worldvalue(W):-
value(world,W),!;W=real. %% TA-020129

latin(or,X:T1,Y:T2,(X;Y):T):-
joinclass(T1,T2,T),
T \== thing. %% They must have something in common %% TA-020107

B.6 tuc/gram_e.pl

be_compl(X,S,Com,P2) --->
the0, %% TA-020522
ap(A,X,S,Com2,P1),
verb_complements0(adj/A,X,S,Com2:P1,Com:P2).
%% identical to Adj Compls NEW

whodidit(_V,_Y,X,B,C)---> %% tore ws killed
by,
!,accept,
lock, %% TA-020519

noun_phrase(X,B,C), %% by john and mary
unlock.

EXTRACTED FACTS

 39

C Extracted facts

This appendix shows how GeneTUC semantically understood the
given sentences. For an explanation of the TUC Query Language
(TQL) syntax used here, see [Bra97].

This list was made with the command “\r abs” in GeneTUC
mode:

the crem gene encodes both activators and repressors of
camp - induced transcription.

(1) crem isa gene
(2) sk(1)isa activator
(3) encode/crem/(sk(1),sk(3))/sk(2)
(4) event/real/sk(2)
(5) sk(3)isa repressor
(6) sk(5)isa transcription
(7) adj/camp_induced/sk(5)/real
(8) has/process/repressor/sk(5)/sk(3)
(9) event/real/sk(4)

icer (inducible camp early repressor) isoforms are
generated upon activation of an alternative intronic
promoter within the crem gene.

(10) sk(7)isa isoform
(11) adj/icer/sk(7)/A
(12) sk(8)isa agent
(13) sk(9)isa activation
(14) sk(10)isa promoter
(15) adj/alternative/sk(10)/real
(16) adj/intronic/sk(10)/real
(17) nrel/within/role/gene/sk(10)/crem
(18) nrel/of/activity/thing/sk(9)/sk(10)
(19) generate/sk(8)/sk(7)/sk(11)
(20) srel/upon/activity/sk(9)/sk(11)
(21) event/real/sk(11)

icer is proposed to down - regulate both its own
expression and the expression of other genes that

 APPENDIX C

 40

contain camp responsive elements (cres) such as a
number of growth factors.

(22) icer isa protein
(23) sk(13)isa agent
(24) propose/id/that/sk(13)/sk(14)/sk(15)
(25) event/real/sk(15)
(26) srel/down/place/nil/sk(15)
(27) sk(16)isa expression
(28) has/gene/expression/sk(20)/sk(16)
(29) regulate/icer/(sk(16),sk(18))/sk(17)
(30) event/sk(14)/sk(17)
(31) sk(18)isa expression
(32) sk(20)isa gene
(33) adj/other/sk(20)/real
(34) sk(22)isa factor
(35) adj/growth/sk(22)/A
(36) sk(24)isa element
(37) adj/camp/sk(24)/real
(38) adj/responsive/sk(24)/real
(39) adj/such/sk(24)/sk(25)
(40) event/real/sk(25)
(41) contain/sk(20)/sk(24)/sk(21)
(42) srel/as/thing/sk(23)/sk(21)
(43) srel/of/thing/sk(22)/sk(21)
(44) event/real/sk(21)
(45) has/gene/expression/sk(20)/sk(18)
(46) event/real/sk(19)

thus icer has been postulated to play a role in
proliferation and differentiation.

(47) adj/said/icer/sk(28)
(48) event/real/sk(28)
(49) srel/in_order_to/thing/sk(27)/sk(28)
(50) sk(30)isa role
(51) sk(31)isa proliferation
(52) nrel/in/role/thing/sk(30)/(sk(31),sk(32))
(53) sk(32)isa differentiation
(54) play/icer/sk(30)/sk(29)
(55) event/real/sk(29)
(56) srel/being_the/reason/sk(27)/sk(29)

here we show that icer gene expression is induced by
gastrin cholecystokinin (cck) and epidermal growth
factor (egf) in ar42j cells.

(57) 'I' isa self
(58) show/id/that/'I'/sk(34)/sk(35)
(59) event/real/sk(35)
(60) srel/here/place/nil/sk(35)

EXTRACTED FACTS

 41

(61) sk(36)isa expression
(62) adj/icer/sk(36)/A
(63) gastrin isa substance
(64) ar42j isa cell
(65) induce/(gastrin,cholecystokinin,epidermal_grow

th_factor)/sk(36)/sk(37)
(66) srel/in/thing/ar42j/sk(37)
(67) event/sk(34)/sk(37)
(68) cholecystokinin isa substance
(69) epidermal_growth_factor isa substance

the time course of gastrin - and cck - mediated icer
induction is rapid and transient similar to forskolin -
and pma - induced icer expression.

(70) sk(39)isa course
(71) adj/time/sk(39)/A
(72) sk(41)isa induction
(73) adj/icer/sk(41)/A
(74) adj/gastrin_cck_mediated/sk(41)/real
(75) has/activity/course/sk(41)/sk(39)
(76) event/real/sk(40)
(77) adj/rapid/sk(39)/sk(42)
(78) event/real/sk(42)
(79) adj/transient/sk(39)/sk(42)
(80) sk(43)isa expression
(81) adj/icer/sk(43)/A
(82) adj/forskolin_pma_induced/sk(43)/real
(83) comp/thing/eq/sk(39)/sk(43)

the specific cck - b receptor antagonist l740093 blocks
the gastrin – but not the cck - response. (egentlig
‘gastrin-response' !)

(84) l740093 isa cckbr_antagonist
(85) sk(45)isa response
(86) cck isa gene
(87) (block)/l740093/gastrin/sk(46)
(88) event/real/sk(46)
(89) srel/in/thing/sk(45)/sk(46)
(90) srel/in/thing/cck/sk(46)
(91) srel/not/mode/nil/sk(46)
(92) srel/but/mode/nil/sk(46)
(93) adj/specific/l740093/real

this indicates that both the cck - b receptor and the
cck - a receptor can mediate icer gene activation.

(94) indicate/id/that/it/sk(48)/sk(49)
(95) event/real/sk(49)
(96) cckbr isa gene
(97) sk(50)isa activation
(98) adj/icer/sk(50)/A
(99) mediate/(cckbr,cckar)/sk(50)/sk(51)
(100) event/sk(48)/sk(51)

 APPENDIX C

 42

(101) cckar isa gene

noteworthy creb is constitutively phosphorylated at ser
133 in ar42j cells and icer induction proceeds in the
absence of increased creb ser 133 - p.

(102) creb isa protein
(103) sk(53)isa agent
(104) serin isa amino_acid
(105) phosphorylate/sk(53)/creb/sk(54)
(106) srel/at/amino_acid/serin/sk(54)
(107) srel/in/thing/ar42j/sk(54)
(108) event/real/sk(54)
(109) srel/constantly/mode/nil/sk(54)
(110) sk(55)isa induction
(111) adj/icer/sk(55)/A
(112) sk(56)isa absence
(113) proceed/sk(55)/sk(54)
(114) srel/in/thing/sk(56)/sk(54)
(115) srel/of/thing/creb/sk(54)
(116) adj/increased/creb/real

gastrin - mediated icer induction was not reduced in
the presence of the pka inhibitor h - 89.

(117) (h_89 isa pka_inhibitor, A isa induction, B
isa agent, C isa presence, adj/icer/A/D,
adj/gastrin_mediated/A/real, reduce/B/A/E,
srel/in/thing/C/E, srel/of/thing/h_89/E,
event/real/E)=>false

this indicates a pka independent mechanism.
(118) sk(59)isa mechanism
(119) adj/pka_independent/sk(59)/real
(120) indicate/it/sk(59)/sk(60)
(121) event/real/sk(60)

this is the first report on icer inducibility via gq -
g11 protein coupled receptors.

(122) sk(62)isa inducibility
(123) gq_g11_pcr isa gpcr
(124) nrel/via/thing/thing/sk(62)/gq_g11_pcr
(125) sk(63)isa report
(126) adj/first/sk(63)/real
(127) nrel/on/information/thing/sk(63)/icer
(128) be1/it/sk(64)
(129) event/real/sk(64)
(130) srel/in/thing/sk(62)/sk(64)
(131) srel/in/thing/sk(63)/sk(64)

TUC COMMANDS

 43

D TUC commands

Here is a list over the most common commands you need to
know, in order to work with the GeneTUC (and other TUC) systems:

D.1 Sicstus Prolog

These are commands that can be typed at the “| ?- “ prompt:
• [Filename]. Compiles (or re-compiles) the file called

“Filename.pl” into the memory.
• hi. Homemade command to start the debugger

the right way.
• listing (pred). Lists all occurrences of the predicate “pred”

from the memory.
• run. Starts the GeneTUC mode.
• spy (pred). Put a spypoint on the predicate, for

debugging purposes.
• testgram. Set some appropriate standard spypoints in

the grammar predicates.
All these commands can also be written in GeneTUC mode, but
then you need to add a \ (backslash) in front of the command.

D.2 GeneTUC mode

These are commands that can be typed at the “E: “ prompt:
• Any Sentence. Will parse the sentence and write output.
• \r abs. Will parse sentences from the file “abs.e”

and write output for each sentence.
• \set traceprog 1 Will give standard output (only facts)
• \set traceprog 2 Will give verbose output (including text

tagging and anaphora candidates)

 APPENDIX D

 44

• \set traceprog 3 Will give extra verbose output (including
the parse tree).

• \spyg rule Put a spypoint on the given grammar rule.
• \pred Any prolog predicate can be executed in

GeneTUC mode.

DICTIONARY

 45

E Dictionary

E.1 Biological

cAMP = cyclic Adenosine Mono-Phosphate
CCK = Cholecystokinin
CRE = cAMP Responsive Elements
CREM = (a gene name)
GO = Gene Ontology
ICER = Inducible cAMP Early Repressor
MTFS = Medical Research Center, NTNU
PKA = cAMP-dependent Protein Kinase

E.2 Natural Language Processing

Biolinguistics = NLP on biomedical texts
Consensical = Context Sensitive Categorial Attribute Logical
DB = Database
EoS = End-of-Sentence
GUI = Graphical User Interface
IR = Information Retrieval
KS = Knowledge System
KW = Key Word
NCBI = National Center for Biotechnology Information
NIH = National Institutes of Health
NLM = National Library of Medicine
NLP = Natural Language Processing
NP = Noun Phrase
POS = Part Of Speech
RDF = Resource Description Framework
RTF = Rich Text Format

 APPENDIX E

 46

TFOL = Temporal First Order Logic
TQL = TUC Query Language (A simplified and

skolemised version of TFOL)
TUC = The Understanding Computer

