

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG

ELEKTROTEKNIKK

MASTEROPPGAVE

Kandidatens navn: Magnus Mork

Fag: Masteroppgave, Datateknikk

Oppgavens tittel (engelsk): Building a database backbone for a Natural Language

Question Answering System

Oppgavens tekst: We now have a running system (GeneTUC) that is able

to answer questions about gene and protein interactions.
The system is still under development, and the next big
step is to make it easier to enter new data into the
system. The task will be to make a system that can
import existing data from the system, and from users via
the web, and when needed, export this data back into the
format used by the system (pure text files).

Oppgaven gitt: 01. mars 2004

Besvarelsen leveres innen: 30. juli 2004

Besvarelsen levert: 30 juli 2004

Utført ved: Institutt for datateknikk og informasjonsvitenskap

Veileder: Tore Amble og Rune Sætre

Trondheim, 30. juli 2004

Tore Amble
Faglærer

 - 2 -

 - 3 -

Abstract

The goal of the thesis was to create a database backbone for a Natural
Language Question Answering System, and to provide a web interface to
this database. The purpose was to make the GeneTUC knowledge base
accessible to all participants of the GeneTUC project, and to provide an
intuitive and usable interface to the knowledge base.

The GeneTUC system is based on the TUC architecture, and there are
several other TUC systems currently in development. A domain
independent application was developed to be used with any TUC
knowledge base. The application was given the name Ontool. The goal of
Ontool was to help improve performance of the GeneTUC system.
Therefore, Ontool was designed to be an administrative tool for the
knowledge base administrator.

The GeneTUC knowledge base was extended with information from
external sources, most notably the Gene Ontology knowledge base. The
Ontool application provided support for importing data from OBO- and
other various formats.

The Ontool application helped improve the quality of the knowledge base,
as it implemented means for preventing duplicates, spelling-errors etc.
The knowledgebase also became more accessible as its contents could be
accessed in a structural way.

Methods used
Most of the application requirements were unknown and so the project
was carried out as a software engineering project with heavy use of
prototyping. The plan was to reach the goal of an accessible and usable
application through evolutionary prototyping. To assist in the process, the
system development theory of Extreme Programming was used.

To help ensure that the usability of the application was good, usability
testing with both actual users (biologists and GeneTUC expert), and
“normal” users were carried out.

Some initial background research was made to better understand the
workflow of the knowledge base administrator, and his interactions with
external expert users. The work pattern of the expert users was also
studied to better understand their need for a software tool.

 - 4 -

Results and contributions
A database backbone was successfully created, and the knowledge base
was given a web user interface. Usability tests showed that users were
enthusiastic about the application, and found the usability to be good.
System tests showed that the application functioned according to the
given specifications.

The Gene Ontology knowledge base was imported into the GeneTUC
knowledge base. This provided GeneTUC with 17142 new terms and
22304 new relations; resulting in a 1263% increase in knowledge base size.

 - 5 -

Preface

This report is the result of the work related to obtaining a Masters degree
(Sivilingeniør) in computer science. The work was carried out at the
Department of Computer and Information Science, Faculty of Information
Technology, Mathematics and Electrical Engineering at the Norwegian
University of Science and Technology (NTNU) during the spring semester
of 2004.

I would like to thank my supervisors, Rune Sætre and Tore Amble, for
valuable help, ideas, and criticism during the project. I would also like to
thank Astrid Lægreid, Kristine Misund, and Tone Strømmen at the Medical
Research Center (MTFS) at NTNU, for great cooperation and efforts in
making the system as good as possible. Their joint contributions have been
of great value to the final result.

Additionally, I would like to thank Øyvind Møll at IDI’s computer lab, for
his quick help and good assistance when publishing the Ontool
application.

This report is written in Microsoft Word using font Palatino Linotype 12pt.

Cadiz, August 10th, 2004.

Magnus Mork

 - 6 -

 - 7 -

Contents

PART I INTRODUCTION 13

1 Motivation and Background 15

2 Problem Definition and Scope 17

3 Project Description 19
3.1 A comment on the problem definition 19
3.2 What Ontool is; and is not 19
3.3 Constraints and critical factors 20

4 Readers Guide 23

PART II BACKGROUND AND RELATED WORK 25

5 GeneTUC 27
5.1 Prolog 27

5.1.1 A Prolog program, and its parts 28
5.2 TUC 29

5.2.1 TUC applications 30
5.3 Knowledge base 31

5.3.1 Semantic network 31
5.3.2 Grammar 33
5.3.3 Physical storage of the KB 34

5.4 Running GeneTUC 34

6 Gene Ontology 37
6.1 OBO File format 38
6.2 Gene Ontology and GeneTUC 39

7 Enabling Technologies 41
7.1 The Web 41

7.1.1 Web servers 41
7.1.2 Web browser 41
7.1.3 HyperText Transfer Protocol (HTTP) 42
7.1.4 HyperText Markup Language 43

7.2 Database - MySQL 47
7.2.1 Features of MySQL 47
7.2.2 Limitations of MySQL 48

7.3 Integrating Web and Databases - PHP 50
7.4 Choice of technology 50

7.4.1 Pitfalls to avoid 50

8 Extreme Programming 53
8.1 Best practices of Extreme Programming 53
8.2 Evaluating Extreme Programming 56

8.2.1 Why Extreme Programming in this project 56

 - 8 -

9 Usability and Usability Testing 59
9.1 Usability Testing 59

9.1.1 Discount Usability Engineering-method. 61

PART III DEVELOPING THE ONTOOL APPLICATION 65

10 Problem Analyses 67
10.1 Overview of the existing system 67

10.1.1 User profile 68
10.1.2 Conceptual Model 68
10.1.3 Terminology 69

11 Requirements Specification 71
11.1 Functional requirements 71

11.1.1 Use cases for Ontool 72
11.2 System specification for the Ontool database 97
11.3 Non-functional requirements 98

12 System Architecture and Design 99
12.1 A tired-architecture 99

12.1.1 Component architecture 99
12.1.2 Brining the components together 101
12.1.3 The Server side’s responsibilities 101
12.1.4 The Client side’s responsibilities 102
12.1.5 Data Service tier 102
12.1.6 Business Service 102
12.1.7 User Service 103

12.2 Evaluation of the architecture 103
12.2.1 Portability 104

12.3 Database design 105
12.3.1 Relation Type 105
12.3.2 Assignments 105
12.3.3 User 106
12.3.4 Message 106
12.3.5 Term 106
12.3.6 Relations 107
12.3.7 Grammar 107

13 Ontool System Test 109
13.1 Sub-unit tests 110
13.2 System test 112
13.3 Non-Functional Requirement Tests 114

14 Ontool Usability Test 115
14.1 Usability test # 1 115

14.1.1 Test participants 115
14.1.2 Test 116
14.1.3 Results 116

14.2 Usability test # 2 118
14.2.1 Test participants 118
14.2.2 Test 119

 - 9 -

14.2.3 Results 119

PART IV FINDINGS AND CONCLUSION 127

15 Results and Contributions 129
15.1 The Ontool application 129
15.2 Importing Gene Ontology 129
15.3 Contributions 130

16 Discussion 131
16.1 Extreme Programming in this project 131

16.1.1 Execution of the XP best practices 131
16.1.2 Evaluation of the use of XP 133

16.2 Importing Gene Ontology 133
16.3 Ontool System test 134

16.3.1 Sub unit tests 134
16.3.2 System tests 136
16.3.3 Non-Functional Requirement Tests 136

16.4 Ontool Usability 136
16.4.1 Comments on the usability tests 137

16.5 Choice of design 138
16.6 Porting Ontool to another TUC system 138

17 Future Work 139
17.1 Re-designing Ontool 139
17.2 New features of Ontool 139
17.3 Ontool usability 140

BIBLIOGRAPHY 143

APPENDIX 145

A. Ontool installation guide 145

B. Ontool Help 148

C. Ontool phpDOC 149

D. Usability tips for Web pages 150

E. Gene Ontology 153

 - 10 -

List of tables

TABLE 5.1 STRUCTURE AND EXECUTION OF A PROLOG PROGRAM 28
TABLE 5.2 EXAMPLE NODES IN THE GENETUC SEMANTIC NETWORK 32
TABLE 5.3 EXAMPLE RELATIONS IN THE GENETUC SEMANTIC NETWORK 32
TABLE 5.4 TYPES OF SEMANTICAL RESTRICTIONS IN THE GENETUC GRAMMAR 33
TABLE 6.1 THE GO ONTOLOGIES 37
TABLE 6.2 SAMPLE OBO TAGS AND THEIR DESCRIPTION 39
TABLE 6.3 SOME SIMILARITIES BETWEEN GENETUC AND GO 40
TABLE 6.4 SOME DIFFERENCES BETWEEN GENETUC AND GO 40
TABLE 8.1 WHY EXTREME PROGRAMMING IN THIS PROJECT 57
TABLE 9.1 COMMON USABILITY TESTS 61
TABLE 10.1 COMMON TASKS WHEN UPDATING THE GENETUC KNOWLEDGE BASE 67
TABLE 10.2 THESIS, AND ONTOOL, TERMINOLOGY 70
TABLE 11.1 FUNCTIONAL REQUIREMENTS OF ONTOOL 72
TABLE 11.2 NON FUNCTIONAL REQUIREMENTS OF ONTOOL 98
TABLE 12.1 COMPONENTS OF ONTOOL 101
TABLE 13.1 PLATFORM USED WHEN TESTING ONTOOL 109
TABLE 13.2 SUB UNIT TESTS FOR ONTOOL 112
TABLE 13.3 SYSTEM TEST #1 FOR ONTOOL 113
TABLE 13.4 SYSTEM TEST #2 FOR ONTOOL 113
TABLE 13.5 NON-FUNCTIONAL REQUIREMENT TEST FOR ONTOOL 114
TABLE 14.1 PARTICIPANTS IN USABILITY TEST #1 116
TABLE 14.2 PARTICIPIANS OF USABILITY TEST # 2 118
TABLE 15.1 RESULTS FROM IMPORTING GENE ONTOLOGY 129
TABLE 16.1 COMMENTS ON SUB UNIT TEST RESULTS 135
TABLE 16.2 COMMENTS ON SYSTEM TEST#1 RESULTS 136
TABLE 16.3 COMMENTS ON SYSTEM TEST#2 RESULTS 136
TABLE 16.4 NON-FUNCTIONAL REQUIREMENT TEST FOR ONTOOL 136
TABLE 17.1 TIPS FOR IMPROVING ONTOOL USABILITY 141

 - 11 -

List of figures

FIGURE 10.1 CONCEPTUAL MODEL OF THE PROBLEM DOMAIN 68
FIGURE 10.2 CURRENT STRUCTURE OF THE GENETUC KB 69
FIGURE 10.3 THESIS TERMINOLOGY - A GRAPHICAL REPRESENTATION. 70
FIGURE 11.1 ADMINISTRATOR USE CASES 73
FIGURE 11.2 EXPERT USE CASES 73
FIGURE 12.1 THE ONTOOL COMPONENT ARCHITECTURE 101
FIGURE 12.2 ONTOOL PHP FILE ARCHITECTURE 103
FIGURE 14.1 RESULTS OF USABILITY TEST # 1 117
FIGURE 14.2 ONTOOL GUI - USER ADMINISTRATION 120
FIGURE 14.3 USABILITY EVALUATION OF USER ADMINISTRATION 120
FIGURE 14.4 ONTOOL GUI - ASSIGN TERMS TO USER 121
FIGURE 14.5 USABILITY EVALUATION OF ASSIGN TERMS TO USER 121
FIGURE 14.6 ONTOOL GUI - MY ASSIGNMENTS / ADD A RELATION 122
FIGURE 14.7 USABILITY EVALUATION MY ASSIGNMENTS / EDIT A RELATION 122
FIGURE 14.8 ONTOOL GUI - SHOW TERM 123
FIGURE 14.9 USABILITY EVALUATION SHOW TERM 123
FIGURE 14.10 ONTOOL GUI - SEARCH GRAMMAR 124
FIGURE 14.11 USABILITY EVALUATION SEARCH GRAMMAR 124
FIGURE 14.12 ONTOOL GUI - ADD/EDIT A RULE 125
FIGURE 14.13 USABILITY EVALUATION ADD/EDIT A RULE 125

 - 13 -

 Part I
Introduction

1 Motivation and Background 15

2 Problem Definition and Scope 17

3 Project Description 19

4 Readers Guide 23

Part I Introduction

 - 15 -

1 Motivation and Background

GeneTUC is a knowledge-based system aimed at extracting knowledge
from research articles on molecular biology and genetics, and answer
questions given in Natural Language. The system is a part of The
Understanding Computer (TUC) project from the Institute of Computer
and Information Science (IDI) at the Norwegian University of Science and
Technology (NTNU), and is built upon the TUC framework put forth by
Tore Amble [19].

The TUC framework is a general architecture which, among other things,
contains a domain knowledge base. The TUC framework has been applied
to a series of systems dealing with natural language and domain
knowledge.

The success of a TUC system relies on the quality and quantity of the
system knowledge base, as the performance is directly dependent on what
the system can infer from its knowledge base. As the TUC architecture is
being tested in new domains, the main task is to fill the knowledge base
with enough relevant and accurate information. Today, this is a highly
manual process with no automatic help or guidance, and with no
automatic quality checks. The knowledge base is stored as a set of Prolog
predicates, in multiple flat text files. Altering the knowledge base is a slow
and painful process, and the system is highly acceptable to errors. This
makes it difficult to introduce the system to new users, or to present the
knowledge base to other than the core project members.

So far in the TUC project, great work has been done on perfecting and
fine-tuning the inner mechanisms of the TUC architecture. However, little
has been done to help create and administrate a domain knowledge base
that will help TUC systems improve their performance.

Genetics and microbiology is a rich and complex domain, and so
GeneTUC’s vocabulary is extensive. Research and development efforts in
molecular biology and genetics provide new results on a daily basis, and
this information must be collected, stored and maintained.

When creating GeneTUC it became apparent that the traditional way of
working with the knowledge base was not sufficient. Initiative was taken

Part I Introduction

 - 16 -

by PhD candidate and main driving force in the GeneTUC system, Rune
Sætre, to create an automatic system for building, extending, updating and
administrating a knowledge base that could be used with TUC systems.
The thesis is a direct result of this initiative.

Part I Introduction

 - 17 -

2 Problem Definition and Scope

The below assignment was put forth by IDI’s Tore Amble and Rune Sætre.

“Building a database backbone for a Natural Language Question
Answering System.

We now have a running system (GeneTUC) that is able to answer questions
about gene and protein interactions. The system is still under development, and
the next big step is to make it easier to enter new data into the system. The task
will be to make a system that can import existing data from the system, and from
users via the web, and when needed, export this data back into the format used by
the system (pure text files).”

The goal is to develop a database web application for administrating the
GeneTUC knowledge base. The application should be put to use among
the participants of the GeneTUC system. After a trial period, the
application can be evaluated, and considered used with other TUC
systems. The application to be developed will carry the name Ontool, as it
is in fact a tool to be used with (TUC) ontologies.

The thesis is only concerned with the planning, and development of the
Ontool application. During development, Ontool will be made available
for testing for actual end-users. This, however, is not part of the final
evaluation mentioned above, but rather a mean to endure usability of the
application. The extensive test-period, and evaluation, is not a topic of the
thesis.

Part I Introduction

 - 18 -

Part I Introduction

 - 19 -

3 Project Description

3.1 A comment on the problem definition
A database backbone and a web interface to the knowledge base would
hold a number of advantages to the current situation. Shortly put, we have
advantages on three levels [DB1]:

1. Moving the knowledge base from its current unstructured format
(Prolog predicates scattered around in a set of flat text files), into
the structured format of a database.

2. Making the knowledge base accessible for geographically
distributed users through the Internet.

3. Presenting the contents of the knowledge base in a highly
accessible, easy to use, hyperlink-driven user interface; the World
Wide Web (which have proven to be a very usable medium for
many other applications).

An incomplete list of advantages would include:

 Better overview of the knowledge base (both the overall status, and
the individual details/facts).

 Make the knowledge base more accessible for geographically
distributed users.

 Multiple users can update the knowledge base simultaneously.
 Ensure quality in the updating of the knowledge base.
 Easier to import knowledge from other knowledge bases as the

target knowledge base is in a structured format.
 Easier to export the knowledge to some other format for

presentation, analysis, etc.

3.2 What Ontool is; and is not
The performance of the GeneTUC system relies on its knowledge base.
The Ontool application must commit to the structure of the TUC
knowledge base architecture. In other words, Ontool is not a tool for
extending or altering the TUC knowledge base architecture, but for
making sure that the TUC knowledge base architecture is being used to its
fullest potential.

Part I Introduction

 - 20 -

The following fictional story can help the reader get an idea of the
possibilities and limitations of the Ontool application:

Mr. A is the chief of the GeneTUC project. His goal (in respect to Ontool) is to
make GeneTUC understand as much as possible about the gene and protein
interactions. When there is something that GeneTUC does not understand, the
system can tell this to Mr. A. We can imagine that Mr. A holds a list of words
that GeneTUC does not understand. Mr. A wants to find out why GeneTUC does
not understand these words and then help GeneTUC learn these words. Using
Ontool, Mr. A takes this list and asks which of these words exist in the knowledge
base. Ontool presents detailed information about each of the words and their
connection to other words (either relations or rules). Mr. A can reach all relevant
information, and so discover why GeneTUC did not understand this word by
following the hyperlinks presented by the application. Back to the list; Ontool will
show which of the words are not known to GeneTUC. Mr. A wants GeneTUC to
learn these words, and so he uses Ontool to ask his colleagues down at the center
of microbiology for help. He simply uses Ontool to split up the list of unknown
words, and sends them to his colleagues. When they log on to the Ontool
application they will be shown this list and can start educating GeneTUC. This is
done by filling out forms in a step-by-step fashion. Ontool validates the content of
the form to keep the user from making mistakes, and checks the knowledge base to
avoid duplicates, inconsistencies, errors etc. In doing so, Ontool helps create and
maintain a high quality knowledge base which in turn can improve the
performance of the GeneTUC system.

Even though the above story only shows one use of Ontool, it might help
the reader grasp the fundamental concept of Ontool, and shed some light
on the application’s possible contribution to the future work of TUC
systems.

3.3 Constraints and critical factors
The constraints on the thesis are:

• As stated in the Problem definition, the Ontool application will be
implemented using a database system, and a web user interface.

• Time is a restrictive factor. The university has set the duration of
the master thesis to 20 weeks. During this time the student should
show his analytical skills by analyzing the problem domain, his
problem solving skills when suggesting and implementing a
solution, and his ability to write a report on a technical topic. When
dealing with actual end-users, you have to balance the efforts you
put into actually implementing the system, and the efforts you do
to analyze-, document-, and evaluate it. The users want you to

Part I Introduction

 - 21 -

implement as much as possible, while it is in your best interest to
analyze, document, and evaluate to a much greater extent. The
objective is to implement as much as possible of the Ontool
application and to conduct the usability test with a completed or
near-completed application.

• The system should integrate well with other IDI
applications/environment.

It is critical that the Ontool application communicates well with the TUC
framework. Ontool is a tool to enhance the knowledge base, and GeneTUC
has to be able to make use of this knowledge base.

Part I Introduction

 - 22 -

Part I Introduction

 - 23 -

4 Readers Guide

This section provides a brief overview of what can be found in the various
chapters of the thesis. The thesis is divided into parts, where each part
contains related chapters.

Part I give an introduction to the subject of this thesis. Part II provide a
detailed overview of the central aspects needed as a background for the
thesis, as well as the research context and an overview of the enabling
technologies. Part III describes the process of developing the Ontool
application, and testing its usability and functionality. Part IV contains the
results of the usability- and system tests, a discussion of the main findings
of the thesis and details on future work.

The bibliography is presented towards the end, along with the appendices
to the thesis.

 - 25 -

Part II
Background and related work

5 GeneTUC 27

6 Gene Ontology 37

7 Enabling Technologies 41

8 Extreme Programming 53

9 Usability and Usability Testing 59

Part II Background and related work

 - 27 -

5 GeneTUC

GeneTUC is a knowledge-based system aimed at extracting knowledge
from research articles on molecular biology and genetics, and answer
questions given in Natural Language. The application is a part of The
Understanding Computer (TUC) project from the Institute of Computer
and Information Science at the Norwegian University of Science and
Technology, and is built upon the TUC framework presented in [19].

Work on GeneTUC was initiated in January 2000 by Anders Andenæs
[AA1]. Over the last few years Rune Sætre has been the main driving force
in improving the system [17], as he is currently conducting his PhD thesis
on the GeneTUC system. For up-to-date information about the system and
related research, please refer to Rune Sætre’s webpage [18].

In the following, we will present GeneTUC as a knowledge-based system,
and inspect its building-blocks. The reason for studying the individual
parts of the system is to better understand the architecture- and the
fundamental principles which GeneTUC is based on. This knowledge is
critical when working to improve the system.

We start by looking at the general framework of GeneTUC (Prolog, TUC).
We then move on to the internal structure-, extent-, and the physical
storage of GeneTUC’s knowledge base (KB). The KB will be the focus of
the presentation, because of its direct relevance to the topic of the thesis.
We end this chapter by showing the GeneTUC system in action.

5.1 Prolog
Prolog is a simple but powerful programming language developed at the
University of Marseille, as a practical tool for programming in logic
(PROgramming in LOGic). A logic program is a set of specifications in
formal logic, and Prolog uses first-order predicate calculus. Logic, and
therefore Prolog, is based on the mathematical notions of relations and
logical inference.

Prolog is a declarative language. This means that rather than describing
how to compute a solution, a program consists of a data base of facts and

Part II Background and related work

 - 28 -

logical relationships (rules) which describe the relationships which hold
for the given application. Rather then running a program to obtain a
solution, the user asks a question. When asked a question, the run time
system searches through the data base of facts and rules to determine, by
logical deduction, the answer.

Prolog is commonly used in artificial intelligence (AI) applications such as
natural language interfaces, automated reasoning systems and expert
systems.

5.1.1 A Prolog program, and its parts
A Prolog program is a set of specifications (facts and rules) in the first-
order predicate calculus, describing the objects and relations in a problem
domain. The set of specifications is referred to as the database for that
problem.

A Prolog program is executed by asking a question (query) about the set
of specifications. Queries to the database are patterns in the same logical
syntax as the database entries. The Prolog interpreter can therefore use
pattern-directed search to find whether these queries logically follow from
the contents of the database.

Following is a simple example to show the structure, and execution of a
Prolog program.

-? man(socrates).
-? man(X):- mortal(X).
-? mortal(socrates).
-? Yes

fact – Socrates is a man
rule – all men are mortal
query – ”Is Socrates mortal?”
logically derived result – ”Yes”

Table 5.1 Structure and execution of a Prolog program

A ”yes” means that the information in the database is consistent with the
subject of the query. If a fact is not deducible from the database, the
system replies with a ”no”. This indicated that based on the information
available, no such fact is deducible. This is called the closed world
assumption, and is important in understanding Prolog’s reasoning.

For the purpose of the thesis, the above introduction to Prolog should be
sufficient. In chapter 5.3 we will see how the Prolog facts- and rules, and
reasoning, is applied to the GeneTUC system.

Part II Background and related work

 - 29 -

5.2 TUC
The TUC framework contains Prolog modules for converting natural
language into first-order predicates, and vice versa. This makes Prolog
capable of reasoning with input given as natural language, and generates
natural language as output. The mechanisms of this process are as
complex as they are interesting. As this is found to be outside the scope of
the thesis, the author would like to recommend [19] as a source of more
information. In the following, we will briefly introduce the TUC
framework, and show its importance to the GeneTUC system.

Much of the following information has been taken from [19].

TUC (The Understanding Computer) is a name of a project led by Tore Amble,
where the aim is to build intelligent knowledge based system with natural
language interfaces. When using the word intelligence in the context of TUC, we
mean an intelligent agent that communicates in a restricted modality, i.e. natural
language text, doing a useful task that requires expertise.

The TUC project was initiated at NTH (Norwegian Institute of Technology, now
the Norwegian University of Science and Technolog) in the early 1990’s. It was
based on a number of previous efforts in creating a natural language interface for
querying data bases, among them CHAT-80, PRAT-89 and HSQL. The research
goals for the project could be summarized as follows:

 Give computers an operational understanding of natural language
 Build intelligent systems with natural language capabilities
 Study common sense reasoning in natural language

The TUC project seeks to define a language denoted by NRL. This language is as
readable as plain English, but has well-defined syntax and semantics. In TUC,
NRL serves as both a declarative knowledge definition language, and as a query
language.

TUC relies on grammatical analysis for marking sentence elements. A sentence
not being grammatically correct (according to TUC’s internal grammar), will be
rejected without further treatment. Enhancing TUC is thus both a question of
adding to its vocabulary and semantics, and defining new grammatical
constructs.

The knowledge-based approach, using natural language processing is not
without problems. It is important to realize that the knowledge based-

Part II Background and related work

 - 30 -

approach relies on semantical, rather than syntactical, analysis of the
text.

The preparation of the system, building semantic nets and defining a sensible
grammar, is both tedious and time-consuming. Work on the TUC project was
started in the early 1990’s, but the grammar and semantics are still far from
complete.

NOTE: The sentences marked in bold are especially relevant for the work
in this thesis. In Part 3 of the thesis we will specify and develop an
application for enhancing the GeneTUC knowledge base.

TUC is implemented in Prolog, and so uses Prolog facts- and rules when
building a semantic net and defining a sensible grammar. Prolog also
drives the reasoning process of TUC.

The TUC framework is domain independent. TUC’s design principle is
that most of the changes are made in a tabular semantic knowledge base,
while there is one general grammar and dictionary. As TUC is based on
Prolog, the necessary logic is automatically generated from the semantic
knowledge base. When adapting the TUC framework to a new domain, it
is necessary to (1) update the grammar to reflect how sound sentences of
the domain may be formed, and (2) feed the knowledge base with
information to represent the domain. As previously mentioned, this is the
main concern of the thesis.

5.2.1 TUC applications
The TUC framework is currently being used in several research projects at
NTNU. The author would like to mention the following projects:

 BusTUC. This is an application for answering questions about bus
routes in Trondheim.

 LexTUC. This is an application for answering questions about the
contents of an encyclopedia (”Store Norske Leksikon”).

 TeleTUC. This is an application for answering questions about the
telephone catalogue.

 GeneTUC. This is an application for answering questions about
molecular biology and genetics.

The author has purposely avoided details on TUC’s inner workings, as
this is considered outside the scope of the thesis. There is, however, one

Part II Background and related work

 - 31 -

aspect of the TUC framework that needs more looking into; the
knowledge base. In the following we will take a look at how the TUC
framework utilizes Prolog facts and rules to build a semantic net and
defining a sensible grammar.

5.3 Knowledge base
The term knowledge-based system is used to describe programs that
reason over extensive knowledge bases, containing facts and rules [11].
The knowledge base is implemented in some formal knowledge
representation language; PROLOG and Lisp being the most common.

In the beginning of this chapter we classified GeneTUC as a knowledge-
based system in the domain of molecular biology and genetics. We then
introduced Prolog as a formal knowledge representation language, and
the TUC framework as a mean to translate natural language text to and
from a formal language. In the following we will go into details on the
facts- and rules that make up the TUC knowledge base, as this is the core
of the thesis. Examples are drawn from the GeneTUC domain, when
available.

The author will use the notation GeneTUC KB, or simply KB, to refer to
the knowledge base of the GeneTUC system.

To allow for a cleaner presentation, the author has chosen to divide the
GeneTUC KB in two distinct parts; (1) the semantic network, and (2) the
grammar. A justification of this approach, along with a definition of the
terminology, will follow in chapter 10.

5.3.1 Semantic network
Finding and organizing information in a systematic way in knowledge
management can be an overwhelming challenge. In the field of knowledge
systems, the theory of a semantic network is especially important [11].

A semantic network is a knowledge representation scheme based on
cognitive psychology models of human associative memory [16]. It is a
graph structure which is used to represent associations and relations
between objects in a domain. The nodes in the graph are concepts, and the
arcs are relations or associations between concepts. The arcs are generally
directed and labeled, making a semantic network a directed graph [1].

Part II Background and related work

 - 32 -

The term semantic network encompassed a family of graph-based
representations. These representations differ chiefly in the names that are
allowed for nodes- and links, and the inferences that may be performed on
these structures. In the following we will take a look at the semantic
network implemented in the GeneTUC system.

The semantic network of GeneTUC
As mentioned earlier, the semantic network is constructed on the bases of
nodes and arcs; where the nodes represent the concepts, and the arcs are
the relationships between the concepts.

The nodes in the semantic network are nouns relevant to the domain. In
the field of molecular biology and genetics the number of possible nouns
is astronomical as new nouns are added on a daily basis. The below table
shows examples of nodes in the GeneTUC semantic network:

Cell, DNA, Gene, Molecule, Organism, Protein, RNA

Table 5.2 Example nodes in the GeneTUC semantic network

The arcs in the semantic network are relationships between concepts. The
below table shows the types of relationships defined in GeneTUC:

Relation Type Description
A kind of Denotes generalisation/specialisation

gene a kind of cellular component

Is a Denotes instantiation
chordin is a gene

Has a Denotes association
gene has a intron

A part of Denotes grouping
lipid_raft a part of membrane

Table 5.3 Example relations in the GeneTUC semantic network

A word on terminology
The author will use the name Ontology (with capital O) to refer to the
semantic network of the GeneTUC system. In [12], an ontology is defined
as ”a common vocabulary for researchers who need to share information in a
domain. It includes machine-interpretable definitions of basic concepts in the
domain, and relations among them”.

Part II Background and related work

 - 33 -

5.3.2 Grammar
While it is the work of the Ontology to organize the domain concepts, it is
the responsibility of the Grammar to make sense of it all.

The TUC framework relies on semantical analysis of written texts, and it is
therefore desirable to connect the concepts to the grammar of natural
language. This is done by the part of the KB called the Grammar. The
Grammar is actually a set of semantical restrictions, helping the semantical
processing of the text. The below table shows the types of semantical
restrictions defined in the current GeneTUC Grammar:

Rule Type Example
adjname_templ adjname_templ (calcium, mobilization).

adjnoun_templ adjnoun_templ (antigen, receptor).

adj_templ adj_templ (myocardial, illness).

adv_templ adv_templ (abnormally, large).

align1 align1 (cckbr_antagonist, protein).

attributable attributable (asian, asia, continent, city).

a_compl a_compl (responsive, thing, in, cell).

bm_templ bm_templ (be, difficult).

comp_templ comp_templ (eq, animate, object, similar).

dtv_templ dtv_templ (form, with, complex, protein).

has_class has_class (person, father, person).

iv_templ iv_templ (progress, activity).

measureclass measureclass (gram).

n_compl n_compl (of, modulator, transcription).

ordinal ordinal (first, 1).

particle n_compl (of, atherogenicity, particle).

rv_templ rv_templ (demonstrate, activity).

stanprep stanprep (and, thing).

testclass testclass (number).

tv_templ tv_templ (produce, dose, matter).

v_compl v_compl (dimerize, protein, with, protein).

Table 5.4 Types of semantical restrictions in the GeneTUC Grammar

For an argument on the completeness of the grammar, please refer to [5].

Part II Background and related work

 - 34 -

5.3.3 Physical storage of the KB
The GeneTUC knowledge base is currently stored in a set of flat text files.
When GeneTUC is executed, the content of these files are read into the
Prolog parser and becomes the database of facts- and rules used in the
GeneTUC system.

According to [29], the limitations of the file based approach are often:

 Separation and isolation of data
 Duplication of data
 Data dependence
 Incompatible file formats
 Fixed queries/proliferation of application programs

All the above limitations of the file-based approach can be attributed to
two factors:
The definition of the data is embedded in the application programs, rather
than being stored separately and independently;
There is no control over the access and manipulation of data beyond that
imposed by the application programs.

Factor 1 is not valid in the case of GeneTUC, as the KB acts both as data
and application. Factor 2, however, poses a serious problem to the
GeneTUC system. To overcome this problem, it is the opinion of the
author that a new approach to KB storage is required. This will be the
focus of the thesis.

5.4 Running GeneTUC
In this chapter we have presented the architecture- and principles that the
GeneTUC system is built upon. We end by showing a simple example of
how the system can be used to answer questions about molecular biology
and genetics.

The GeneTUC system is available on the ”~busstuc” user on IDI’s
computers. If the reader needs access to the system, he should contact
Tore Amble at IDI, as he is in charge of distributing the password.

Part II Background and related work

 - 35 -

1) E: what blocks gastrin. Question
..................
 [Which (A)::(gastrin isa
substance, (block)/A/gastrin/B,
event/real/B)]
..................

Converting natural language into a
formal language, and reasons with
this.

L740093. Answer
2) E: what is cck. Question
..................
[which (cck):: cck isa gene]
..................

Converting natural language into a
formal language, and reasons with
this.

gene Answer

This simple example shows how GeneTUC (1) accepts natural language as
input, (2) converts natural language to a formal language, and (3) answers
a question by reasoning on a database of facts and rules.

Part II Background and related work

 - 36 -

Part II Background and related work

 - 37 -

6 Gene Ontology

The Gene Ontology (GO) project is a collaborative effort to address the
need for consistent descriptions of gene products in different databases
[6]. The project began as a collaboration between three model organism
databases in 1998. Since then, the GO project has grown to include many
databases, including several of the world’s major repositories for plant,
animal and microbial genomes. GO is one of the controlled vocabularies of
the Open Biological Ontologies [13].

The GO collaborators are developing three ontologies that describe gene
products in terms of their associated biological processes, cellular
components and molecular functions in a species-independent manner.
The below table briefly describes the tree ontologies. Interested readers
should refer to appendix E for more information.

Ontology Description
Molecular Function the tasks performed by individual gene products;

examples are carbohydrate binding and ATPase
activity

Biological Process broad biological goals, such as mitosis or purine
metabolism, that are accomplished by ordered
assemblies of molecular functions

Cellular Component subcellular structures, locations, and
macromolecular complexes; examples include
nucleus, telomere, and origin recognition complex

Table 6.1 The GO ontologies

The author will use the name Gene Ontology knowledge base to refer to the
set of ontologies shown in the above table.

The Gene Ontology knowledge base is freely available on the Gene
Ontology web page [6]. The datasets exist in three different formats: flat
files (updated daily), XML (updated monthly) and MySQL (updated
monthly).

There are two types of flat file formats, (1) the older GO flat file format
and (2) the newer OBO flat file format [13]. The GO flat file format will

Part II Background and related work

 - 38 -

continue to be provided alongside the new format, but as the OBO format
is more accessible for human reading, and represents the future of GO
research, only the characteristics of the OBO format will be described here.

6.1 OBO File format
The format is basically a tag-value format. An OBO document would be
structured as follows:

<header>
<stanza>
<stanza>
...

A ʺstanzaʺ is a labeled section of the document, indicating that an object of
a particular type is being described. Stanzas are structured as follows:

[<Object type>]
<tag name>: <tag value>
<tag name>: <tag value>
...

For a complete specification of the OBO format, please refer to [14]. In the
following, we will present an extract of the Gene Ontology knowledge
base file (gene_ontology.obo), and give an explanation of some of the key
tags.

format-version: 1.0
date: 28:07:2004 16:46
saved-by: jlomax
default-namespace: gene_ontology

[Term]
id: GO:0000001
name: mitochondrion inheritance
namespace: process
def: "The distribution of mitochondria\, including the
mitochondrial genome\, into daughter cells after mitosis or
meiosis\, mediated by interactions between mitochondria and the
cytoskeleton." [PMID:11389764, PMID:10873824, SGD:mcc]
is_a: GO:0048308
is_a: GO:0048311

[Term]
id: GO:0000005
name: ribosomal chaperone activity
namespace: function
def: "OBSOLETE. Assists in the correct assembly of ribosomes or
ribosomal subunits in vivo\, but is not a component of the
assembled ribosome when performing its normal biological
function." [GO:jl, PMID:12150913]
comment: This term was made obsolete because it refers to a class
of gene products rather than a molecular function. To update

Part II Background and related work

 - 39 -

annotations\, consider the molecular function term 'unfolded
protein binding ; GO\:0051082' and the biological process term
'ribosome biogenesis and assembly ; GO\:0042254' and its
children.
is_obsolete: true

[Term]
id: GO:0000019
name: regulation of mitotic recombination
namespace: process
def: "Any process that modulates the frequency\, rate or extent
of DNA recombination during mitosis." [GO:curators]
is_a: GO:0000018
relationship: part_of GO:0006312
...

Tag Description
id The unique id of the current term.
name The term name. Any term may only have ONE name

defined
namespace The namespace in which the term belongs.
def The definition of the current term.
comment A comment for this term.
synonym This tag gives a synonym for the term
is_a This tag describes a sub classing relationship between one

term and another..
relationship This tag describes a typed relationship between this term

and another term. The value of this tag should be the
relationship type id, and then the id of the target term.

is_obsolete This tag indicates whether or not the term is obsolete.

Table 6.2 Sample OBO tags and their description

6.2 Gene Ontology and GeneTUC
The Gene Ontology knowledge base consists of some 17637 terms (July 26,
2004) and about 25 000 relations. Compared to the current GeneTUC KB
the Gene Ontology knowledge base is enormous.

The GeneTUC group wishes to incorporate the Gene Ontology knowledge
base into the GeneTUC KB, in an effort to boost the performance of the
GeneTUC system. The thesis is concerned with this project, as the system
to be developed should allow for importation of Gene Ontology OBO files.

Part II Background and related work

 - 40 -

In regard to the plan of importing OBO contents, the author would like to
make some comments on differences and similarities of the GeneTUC-
and Gene Ontology knowledge bases. The below table is not an exhaustive
list, but serves as interesting reading.

Similarities
Both GeneTUC and GO are heterarchies, as they allow for a term to have
multiple parents.

The GO ”isa” tag is equivalent to the GeneTUC ”ako” relation

The ”part of” relation is defined in both GO and GeneTUC.

Table 6.3 Some similarities between GeneTUC and GO

Differences
GeneTUC require every term to be linked to the top node (thing) trough a
(series of) ako relation(s). GO does not require such linking.

GeneTUC does not concern itself with information about terms. The
relationships between term-names are the focus of the KB, and no other
information is stored. GO is much more focused on the term and stores
much information about its meaning and significance.

Table 6.4 Some differences between GeneTUC and GO

The requirements aspect of importing information from the Gene
Ontology knowledge base will be considered in chapter 11.

Part II Background and related work

 - 41 -

7 Enabling Technologies

7.1 The Web
The World Wide Web (hereby referred to only as Web) provides a simple
”point and click” means of exploring the immense volume of pages of
information residing on the Internet. Information on the Web is presented
on Web pages, which appear as a collection of text, graphics, pictures,
sounds, and video, In addition, a Web page can contain hyperlinks to
other Web pages, which allow users to navigate in a non-sequential way
through information [23].

Much of the Web’s success is due to the simplicity with which it allows
users to provide, use, and refer to information distributed geographically
around the world. Furthermore, it provides users with the ability to
browse multimedia documents independently of the computer hardware
being used.

The Web consists of a network of computers that can act in two roles; as
servers, providing information; and as clients, usually referred to as
browsers, requesting information.

7.1.1 Web servers
Web servers are the computers that actually run web sites. The term ʺweb
serverʺ also refers to the piece of software that runs on those computers,
accepting HTTP connections from web browsers and delivering web
pages and other files (scripts, programs, multimedia-files) to them, as well
as processing form submissions. The most common [27] web server
software is Apache, followed by Microsoft Internet Information server.
Many other web server programs also exist.

7.1.2 Web browser
A web browser is software that helps you navigate through the web. It
communicates with web servers via the HTTP protocol, translates HTML
pages and image data into a nicely formatted on-screen display, and

Part II Background and related work

 - 42 -

present this information to you. Web browsers exist for various types of
devices; your personal computer, PDA, cellular phones etc.

The most common web browser [3], by a large margin, is Microsoft
Internet Explorer, followed by the open-source Mozilla browser and its
derivatives, including Netscape 6.0 and later. Appleʹs new Safari browser
is gaining popularity on Macintoshes running MacOS X, and the Opera
shareware browser has loyal followers. The Lynx browser is the most
frequently used text-only browser and has been adapted to serve the
needs of the vision-impaired.

7.1.3 HyperText Transfer Protocol (HTTP)
The HyperText Transfer Protocol (HHTP) defines how clients and servers
communicate. HTTP is a generic object-oriented, stateless protocol to
transmit information between servers and clients.

HTTP is based on a request-response paradigm. An HTTP transaction
consists of the following stages:

 Connection – The client establishes a connection with the Web
server.

 Request – The client sends a request message to the Web server.
 Response – The Web server sends a response (for example, a HTML

document) to the client.
 Close – The connection is closed by the Web Server.

HTTP is currently a stateless protocol – the server retains no information
between requests. Thus, a Web server has no memory of previous
requests. This means that the information a user enters on one page
(through a form, for example) is not automatically available on the next
page requested, unless the Web server takes steps to make this happen.
For most applications, this stateless property of HTTP is a benefit that
permits clients and servers to be written with simple logic and run with no
extra memory or disk space taken up with information from old requests.

Part II Background and related work

 - 43 -

7.1.4 HyperText Markup Language
The HyperText Markup Language (HTML) is a system for tagging a
document so that it can be published on the Web. It is a simple, yet
powerful, platform-independent document language. HTML has evolved
since its introduction in 1992 and is today available in version 4.01. (This is
the recommended version from World Wide Consortium, W3C).

HTML has been developed with the intention that various types of devices
should be able to use information on the Web: PCs with graphical displays
of varying resolution and color depths, cellular phones, hand-held
devices, and so on.

Dynamic HTML (DHTML)
Dynamic HTML, or DHTML is not really a new specification of HTML,
but rather a new way of looking at, and controlling the standard HTML
codes and commands.

When thinking of dynamic HTML, the reader needs to remember the
qualities of standard HTML, especially the fact that once a page is loaded
from the server, it will not change until another request comes to the
server. Dynamic HTML provides means for more control over the HTML
elements and allows them to change at any time, without returning to the
Web server.

There are four parts to DHTML:

 Document Object Model (DOM)
 Scripts
 Cascading Style Sheets (CSS)
 HTML

Cascading Style Sheets (CSS)
Cascading Style Sheets [24] is a relatively new standard made to
complement HTML. Web pages are written in HTML, and the W3C has
proposed to separate layout- and contents in a more strict way. They wish
to use HTML to only describe the information (the contents), so that the
web browsers can show the document in whichever way fits the browser
the best. This is in line with the goal of using HTML to make the Web
accessible on a variety of devices, and to people with different
preferences/handicaps.

Part II Background and related work

 - 44 -

W3C has worked with CSS since 1994, and is now developing version 3 of
the standard. Most desktop web browsers available today supports
version 1, and to some extent version 2 [4]. Other programs have
implemented the appropriate profile for their platform: cell phones, PDA,
television, printer, speech synthesizer, etc.

Features and benefits of CSS
CSS gives the author (and the user) the possibility to specify how the
HTML document should be presented. This can be done internally in the
HTML file, or in an external CSS file. The benefits of this are many. One of
the best arguments for using CSS is to ease the work of the author. With
CSS it is no longer necessary to constantly write FONT FACE, FONT
COLOR, BGCOLOR etc, when developing a web page. In stead, the
author can keep all the layout-information in a few CSS files, and by
editing these files the author can change the layout of multiple HTML
documents. This in turn, makes it easier to write, read, and maintain the
web pages.

When using CSS, the HTML documents becomes smaller, and this reduces
the time needed to download the web page.

In terms of giving the web site a nice and efficient design, CSS is superior
to HTML. CSS extends the possibilities, and provides full control when
positioning page-elements (either their fixed position, or their position
relative to other elements), text formatting, use of color, the framing
properties of the elements etc.

CSS is also meant to benefit the user of the web page. The user can specify
a stylesheet which is suiting to his needs (ex: a vision-impaired user can
specify that all text is shown in double size), and this will work side-by-
side with the author’s style (in our example; all text will be shown in
double size, while all the other styles of the author are kept). This
illustrates the cascading property of the CSS standard.

An important benefit of CSS is that it degrades gracefully. This means that
browsers that do not support CSS will still be able to show web pages
designed by CSS. Since the web pages are written in common HTML, all
old or text-based browsers will be able to show the contents of the web
site. As a consequence, CSS can be used without risk of rendering web
pages un-viewable for users with old browsers, or non-graphical browsers
like Lynx.

Part II Background and related work

 - 45 -

Drawbacks of CSS
Implementation issues, as pages formatted in CSS display differently in
various browsers.

Document Object Model (DOM)
The Document Object Model (DOM) is a programming API for HTML and
XML documents. It defines the logical structure of documents and the way
a document is accessed and manipulated [25].

With the DOM, programmers can create and build documents, navigate
their structure, and add, modify, or delete elements and content. Anything
found in an HTML or XML document can be accessed, changed, deleted,
or added using the DOM.

As a W3C specification, one important objective for the DOM is to provide
a standard programming interface that can be used in a wide variety of
environments and applications. The DOM can be used with any
programming language.

JavaScript and VBScript
JavaScript and VBScript are web scripting languages from Netscape and
Microsoft, respectively. Both languages are interpreted directly from the
source code and permit scripting within a HTML document. The scripts
may be executed within the browser or at the server before the document
is sent to the browser. The constructs are the same, except the server side
has additional functionality, for example, for database connectivity.

JavaScript is an object-based scripting language that has its roots in a joint
development program between Netscape and Sun, and the syntax
resembles Java.

VBScript is a procedural language and so uses subroutines as the basic
unit. VBScript grew out of Visual Basic, a programming language that has
been around for several years.

Both JavaScript and VBScript are very simple programming languages
that allows HTML pages to include functions and scripts that can
recognize and respond to user events such as mouse clicks, user input and
page navigation. These scripts can help implement complex Web page
behavior with a relatively small amount of programming effort.

Part II Background and related work

 - 46 -

Cookies
Cookies are a general mechanism which server side connections can use to
both store and retrieve information on the client side of the connection.
The addition of a simple, persistent, client-side state significantly extends
the capabilities of Web-based client/server applications.

A cookie is a piece of information that the client stores on behalf of the
server. The information that is stored in the cookie comes from the server
as part of the server’s response to an HTTP request. Each time the client
visit this server, the browser pack the cookie with the HTTP request. The
web server can then use the information in the cookie to identify the user,
and depending on the nature of the information collected, possibly
personalize the appearance of the Web page. The web server can also add
or change the information within the cookie before returning it.

All cookies have an expiration date. If a cookie’s expiration date is
explicitly set to some time in the future, the browser will automatically
save the cookie on the client’s hard drive. Cookies that do not have an
explicit expiration date are deleted from the computer’s memory then the
browser closes.

Cookies can be used to store registration information
(username/password), preferences (user profile, ”My CNN”) etc.

Not all browsers support cookies, and some browsers can prevent some or
all sites from storing cookies on the local hard drive.

Part II Background and related work

 - 47 -

7.2 Database - MySQL
MySQL is a highly capable free relational client/server database system. It
is sufficiently secure and stable for many applications, but is commonly
viewed as a little brother of the commercial database systems like Oracle,
Microsoft SQL Server etc.

In the following, we will present some of the possibilities and limitations
of MySQL [10] as this will be relevant in the forthcoming implementation
of the Ontool application.

7.2.1 Features of MySQL

Relational Database System
Like almost all other database systems on the market, MySQL is a
relational database system.

Client/Server architecture
MySQL is a client/server system. There is a database server (MySQL) and
arbitrarily many clients (application programs), which communicates with
the server. The clients can run on the same computer as the server or on
another computer (communication via a local network or the Internet).

Almost all of the familiar large database systems (Oracle, Microsoft SQL
Server, etc) are client/server systems. These are in contrast to the file-
server systems, which include Microsoft Access, dBase etc. The decisive
drawback to file-server systems is that when run over a network they
become extremely inefficient as the number of users grows.

SQL
MySQL supports Structures Query Language (SQL) as its database
language. SQL is a standardized language for querying and updating data
and for the administration of a database.

There are several SQL dialects available. MySQL follows the ANSI-SQL/92
standard, although with some significant restrictions and extensions.

Part II Background and related work

 - 48 -

Programming Languages
There exists a variety of Application Programming Interfaces (API) and
libraries for the development of MySQL applications. For client
programming you can use, among other, the languages C, C++, Java, Perl,
PHP, Python, and TCL.

ODBC
There is an ODBC interface for MySQL. With it MySQL can be addressed
by all the usual programming languages running under Microsoft
Windows (Delphi, Visual Basic etc).

Platform Independence
It is not only client applications that can run under various operating
systems. The MySQL server can also be run under a variety of operating
systems. The most significant are Apple Macintosh OS X, IBM OS/2,
Linux, Microsoft Windows, as well as countless flavors of UNIX.

Speed
MySQL is considered a fast database system.

7.2.2 Limitations of MySQL

Sub SELECTS
MySQL is not capable of executing a query of the form SELECT * FROM
table1 WHERE x IN (SELECT y FROM table2). This limitation can
be circumvented in many cases by setting up a temporary table, which,
however, is neither elegant nor particularly efficient. In other cases the
limitation must be attacked with additional code in an external
programming language.

Foreign Keys
MySQL is conversant with foreign keys, which help to link two tables.
Usually, however, the keyword foreign-keys also describe the ability of a
database to ensure the referential integrity of the linked tables, and at
present MySQL is incapable of this. Therefore, in MySQL database
applications the programmer must ensure that the integrity of the data

Part II Background and related work

 - 49 -

(that is, the relationships among the various tables) is maintained when
commands for changing and deleting data are executed.

Transactions
A transaction in the context of a database system refers to the execution of
several database operations as a block; that is, as if it was a single
command. The database system ensures that either all of the operations
are properly executed or else none of them. Thus, for example, it cannot
happen that 100 000 NOK is withdrawn from your bank account without
then being deposited into mine if an error intervenes (power interruption,
computer crash etc). MySQL has some support for transactions, but this
feature will take a while to mature and become stable.

Views
MySQL does not support views.

Stored Procedure
MySQL does not support stored procedures.

The lack of Sub SELECTS, Foreign Keys, and Transactions etc does not
greatly restrict the possibilities open to client programmers. It does,
however, lead to a situation in which the program logic is transferred from
the server to the client level. The result is more complex or expensive
client programming that would otherwise be the case, leading to
redundancies in code, problems in code, and problems with maintenance
and alteration of code.

Part II Background and related work

 - 50 -

7.3 Integrating Web and Databases - PHP
Hypertext Preprocessor (PHP) is a popular open source HTML-embedded
scripting language that is supported by many Web servers including
Apache HTTP Server and Microsoft’s Internet Information Server, and is
the preferred Linux Web scripting language. The development of PHP has
been influenced by a number of other languages such as Pearl, C, Java and
even to some extent Active Server Pages (ASP), and it supports untyped
variables to make development easier. The goal of the language is to allow
web developers to write dynamically-generated pages quickly. One of the
advantages of PHP is its extensibility, and a number of extension modules
have been provided to support such thins as database connectivity, mail
and XML.

7.4 Choice of technology
A popular choice when developing small- to medium size web
applications, is to use the open source combinations of the Apache HTTP
Server, PHP, and the MySQL database system. This is also the technology
chosen for the thesis project. A short justification is given below.

As stated under Constraints in the Problem Description the developed
application should be run on IDI’s Nova2 UNIX server. Given these
constraints, the argument for the chosen technology is as follows:

The chosen technology is widely used, and has a well documented track-
record. All applications necessary are free when used in a non-commercial
setting, and can run on the desired Nova2 server. On a personal level, the
author was curious about both PHP and MySQL, since he had limited
experience with the use of these technologies.

One of the goals of the Ontool application was to be a highly usable
interface to the GeneTUC KB. DHTML will be used to optimize the user
experience.

7.4.1 Pitfalls to avoid
When developing a web-application most of the server-side environment
can be controlled and adapted to best suit the web-application. The client-
side, however, is a different topic. The diversity in available client-side
hardware and software makes it close to impossible to control the client-
side environment, and suit it to the application. Indeed, the application

Part II Background and related work

 - 51 -

must be adjusted to the environment and not the other way around.
Following is a list of potential pitfalls one must have in mind when
developing a web-application.

Web server access:
The web server must be configured in such a way as to handle the
expected traffic.

Database access:
The database server must be configured in such a way as to handle the
expected traffic.

Connection bandwidth:
The amount of unnecessary traffic between server and client should be
minimized to avoid a slow system.

Portability:
Care should be taken when creating hyperlinks, so that moving the web-
application to a new location is easy.

GUI rendering:
Different web browsers display HTML pages differently. This is a result of
proprietary solutions, and failure to agree on standards. This can be a fatal
problem to web applications, if not taken seriously. Also, the diversity in
available hardware (such as screen size, color resolutions etc) results in
different layout of the web-page.

Accessibility:
Some non-standardized HTML tags can create difficulties in parsing the
HTML document, and in doing so, create an accessibility problem.

Security:
Web-applications are in general prone to security-attacks. This should be
taken into consideration when developing the system.

Part II Background and related work

 - 52 -

Part II Background and related work

 - 53 -

8 Extreme Programming

Extreme Programming (XP) is a software development methodology,
based on the work of Kent Beck, Ward Cunningham, Ron Jeffries, and
others [28].

”Extreme Programming is a discipline of software development based on values of
simplicity, communication, feedback, and courage. It works by bringing the whole
team together in the presence of simple practices, with enough feedback to enable
the team to see where they are and to tune the practices to their unique situation”.
- Ron Jeffries, 11/08/2001 [28].

The goal of XP is to help develop high-quality software that provides the
highest value for the customer, in the fastest way possible. To do this, XP
is based on 12 well-known software development best-practices.

8.1 Best practices of Extreme Programming

Planning Game:
XP planning addresses two key questions in software development:
predicting what will be accomplished by the due date, and determining
what to do next. The emphasis is on steering the project, rather than on
exact prediction of what will be needed and how long it will take. There
are two key planning steps in XP, addressing these two questions:

Release Planning is a practice where the Customer presents the desired
features to the programmers (through user stories), and the programmers
estimate their difficulty. With the costs estimates in hand, and with
knowledge of the importance of the features, the Customer lays out a plan
for the project. Initial release plans are necessarily imprecise: neither the
priorities nor the estimates are truly known, and until the team begins to
work, we wonʹt know just how fast they will go.

Iteration Planning is the practice whereby the team is given direction every
couple of weeks. During Iteration Planning, the Customer presents the
features desired for the next weeks. The programmers break them down
into tasks, and estimate their cost.

Part II Background and related work

 - 54 -

On-site Customer:
The XP team has continuous access to a real live customer. That is,
someone who will actually be using the system. For commercial software
with lots of customers, a customer proxy is used instead.

Small Releases:
The team releases running, tested software, delivering business value
chosen by the Customer. The most important aspect is that the software is
visible, and given to the customer, at the end of every iteration. This keeps
everything open and tangible.

Simple Design:
An XP team keeps the design exactly suited for the current functionality of
the system. The requirements will change “tomorrow”, so the team only
does what is needed to meet today’s requirements.

Pair Programming:
All production software in XP is built by two programmers, sitting side by
side, at the same machine. This practice ensures that all production code is
reviewed by at least one other programmer, and is found to result in better
design, better testing, and better code.

Test-driven Development:
XP is obsessed with feedback, and in software development, good
feedback requires good testing. Top XP teams practice ʺtest-driven
developmentʺ, working in very short cycles of adding a test, then making
it work.

Tests in XP come in two basic flavors:

1. Unit Tests are automated tests written by the developers to test
functionality as they write it. Each unit test typically tests only a
single class, or a small cluster of classes.

2. Acceptance Tests (also known as Functional Tests) are specified by
the customer to test that the overall system is functioning as
specified. Acceptance tests typically test the entire system, or some
large chunk of it.

Part II Background and related work

 - 55 -

Design Improvement/Refactoring:
The refactoring process focuses on removal of duplication, and on
increasing the ʺcohesionʺ of the code, while lowering the ʺcouplingʺ. High
cohesion and low coupling have been recognized as the hallmarks of well-
designed code for at least thirty years. The result is that XP teams start
with a good, simple design, and always have a good, simple design for the
software. This lets them sustain their development speed, and in fact
generally increase speed as the project goes forward.

Continuous Integration:
All changes are integrated into the code base at least daily. The tests have
to run 100% both before and after integration.

Collective Code Ownership:
On an XP project, any pair of programmers can improve any code at any
time. This means that all code gets the benefit of many peopleʹs attention,
which increases code quality and reduces defects.

Coding Standard:
XP teams follow a common coding standard, so that all the code in the
system looks as if it was written by a single individual. The specifics of the
standard are not important: what is important is that all the code looks
familiar.

Metaphor:
XP teams develop a common vision of how the program works, which we
call the ʺmetaphor”. The metaphor use a common system of names to be
sure that everyone understands how the system works and where to look
to find the functionality youʹre looking for, or to find the right place to put
the functionality youʹre about to add.

Sustainable Pace:
XP teams are in it for the long term. They work hard, and at a pace that
can be sustained indefinitely. This means that they work overtime when it
is effective, and that they normally work in such a way as to maximize
productivity week in and week out.

Part II Background and related work

 - 56 -

8.2 Evaluating Extreme Programming
Extreme Programming is best suited on small- to medium-size projects
with total staff of less than 10 people, and total duration of 1-6 months.
Because XP is based on the evolutionary prototyping approach it is well
suited for in-house IT development projects. It is a reasonable choice when
the main risks of a project are changing requirements, significant
mismatch between project scope and available schedule, and technical
staff members that are not currently using advanced software practices.

XP is not well suited to large projects, long projects, or projects with high
reliability requirements. It is not well suited to projects that face risks in
areas in other than requirements change, schedule, or staff inexperience in
advanced software practices.

Main benefits
XP introduces a structured software development methodology to project
teams that have previously been exposed primarily to ”code-and-fix”
approaches. It provides a training ground that exposes teams to the
benefit of more structured software development approaches.

Main risks
Active management is needed to ensure that Extreme Programming does
not evolve into ”code and fix”.

8.2.1 Why Extreme Programming in this project
Already in the first talks the author had with his project supervisor, it
became clear that this project would benefit from an evolutionary
prototyping approach. At this time, the author had only heard about the
theory of Extreme Programming, and had no experience with the use of it.
It was, however, in the interest of the author to apply some sort of
software development theory to the project, so to avoid the ”code and fix”
approach.

After some initial research on XP, the author’s curiosity was awoken, and
XP was soon the preferred approach. The below table lists some of the
reasons for choosing XP:

Part II Background and related work

 - 57 -

 XP introduces a structured approach to the software development

process
 The project resources are within the limits of a typical XP project.

(time and people)
 Users wants to see prototypes
 Changing requirements were expected
 Ontool has characteristics that comply with typical XP projects

Table 8.1 Why Extreme Programming in this project

Part II Background and related work

 - 58 -

Part II Background and related work

 - 59 -

9 Usability and Usability Testing

Usability is, according to ISO 13407 “…the effectiveness, efficiency and
satisfaction with which specified user can achieve specified goals in
particular environments…”. Effectiveness is defined as the accuracy and
completeness which specified users can achieve specified goals in
particular environments. Efficiency is described as the resources expended
in relation to the accuracy and completeness of goals achieved. Satisfaction
is described as the comfort and acceptability of the work system to its
users and other people affected by its use [20].

In layman terms these definitions translates to do a task as quickly as
possible, without using any unnecessary resources and in a way which feels
natural to the user. It might sound easy, but it requires thorough studies to
map the user’s working pattern, and great skills to apply this pattern to
the application.

Usability also depends on the layout of the information when presented
on the screen. If the user quickly finds the necessary information he can do
a task faster than if he needs to search for it. The optimal situation is when
the user does not need any specific information to perform the tasks.

The usability of an application is highly dependent on the user’s
knowledge of the domain, and previous exposure to the application. An
expert needs little or no information to perform a specific task, while a
novice needs more time and support to compensate for his limited domain
knowledge- and system exposure.

9.1 Usability Testing
Usability testing is a product test approach used to assess the usability of
an interface, system or product.

Usability testing can be performed at any level of the product’s design.
The product may still be in the paper stage, at an early prototype or near
completion. Usability tests range from product testing with rigorous
controls to more informal exploratory studies. The type of test to use

Part II Background and related work

 - 60 -

depends on the objective of the product test, along with the available
resources.

There are a number of different types of usability tests, but the most
common are exploratory, assessment, validation/verification and
comparison tests. The below table presents a short description of these
tests. Interested readers should consult [UsabiliyTests] for more
information.

Test Description
Exploratory This test is commonly used in an early stage to assess the

efficiency of preliminary design features and concepts -
the higher level of the design. The point is to get user
feedback on the primary functions of the product.

The test participants are asked to suggest improvements
on the confusing areas. The designer’s task is try to
understand why the test users perform the way they do.

Assessment This is perhaps the most used test type because of its
simplicity and straightforwardness. The test is performed
after some of the higher level product issues have been
revealed by exploratory tests and incorporated into the
product.

The assessment tests evaluate the lower level operations
and aspects of the product based on the findings in the
exploratory tests. The tests then examine how effectively
the concepts from the exploratory testing have been
implemented into the product.

The test participants are asked to complete actual tasks
and the focus is on information gathering. This test can
be both qualitative and quantitative.

Validation/
Verification

This is an objective certification of the product’s
usability. The focus is on how well the products usability
compares to standardized usability performance
measures.

This test is usually performed before the product is ready
for marked release. There is a greater focus on
experimental and quantitative information, than in
assessment testing, as the product must pass some

Part II Background and related work

 - 61 -

predetermined standard.

The test can also be used to evaluate how the product
features work together. This test should be performed as
early as possible to allow time for the design team to
modify the features that did not perform well. This is a
quantitative test.

Comparison This test can be performed at any level of product design
in connection with the above mentioned tests.

The purpose is to compare two or more design
alternatives in terms of which is more usable. It involves
collection of both performance and preference data, and
the test participants are asked to perform similar tasks
with the design alternatives.

Table 9.1 Common usability tests

9.1.1 Discount Usability Engineering-method.
The cost of extensive usability testing can be considerable. Many projects
lack the resources to carry out such tests, and choose to disregard usability
engineering all together. This is highly unfortunate.

The famous usability guru, Jakob Nielsen [7], was motivated by this when
he presented Discount Usability Engineering. He wanted to develop a
method which was cheap- and easy to carry out, and still improved the
GUI design. His method may not be statistically significant, as it is only
based on a few test participants, but has proven to improve the quality of
the GUI decisions substantially.

The “discount usability engineering”- method is based on the following
three techniques:

 Scenarios
 Simplifies thinking aloud
 Heuristic evaluation

The test participants will go through a realistic scenario and describe what
they think, and how they think, by talking aloud. They will evaluate each
dialogue they encounter by using 10 usability heuristics [8]. Although the
test is not perfect, it is successfully used to uncover usability problems.

Part II Background and related work

 - 62 -

Heuristic evaluation of web applications
Heuristic evaluation is well-suited for the Web because it can be done
easy, relatively fast and inexpensive.

Basically, heuristic evaluation involves identifying heuristics, gathering
opinions about the usability of the web site, merging and rating the
problems that were identified, and then trying to work toward solutions
[26].

In the following we will present the 10 usability heuristics of Jakob
Nielsen [8], along with a comment on how they apply to web applications
[26].

1. Visibility of system status
“The system should always keep users informed about what is going on, through
appropriate feedback within reasonable time.”

Probably the two most important things that users need to know in a web
application, are ʺWhere am I?ʺ and ʺWhere can I go next?ʺ Each page
should be branded and indicate which section it belongs to. Links to other
pages should be clearly marked. Since users could be jumping to any part
of the site from somewhere else, status is needed on every page.

2. Match between system and the real world
“The system should speak the user’s language, with words, phrases and concepts
familiar to the user, rather than system-oriented terms. Follow real-world
conventions, making information appear in a natural and logical order.”

As the web application is directed at domain experts, the user’s language
would be very formal and domain oriented.

3. User control and freedom
“Users often choose system functions by mistake and will need a clearly marked
ʺemergency exitʺ to leave the unwanted state without having to go through an
extended dialogue. Support undo and redo.”

Many of the emergency exits are provided by the browser, but there is still
plenty of room to support user control. A home button on every page is a
simple way to let users feel in control of the application.

Part II Background and related work

 - 63 -

4. Consistency and standards
“Users should not have to wonder whether different words, situations, or actions
mean the same thing. Follow platform conventions.”

Within the application use wording and buttons consistently. One of the
most common cases of inconsistent wording is with links, page titles and
site headers.

“Platform conventions” in web applications mean following HTML and
other specifications. Deviations from the standards will be opportunities
for unusable features to surprise the user.

5. Error prevention
“Even better than good error messages is a careful design which prevents a
problem from occurring in the first place.”

Because of the limitations of HTML forms, inputting information in web
applications is a common source of errors for users. Use of JavaScript can
prevent some errors before users submit, but the application should still
double-check after submission.

6. Recognition rather than recall
“Make objects, actions, and options visible. The user should not have to remember
information from one part of the dialogue to another. Instructions for use of the
system should be visible or easily retrievable whenever appropriate.”

For web applications, this heuristic is closely related to system status. If
users can recognize where they are by looking at the current page, without
having to recall their path from the home page, they are less likely to get
lost.

7. Flexibility and efficiency of use
“Accelerators -- unseen by the novice user -- may often speed up the interaction
for the expert user such that the system can cater to both inexperienced and
experienced users. Allow users to tailor frequent actions.”

Some of the best accelerators are provided by the browser; like
bookmarks. Important pages of the application should be easy to
bookmark. Frames must not be used in a way that prevents users from

Part II Background and related work

 - 64 -

bookmarking effectively. If using GET instead of POST on the forms, the
users can bookmark the results of a search. When they come back, they get
their query re-evaluated without having to type anything in again.

8. Aesthetic and minimalist design
“Dialogues should not contain information which is irrelevant or rarely needed.
Every extra unit of information in a dialogue competes with the relevant units of
information and diminishes their relative visibility.”

Extraneous information on a page is a distraction and a slow-down. Rarely
needed information should be accessible via a link so that the details are
there when needed, but do not interfere much with the more relevant
content.

9. Help users recognize, diagnose, and recover from errors
“Error messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.”

Errors will happen, despite all efforts to prevent them. Every error
message should offer a solution (or a link to a solution) on the error page.

10. Help and documentation
“Even though it is better if the system can be used without documentation, it may
be necessary to provide help and documentation. Any such information should be
easy to search, focused on the userʹs task, list concrete steps to be carried out, and
not be too large.”

If the application performs any complicated tasks, the need for help will
soon arise. In web application, the key is to not just put up some help
pages, but to integrate the documentation into the application. There
should be links from the main sections into specific help and vice versa.
Help could even be fully integrated into each page so that users never feel
like assistance is too far away.

 - 65 -

Part III
Developing the Ontool application

10 Problem Analyses 67

11 Requirements specification 71

12 System Architecture and design 99

13 Ontool System Test 109

14 Ontool Usability Test 115

Part III Developing the Ontool application

 - 67 -

10 Problem Analyses

In this chapter we will take a closer look at the problem domain by
describing the current situation. A conceptual model of the domain
problem will be presented, together with a description of its entities and
user profile.

10.1 Overview of the existing system
The GeneTUC Knowledge base, and its structure, was presented in
chapter 5.3. Current work on the KB is carried out by manual editing on a
set of flat text files. This is done in a normal text editor. The below table
list the most common tasks when updating the KB. The terminology used
in the table will be explained in chapter 10.1.3.

 search for terms and arguments
 add, edit, delete or enable/disable a relation X
 add, edit, delete or enable/disable a rule Y
 editing prolog code

Table 10.1 Common tasks when updating the GeneTUC knowledge base

The text files follows a loose structure, where information is grouped
together and stored in alphabetical order. Relation/Rule meta-data, like
the name of the author and the date of entry, was sometimes stored to
help improve the quality of the KB. Over time, however, the structure of
the file had been cluttered, and so a logical group of information had
become groups of information, scattered around in the files.

A text files should only be edited by one person at a time; otherwise
information added by one user can be canceled out by another user. There
is no mechanism to ensure that this does not happen. However, as the
structure of the text files appears chaotic by untrained eyes, Rune Sætre
(hereby referred to as KB administrator or simply administrator) takes care
of most of the updates.

There are several people involved in the GeneTUC project. Especially
important, in the context of the KB, are the biologists helping the KB
administrator to classify and save information about molecular biology

Part III Developing the Ontool application

 - 68 -

and genetics. When in need of assistance, the administrator sends them a
text file of terms which need to be classified. They perform the
classifications, save it, and send the file back to the administrator. He then
translates this information into Prolog syntax, possibly adds meta-data
about the classification, author, entry time etc, and inserts the information
into the appropriate KB text file. It is the joint opinion of all participants
that this is a tedious, time-consuming and error-prone process.

10.1.1 User profile
The author differentiates the user into three roles; (1) the Administrator, (2)
the Expert and (3) the GeneTUC User. There is not necessarily a one-to-
one relationship between a person and a role. The Administrator can also
be an Expert and so on.

The Expert is an expert in the field of linguistics, molecular biology or
computer science. He has been granted access to the system by the
Administrator, in order to contribute to the GeneTUC KB.

The Administrator is responsible for the development and maintenance of
the KB. The administrator controls who has access to the KB, and initiates
and overlooks the work on the KB.

The GeneTUC User has questions about molecular biology or genetics,
and consults GeneTUC for help. This user role will be overlooked in the
rest of the thesis, as we are only concerned with the GeneTUC KB, and not
the GeneTUC system as a whole.

The Administrator, Expert and GeneTUC User all access the system using
Internet and their personal computer with a web-browser.

10.1.2 Conceptual Model
The conceptual model in the figure below describes the concepts in the
problem domain, and the relationships between them. Following the
figure is a brief description of the concepts.

Figure 10.1 Conceptual model of the problem domain

Part III Developing the Ontool application

 - 69 -

The Expert, Administrator and GeneTUC User have already been
described.

GeneTUC
This system consists of a knowledge base. GeneTUC reasons with the
contents of the knowledge base, and communicates with the user of the
system.

Knowledge Base
The Expert updates the Knowledge Base by adding, editing and deleting
its contents. The current KB is organized as shown in the below figure.

Figure 10.2 Current structure of the GeneTUC KB

10.1.3 Terminology
Throughout the thesis, the author will use a vocabulary suited for the
problem domain. The vocabulary is as follows:

Predicate A grammatical property. A closed set of valid types of

grammatical restrictions {a_compl, dtv_templ, …}
Relation type A closed set of possible relations between concepts

(Terms) {ako, apo, has_a, isa}
Term Terms are nouns (concepts) which are relevant in the

domain. The terms can enter into one or more Relations
and Rules (as arguments)

Argument All possible words. Can be adjective, adverbs, verbs,
nouns etc (Term is a subset of Argument). The Argument
is a part of a Rule

Relation Consists of one Relation type, and two Terms
Rule Consists of a Predicate and an arbitrary number of

Arguments. The number of arguments depends on the
Predicate.

Part III Developing the Ontool application

 - 70 -

Ontology The set of all Terms and Relations
Grammar The set of all Rules
GeneTUC KB The set of Ontology and Grammar

Table 10.2 Thesis terminology

To help clarify any confusion, the above information is depicted in the
below figure.

Figure 10.3 Thesis terminology - A graphical representation.

Part III Developing the Ontool application

 - 71 -

11 Requirements Specification

The functional and non-functional requirements state the functionality
and the quality of the Ontool application. The functional requirements are
listed in table 11.1, before they are further elaborated by use cases in
chapter 11.1.1. The non-functional requirements are listed and described
in chapter 11.3. Specifications for the Ontool database is provided at the
end of the chapter.

11.1 Functional requirements
The below table presents an overview of the functional requirements for
the Ontool application. The requirements are given a unique identity; F-#,
where the F stands for Functional. They are described briefly, and
prioritized. The priority shows how important a requirement is, and this
will be reflected in the implementation. The requirements with a High
priority will be implemented first, the requirements with a Medium
priority next, and in the end the requirements with a Low priority will be
implemented.

Requirement Description Priority
F-1 Log on to the application M
F-2 User Administration H
F-3 Message Forum M
F-4 Assign tasks to users. M
F-5 Show a personalized opening screen, with ”My

Assignments”.
M

F-6 Show Ontology as a tree structure. H
F-7 Show Grammar. H
F-8 Search Ontology. H
F-9 Search Grammar. H
F-10 Add a new relation to the KB. H
F-11 Edit an existing relation. H
F-12 Delete a relation. H
F-13 Enable/Disable a relation. H
F-14 Add new rule to the KB. H
F-15 Edit an existing rule. H
F-16 Delete a rule. H

Part III Developing the Ontool application

 - 72 -

F-17 Enable/Disable a rule. H
F-18 Show a chronological list of updates to the KB M
F-19 Review Ontology. M
F-20 View statistics about the KB. M
F-21 Import flat text files into KB. (also Gene

Ontology)
H

F-22 The possibility to manually type in Prolog code
that does not interact with the application DB.

M

F-23 Export KB contents to Prolog file format. H
F-24 The possibility to export KB to other formats. L
F-25 Help on using the application M
F-26 Add a new term to the KB. H
F-27 Edit an existing term. H
F-28 Delete a term. H

Table 11.1 Functional requirements of the Ontool application

11.1.1 Use cases for Ontool
A use case captures a user-visible function or an interaction between the
system and the actor [22]. In the case of the Ontool application, it is
reasonable to divide the actor in two categories; the domain-expert, and
the administrator. The domain-expert and administrator will have
different use of the application, as shown in the following use cases.

Actor Domain-Expert
Description The Expert is an expert in the field of linguistics, biology or

computer science. He has been granted access to the
application by the Administrator, in order to contribute to
the GeneTUC KB.

Actor Administrator
Description The Administrator is responsible for the development and

maintenance of the KB. The administrator controls who has
access to the KB, and initiates and overlooks the work on
the KB.

Part III Developing the Ontool application

 - 73 -

Figure 11.1 Administrator use cases

Figure 11.2 Expert use cases

Part III Developing the Ontool application

 - 74 -

USF-1: ”Log on to application”
Actor Expert, Administrator
Summary The actor wishes to access the KB.
Precondition The user has been given a username/password by the

administrator, and can connect to the server.
Basic course of
events

1. The actor executes the command to ”Log on to the
application”.

2. The actor inputs a username and password.
3. The application checks the validity of the

username/password. If the pair is valid, the user is
granted access to the system.

Alternative
paths

In step 2, the actor can choose to cancel the operation.
This terminates the use case.

Exception
paths

In step 3, the system might experience the following
problems:
1. Problems with connecting to the application can lead

to problems verifying the username/password.
2. The actor has given invalid username/password.
3. Both cases should be explained to the actor, and the

actor might be presented with a link to ”Tell System
Administrator about this problem”. Use case is then
terminated.

Postcondition The actor has full access to the application.

Part III Developing the Ontool application

 - 75 -

USF-2: ”User Administration”
Actor Administrator
Summary The actor wishes to administrate usersʹ access to the KB.
Precondition The actor is logged on.
Basic course of
events

1. The actor executes the command to ”Administrate
user access”.

2. The application presents a list of users who currently
can access the system.

3. The actor can modify this list, by
a. Add a new user
b. Edit a user
c. Delete a user

Alternative
paths

Exception
paths

In step 2 and 3, the system might experience the
following problems:
1. Problems with connecting to the KB can lead to

problems displaying the list of current users, and
modifying the list. This should be explained to the
actor. Use case is then terminated.

Postcondition The administrator can see, and control, who has access
to the system.

Part III Developing the Ontool application

 - 76 -

USF-3: ”Message Forum”
Actor Expert, Administrator
Summary The actor wishes to write a message to-, or read

messages from, other users of the system.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to open the
”Message Forum”.

2. The application should present the most recent
messages posted in the forum (the actor can choose
how many messages to show).

3. The actor can post a new message to the forum.
Alternative
paths

Exception
paths

In step 2 and 3, the system might experience the
following problems:
1. Problems with connecting to the KB can lead to

problems with displaying-, or saving- messages to
the forum. This should be explained to the actor, and
the actor might be presented with a link to ”Tell
System Administrator about this problem”. Use case
is then terminated.

Postcondition The Message Forum is used as a way of communication
between users of the system. The users can post
comments, or instructions to each other.

Part III Developing the Ontool application

 - 77 -

USF-4: ”Assign tasks to users”
Actor Administrator
Summary The actor wishes to assign classification tasks to expert

users. When the experts carry out these tasks, the KB is
updated and optimized for better performance.

Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Assign tasks to
users”.

2. The application presents a list of terms to be
classified (orphan terms)

3. The actor selects the terms to be classified from the
list, or types it in manually. Then the expert user to
carry out the classification is selected.

4. The application saves this information, and notifies
the expert user.

Alternative
paths

In step 2, the actor can choose to import a list of terms
for classification, or the system shows the orphan terms
of the KB.
In step 3, the actor can choose to select all terms, or
divide the list into N equal size portions.

Exception
paths

In step 2, the system might experience the following
problems:
1. There are no orphan terms in the KB. This should be

explained to the actor.
2. Problems with importing the file. This should be

explained to the actor, along with the reason for the
failure. Use case is then terminated.

In step 3, the system might experience the following
problems:
1. Problems with connecting to the KB can lead to

problems with displaying the name/identity of the
expert users. This terminates the use case.

In step 4, the system might experience the following
problems:
1. Problems with saving the tasks. This terminates the

use case.
Postcondition After the administrator has assigned a task to an expert

user, the expert user should be notified. This notification
can be done via email, or on the screen when the expert
user logs onto the system the next time.

Part III Developing the Ontool application

 - 78 -

USF-5: ”Show a personalized opening screen, with My Assignments”
Actor Expert
Summary The actor wishes to see which tasks he has been

assigned.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Show My
Tasks”.

2. The application presents a list of tasks that has been
assigned to the respective expert, by the
administrator.

3. Each task is represented with a hyperlink, to start
carrying out the task.

Alternative
paths

In step 2, if no tasks have been assigned to the user;
create a hyperlink to ”Request task from administrator”.

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with connecting to the KB can lead to

problems with displaying the tasks.
Postcondition The actor has an overview of tasks to do. He can then

start carrying out the tasks (described in other Use
Cases)

Part III Developing the Ontool application

 - 79 -

USF-6: ”Show Ontology as a hyperlink tree structure”
Actor Domain-Expert
Summary The user wishes to study (the structure of) the Ontology.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to show the
ontology as a hyperlink tree structure.

2. The application shows the ontology-root (THING)
and its children as a hyperlink tree structure.

3. By clicking on any term, the tree structure will
expand or contract accordingly, to show or hide the
children of this term accordingly. If a term has no
children, this should be clearly stated to the user.

Alternative
paths

In step 3, the actor might want to know more about a
term, and should be presented with a link to ”Show
more information about this term”.

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with connecting to the KB. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

2. Ontology-root (term THING) does not exist in KB.
The system tells the Actor and terminates the use
case.

Postcondition The user can study the Ontology by simply clicking his
way through the hyperlink tree structure.

Part III Developing the Ontool application

 - 80 -

USF-7: ”Show Grammar”
Actor Domain-Expert
Summary The user wishes to see the semantic restrictions that

apply to the Ontology.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to show the
semantic restrictions.

2. The application shows all semantic restrictions, on
the form: ”predicate(arg1,...,argN).” Meta-data about
this predicate should also be presented (when was
this predicate added, and who did it?)

3. All arguments are presented as hyperlinks. By
clicking an argument, the application will show all
semantic restrictions related to that argument. (ex:
Clicking the ”person” argument in ”v_compl(drive,
person, car).”, will show all restrictions where
”person” is given as an argument)

4. If the argument is a valid term, a hyperlink to the
Ontology should be provided.

5. Hyperlinks to the following operations should be
present:

a. ”Add a new rule to the Grammar”
b. ”Edit an existing rule”
c. ”Delete a rule”
d. ”Comment away a rule”

Alternative
paths

In step 3, after clicking the argument. The actor should
be able to go back to the previous screen..

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with connecting to the KB. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

2. No semantic restrictions exist for the Ontology. The
system tells the Actor and terminates the use case.

Postcondition The user can study the semantic restrictions of the
Ontology by simply clicking his way through the
hyperlink argument-structure.

Part III Developing the Ontool application

 - 81 -

USF-8: ”Search Ontology”
Actor Domain-Expert
Summary The user wishes to search for term names in the

Ontology.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to search the
Ontology.

2. The application shows a search interface similar to
Google/Altavista etc, where the user can enter a
search string.

3. The application should present the results of the
search in an orderly fashion, and all term names
should be hyperlinks to show all present information
about the term and its relations.

Alternative
paths

In step 2, the user should be able to specify whether he
wishes an exact search, or a wider search (equivalent to
SQL ”=” and ”LIKE”).
In step 3, when the result is presented, the user should
be able to perform another search immediately, without
any navigation.

Exception
paths

In step 3, the system might experience the following
problems:
1. Problems with connecting to the KB. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

2. Search returns 0 results. The system tells the Actor,
and resumes normal execution.

Postcondition The user can study the search result, and use the
hyperlinks to navigate around in the Ontology.

Part III Developing the Ontool application

 - 82 -

USF-9: ”Search Grammar”
Actor Domain-Expert
Summary The user wishes to search for predicates- or arguments

in the Grammar, to see which semantical restrictions
apply.

Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to search the
Grammar.

2. The application shows a search interface similar to
Google/Altavista etc, where the user can enter a
search string.

3. The application should present the results of the
search in an orderly fashion with meta data. This
presentation should be similar to the ”Show
Grammar” use case.

Alternative
paths

In step 3, when the result is presented, the user should
be able to perform another search immediately, without
any navigation.

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with connecting to the KB. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

2. Search returns 0 results. The system tells the Actor,
and resumes normal execution

Postcondition The user can study the search result, and use the
hyperlinks to navigate around in the Grammar.

Part III Developing the Ontool application

 - 83 -

USF-10: ”Add a new relation to the KB”
Actor Domain-Expert
Summary The actor wishes to add a new relation to the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Add a new
relation to the KB”.

2. The application presents a form for inserting data
about the relation, and automatically inserts
information about author name, and entry date. If the
relation involves a term which has been imported
from the Gene Ontology knowledgebase, the
application should display the Gene Ontology Graph
View for that term.

3. The user fills out the desired fields and submits the
form.

4. Before submitting the form, the application checks to
see if the required fields are filled out.

5. The application then checks if the terms in the
relation exist in the KB. If not, the user is confronted
with this information, and is asked for an appropriate
course of action. The user can choose to add the
undefined term, choose another term from a list of
terms with similar spelling, or rewrite the name of
the term.

6. Based on the chosen action, the application adds the
relation to the KB.

Alternative
paths

In step 2, the application should provide a link so that
the actor can manually search the Gene Ontology
knowledge base.
In step 3 and 5, the actor can choose to terminate the use
case.
In step 4, if not all required fields are filled out, the
application informs the actor on which fields are
necessary.

Exception
paths

In step 2,5 and 6, the system might experience the
following problems:
1. Problems with connecting to the KB will result in no

automatic filled out fields, no validity checking or
adding of the relation.

Postcondition The KB has been updated to improve the performance of
GeneTUC.

Part III Developing the Ontool application

 - 84 -

USF-11: ”Edit an existing relation”
Actor Domain-Expert
Summary The actor wishes to edit an existing relation in the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Edit an existing
relation”.

2. The process is the same as the ”Add a new relation to
the KB”, except that the form fields are filled out with
information from the KB.

Alternative
paths

See ”Add a new relation to the KB”.

Exception
paths

See ”Add a new relation to the KB”

Postcondition The KB has been updated to improve the performance of
GeneTUC.

USF-12: ”Delete a relation”
Actor Domain-Expert
Summary The user wishes to delete a relation from the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Delete a
relation”.

2. The application asks the user to confirm the
operation.

3. Upon confirmation, the application permanently
deletes the relation from the KB.

4. The application should log this activity, to help
oversee the development of the KB.

Alternative
paths

In step 2, the user can abort the operation. The use case
is then terminated.

Exception
paths

In step 3, the system might experience the following
problems:
1. Problems with connecting to the KB will keep the

relation from being deleted. This should be explained
to the actor, and the actor might be presented with a
link to ”Tell System Administrator about this
problem”. Use case is then terminated.

In step 4, the system might experience problems with
connecting to the file system. This will result in no
logging of the activity.

Postcondition The KB has been updated to improve the performance of
GeneTUC.

Part III Developing the Ontool application

 - 85 -

USF-13: ”Enable/Disable a relation”
Actor Domain-Expert
Summary The user wishes to disable a relation from the KB. This

means that the relation will not be deleted, but will no
longer affect the KB. Relations that are disabled can be
enabled again; thus bringing them back into the KB.

Precondition The user is logged in.
Basic course of
events

1. When the application displays relations, the actor
should be able to click a hyperlink, or check a
checkbox, to enable/disable the relation.

Alternative
paths

If a relation is disabled it should be able to enable it, and
vice versa.

Exception
paths

In step 1, the system might experience the following
problems:
1. Problems with updating the KB. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated

Postcondition The KB has been updated to improve the performance of
GeneTUC.

Part III Developing the Ontool application

 - 86 -

USF-14: ”Add a new rule to the KB”
Actor Domain-Expert
Summary The actor wishes to add a new relation to the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Add a new rule
to the KB”.

2. The application presents a form for inserting data
about the rule, and automatically inserts information
about author name, and entry date.

3. When the user selects the desired predicate for the
rule, the application should present fields for typing
in arguments.

4. The user fills out the desired fields and submits the
form.

5. Before submitting the form, the application checks to
see if the required fields are filled out.

6. The application adds the rule to the KB.
Alternative
paths

In step 3 and 4, the actor can choose to terminate the use
case.
In step 6, if an identical rule exist in the KB the actor is
notified. This terminates the use case.

Exception
paths

In step 2 and 6, the system might experience the
following problems:
Problems with connecting to the KB will result in no
argument fields to fill out, and no adding of the rule.

Postcondition The KB has been updated to improve the performance of
GeneTUC.

Part III Developing the Ontool application

 - 87 -

USF-15: ”Edit an existing rule”
Actor Domain-Expert
Summary The actor wishes to edit an existing rule in the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Edit an existing
rule”.

2. The process is the same as the ”Add a new rule to the
KB”, except that the form fields are filled out with
information from the KB.

Alternative
paths

See ”Add a new rule to the KB”

Exception
paths

See ”Add a new rule to the KB”

Postcondition The KB has been updated to improve the performance of
GeneTUC.

Part III Developing the Ontool application

 - 88 -

USF-16: ”Delete a rule”
Actor Domain-Expert
Summary The user wishes to delete a rule from the KB
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Delete a rule”.
2. The application asks the user to confirm the

operation.
3. Upon confirmation, the application permanently

deletes the rule from the KB.
4. The application should log this activity, to help

oversee the development of the KB.
Alternative
paths

In step 2, the user can abort the operation. The use case
is then terminated.

Exception
paths

In step 3, the system might experience the following
problems:
1. Problems with connecting to the KB will keep the

rule from being deleted. This should be explained to
the actor, and the actor might be presented with a
link to ”Tell System Administrator about this
problem”. Use case is then terminated.

In step 4, the system might experience the following
problems:
1. Problems with connecting to the file system will

result in no logging of the activity.
Postcondition The KB has been updated to improve the performance of

GeneTUC.

Part III Developing the Ontool application

 - 89 -

USF-17: ”Enable/Disable a rule”
Actor Domain-Expert
Summary The user wishes to disable a rule from the KB. This

means that the rule will not be deleted, but will no
longer affect the KB. Rules that are disabled can be
enabled again; thus bringing them back into the KB.

Precondition The user is logged in.
Basic course of
events

When the application displays relations, the actor should
be able to click a hyperlink, or check a checkbox, to
enable/disable the relation..

Alternative
paths

If a rule is disabled it should be able to enable it, and
vice versa.

Exception
paths

In step 1, the system might experience the following
problems:
1. Problems with updating the KB. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

Postcondition The KB has been updated to improve the performance of
GeneTUC..

USF-18: ”Show a chronological list of updates to the KB”
Actor Expert
Summary The actor wishes to see the recent changes in the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Show recent
updates to the KB”.

2. The actor specifies a date to start the search from, and
the application presents a list of all changes in the KB
from that date. Other relevant information should
also be shown.

Exception
paths

In step 2, the system might experience the following
problems:
Problems with connecting to the KB can lead to
problems with displaying the changes to the KB. This
should be explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

Postcondition The actor can, in an orderly fashion, see the
chronological changes to the KB..

Part III Developing the Ontool application

 - 90 -

USF-19: ”Review Ontology”
Actor Expert
Summary The actor wishes to review the work of other experts.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Review the
work of other experts”.

2. The actor specifies which level of confidence/user to
review. The application presents a list of
classifications, according to the search-specifications.

Alternative
paths

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with connecting to the KB can lead to

problems with displaying the classifications. This
should be explained to the actor, and the actor might
be presented with a link to ”Tell System
Administrator about this problem”. Use case is then
terminated.

Postcondition The actor can see which classifications other experts are
uncertain of. The actor can then choose to edit these
classifications (see Use Case).

USF-20: ”View statistics about the KB”
Actor Expert, Administrator
Summary The actor wishes to see statistics about the KB.
Precondition The actor is logged on.
Basic course of
events

1. The actor executes the command to ”View statistics
about the KB”.

2. The application presents statistics about:
a. Unique terms in the KB
b. Relations (ako, apo, has_a)
c. Semantic restrictions (v_compl, v_templ, ...)

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with connecting to the KB can lead to

problems showing the statistics. This should be
explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

Postcondition The actor can quickly get an overview of the extent of
the KB.

Part III Developing the Ontool application

 - 91 -

USF-21: ”Import flat text files into KB (also Gene Ontology)”
Actor Expert, Administrator
Summary The actor wishes to import a file into the KB
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Import a file”,
then selects the desired filename and format.

2. The application reads the contents of the file, and
(not in the case of OBO files) allow the user to
preview the parse-result before the data is inserted
into the KB

Alternative
paths

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with connecting to the KB can lead to

problems with importing data.
Postcondition The actor can, in an orderly fashion, see the

chronological changes to the KB..

Part III Developing the Ontool application

 - 92 -

USF-22: ”The possibility to manually type in Prolog code that does
not interact with the application DB”
Actor Domain-Expert
Summary The user wishes to manually type in prolog predicates,

without changing the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Manually input
prolog predicates”.

2. The application presents a free text area where the
user can input prolog code.

3. The application should also present a warning to
user, making it clear that the application does not
process the contents of the free-text area (the actor is
fully responsible for the contents of the free text
area).

4. The actor should be able to save the changes to the
free-text area, or cancel the operation.

Alternative
paths

In step 4, if the user saves his changes, the application
will present those changes in the free text area (for
manually editing) in the future.

Exception
paths

In step 4, the system might experience the following
problems:
1. Problems with saving the changes. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

Postcondition The actor can manually type in prolog predicates. This
gives the actor complete control over the KB.

Part III Developing the Ontool application

 - 93 -

USF-23: ”Export KB contents to Prolog file format”
Actor Administrator
Summary The user wishes to export the contents of the KB, into a

format which can be used by Prolog.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Export KB into
Prolog file format”.

2. The application should create a file, and write the
complete contents of the KB to that file. When
writing the file, the application should follow a set of
guidelines to make it compatible with Prolog, and the
TUC applications.

3. The actor should be able to specify the name of the
file to be created, along with writing a file header
(comments, author, date etc).

Alternative
paths

In step 2, the actor should be able to cancel the
operation. This ends the use-case.

Exception
paths

In step 2, the system might experience the following
problems:
1. Problems with creating the file. This should be

explained to the actor, and the actor might be
presented with a link to ”Tell System Administrator
about this problem”. Use case is then terminated.

Postcondition The actor can use the newly created file in TUC
applications.

Part III Developing the Ontool application

 - 94 -

USF-24: ”The possibility to export KB to other formats”
Actor Domain-Expert
Summary The user wishes to be able to export the KB to a variety

of formats.
Precondition The user has access to details on the Ontool database

structure.
Basic course of
events

1. The actor decides on the required output format, and
consults the Ontool database documentation.

2. As the KB is stored in a database format, the actor
can write a program or script using his favorite
programming language to output information from
the KB in the desired format.

Alternative
paths

Exception
paths

Postcondition The actor can access the KB contents in the desired
format.

USF-25: ”Help on using the application”
Actor Domain-Expert
Summary The user wishes help from the application to carry out a

task.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Help on using
the application”.

2. The application presents a help page, which contains
a list of tasks that can be carried out using the
system. Each task is given a detailed description of
how to proceed to carry out the respective task.

Alternative
paths

In step 1, the command to ”Help on using the
application” can be found on a general menu, or in the
page where the task is performed.

Exception
paths

In step 2, the system might experience the following
problems:
1. No help is provided for the task. Information on how

to contact people for more information should be
provided. Use case is then terminated.

Postcondition The actor will hopefully find the help useful, and be able
to carry out the desired task.

Part III Developing the Ontool application

 - 95 -

USF-26: ”Add a new term to the KB”
Actor Domain-Expert
Summary The actor wishes to add a new term to the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Add a new term
to the KB”.

2. The application presents a form for inserting data
about the term, and automatically inserts information
about author name, and entry date.

3. The user fills out the desired fields and submits the
form.

4. Before submitting the form, the application checks to
see if the required fields are filled out.

5. The application adds the term to the KB.
Alternative
paths

In step 3 and 4, the actor can choose to terminate the use
case.
In step 6, if an identical term exist in the KB the actor is
notified. This terminates the use case.

Exception
paths

In step 2 and 5, the system might experience the
following problems:
1. Problems with connecting to the KB will result in no

argument fields to fill out, and no adding of the term.
Postcondition The KB has been updated to improve the performance of

GeneTUC.

USF-27: ”Edit an existing term”
Actor Domain-Expert
Summary The actor wishes to edit an existing term in the KB.
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Edit an existing
term”.

2. The process is the same as the ”Add a new term to
the KB”, except that the form fields are filled out with
information from the KB.

Alternative
paths

See ”Add a new term to the KB”

Exception
paths

See ”Add a new term to the KB”

Postcondition The KB has been updated to improve the performance of
GeneTUC.

Part III Developing the Ontool application

 - 96 -

USF-28: ”Delete a term”
Actor Domain-Expert
Summary The user wishes to delete a rule from the KB
Precondition The user is logged in.
Basic course of
events

1. The actor executes the command to ”Delete a term”.
2. The application asks the user to confirm the

operation.
3. Upon confirmation, the application permanently

deletes the term from the KB, as long as the term is
not involved in any relations to other terms.

4. The application should log this activity, to help
oversee the development of the KB.

Alternative
paths

In step 2, the user can abort the operation. The use case
is then terminated.

Exception
paths

In step 3, the system might experience the following
problems:
1. Problems with connecting to the KB will keep the

term from being deleted. This should be explained to
the actor, and the actor might be presented with a
link to ”Tell System Administrator about this
problem”. Use case is then terminated.

In step 4, the system might experience the following
problems:
1. Problems with connecting to the file system will

result in no logging of the activity.
Postcondition The KB has been updated to improve the performance of

GeneTUC.

Part III Developing the Ontool application

 - 97 -

11.2 System specification for the Ontool database
The database system specification lists important features for the Ontool
database.

Initial database size
 The are approximately 1600 terms, involved in about 6600 relations.
 There are about 2700 grammatical rules.

Database rate of growth
 When importing the Gene Ontology knowledge base, the number

of terms will rise to about 20 000, and the number of relations will
be close to 25 000. The process of adapting the Gene Ontology
knowledge base to the GeneTUC KB, is expected to create around
2000 new relations, but few new terms.

 The number of rules will increase with the number or terms added.

The type and average number of record searches
 Searching for relations and terms is expected to be the most

frequent, although very modest, with about 100-500 per day.
 Searching for rules; approximately 50-100 per day.

Networking and shared access requirements
 All registered users should be able to connect to the centralized

database located at an IDI server. The system should allow for at
least 10 users accessing the system simultaneously.

Performance
 Expect less than 1 second response time for all single record

searches. (This is related to the web server – database server
performance; not to the web-server – end user performance)

Security
 The database should be password-protected.

Part III Developing the Ontool application

 - 98 -

11.3 Non-functional requirements
A non-functional requirement is a property of a system as it runs, but it
can also be a property such as maintainability, portability and
extensibility, which are related to the application development. It may not
be directly observational as a functional requirement, but nevertheless
specifies how the system should act.

The table presents the non-functional requirements of the Ontool
application, together with a description of what they mean in this setting.

Requirement Description
Portability Hardware independence:

 The client-side of the application should be
accessible from any normal/modern PC, using any
normal/new/common operating system and a
normal/new internet browser.

 The server-side of the application should be run on
one of IDI’s servers, (and should work fairly
independent.)

Reliability Accuracy:
 The system should have a good precision of

computations and output.
Error-tolerance:

 It is important that the application does not hang if
the user submits wrong input.

Table 11.2 Non functional requirements of the Ontool application

Part III Developing the Ontool application

 - 99 -

12 System Architecture and Design

The system architecture defines building-blocks, their interaction and
what functionality each block is responsible for performing. The overall
architecture describes the Ontool application in broad terms. The
deployment diagram illustrate where the different system components
resides. The chapters about the client- and server architecture explain the
responsibilities of the components.

12.1 A tired-architecture
Web based applications are distributed applications. They utilizes the
resources of multiple machines or at least multiple process spaces, by
separating the application functionality into more manageable groups of
tasks that can be deployed in a wide variety of configurations. There are a
number of benefits to dividing applications into pieces, not the least of
which are reusability, scalability, and manageability.

Ultimately, dividing up an application in this manner results in the
creation of a series of application layers or tiers, each of which is
responsible for an individual element of the applications processing.
Distributed applications are often divided into three or more tiers.

The Ontool application is based on a three tier architecture, where the tiers
are; (1) User Services tier, (2) Business Services tier, and a (3) Data Services
tier.

12.1.1 Component architecture
The below table present the various components in the Ontool
architecture.

Component Description
Web Server Ontool is relatively web server agnostic. Apache 1.3.29, or

newer, is recommended, but Microsoft IIS is also
supported. Essentially, if the web server supports PHP,
Ontool will work.

PHP Ontool operates with PHP v4.3.4. The PHP runtime engine
parses the Ontool pages and associated functions.

Database MySQL version 4.0.17, or newer, is supported by Ontool.

Part III Developing the Ontool application

 - 100 -

Server Ontool interacts with the database by connecting on a
standard port to the configured host and database using a
username and password.

GeneTUC
database

The database is managed by the database server. It consists
of multiple tables. See chapter 12.3 for more information.

Operating
System

The operating system is relatively transparent to Ontool
with the exception of such platform-specific characteristics
as path and file names. Ontool should run on Linux,
FreeBSD, Windows, Macintosh OS and other platforms
that support PHP and MySQL

File system
(server)

While the KB resides in the database, the application pages,
templates, and other components that constitute Ontool
reside in the native file system.

 All Ontool pages reside in the public_html
directory

 All images reside in the public_html/images
directory

 All log-files reside in the public_html/log
directory

 Documentation reside in the public_html/doc
directory

Client
Browser

Ontool uses some DHTML, and this somewhat limits the
support for client browsers. Ontool works with
Mozilla/Gecko-based browsers as well as Microsoft
Internet Explorer and Opera, as long as they are newer
than 2000/2001. Older browsers can also be capable of
running Ontool, but no guarantee is provided.
Ontool utilizes JavaScript. According to [3], 92% of Internet
surfers use browsers that support JavaScript.

Ontool is designed to be used on a screen with 1024x768
pixels. According to [3] , 57% of the Internet users use this
resolution on their screen.

Ontool is optimized for Microsoft Internet Explorer version
6, as this the by far most popular web browser among
Internet users [3]; 72% use IE6.

Networking Ontool uses the HTTP protocol for client-server
communication. The use of a three-tier architecture allows
the information transfer between the web server and the
database server to be optimized. The communications
between these systems do not have to be based on the

Part III Developing the Ontool application

 - 101 -

Internet standards but can use faster, low-level
communications protocols.

Security Cookies will be used to save username/password on the
client machines, so that users can be recognized and
verified.

Hardware No definite hardware specifications are given as this is
dependent on the chosen platform and software
configuration. As long as the hardware is capable of
successfully running the above software, it is sufficient to
run the Ontool application.

Table 12.1 Components of the Ontool application

12.1.2 Brining the components together
The components described in the above table will be brought together as
illustrated in the below figure.

Figure 12.1 The Ontool component architecture

The Ontool application will have components on both the client- and
server side. We will discuss this further in the following.

12.1.3 The Server side’s responsibilities
The main part of the Ontool application will reside on the serve, as a set of
PHP files. When the user requests a certain function of the application, the
web server handles the incoming HTTP request and executes the PHP
runtime engine to parse the appropriate PHP page. The web server sends
all PHP files to the PHP runtime engine, which parses and executes the
file. All database access is incorporated into the PHP file, and so it is
handled by the PHP MySQL engine. The result of this execution is sent

Part III Developing the Ontool application

 - 102 -

back to the web server; as a HTML document. This document is then sent
to the client, as a respond to the initial HTTP request.

12.1.4 The Client side’s responsibilities
The HTML document sent to the client is parsed and the content is
presented by the browser. Unfortunately, different browsers interpret and
display HTML code slightly different, as mentioned in an earlier chapter.

The HTML documents received by the browser can contain client-side
code that is executed by the browser. This client-side code helps create a
more dynamic application, capable of adjusting quickly to user actions.

12.1.5 Data Service tier
The Data Layer has the responsibility to provide information to the
Business Logic Layer based on data received from the Business Logic
Layer, and to update the data bases in the system.

The Ontool application operates on data stored in a database, and the file
system. The Data Layer managing this, consists of

 MySQL database server and PHP MySQL Functions library
 The Operating System and PHP File system Functions library

12.1.6 Business Service
In general, the Business Logic components have the following main
responsibilities:

 Receive data from the Client Layer
 Send data to the Client Layer
 Send data to the Data Layer
 Receive data from the Data layer
 Control the data flow in the application

The business layer is managed by the PHP files These files are constructed
as shown in the below figure.

Part III Developing the Ontool application

 - 103 -

Figure 12.2 Ontool PHP file architecture

12.1.7 User Service
The User Service tier creates a visual gateway for the user to interact with
the application. The layer is managed by DHTML (HTML, CSS, DOM, and
JavaScript).

12.2 Evaluation of the architecture
This evaluation will shed some light over the choices made in the
architecture phase. The decisions were based on the functional- and non-
functional requirements, along with the project goals and limitations.

The overall system is a 3-tier architecture. This is a normal way of dividing
a system which has a GUI, system logic and data storage. The greatest
advantage of this approach is that the presentation, the application
processing and the data management are logically separate processes. The
disadvantage is the complexity it introduces, compared to a simpler 2-tier
architecture.

During development the web- and database server have been located on
the same computer. This is not necessarily the case when the system is
finally published, and as we will see next; the chosen architecture is
portable.

Part III Developing the Ontool application

 - 104 -

12.2.1 Portability
There are no components in the architecture using any device-specific
features so the architecture is portable under the following conditions:

 The Ontool application can be moved to any web-server, as long as
the web server supports PHP.

 The database can be moved to any server that supports MySQL
 If the database is moved to another server than the web-server, the
$mysql_host variable in the database connection function must
be set accordingly.

As stated in the Functional Requirements (chapter 11.1), users should
access Ontool through their web browsers, and the Ontool system should
be situated on IDI’s servers. In the architecture described in this chapter,
these requirements are fulfilled. For a justification on the choice of
technology in the architecture (Apache, PHP, MySQL), please refer to
chapter 7.4.

Part III Developing the Ontool application

 - 105 -

12.3 Database design

12.3.1 Relation Type
Attribute Description
rel_ID Unique ID for this relation type
rel_name The name of the relation type, spelled out in text
rel_des A description of this type of relation
rel_ex An example showing the relation type in use

12.3.2 Assignments
Attribute Description
username Specifies the user which has been given the

assignment
term_name Specifies the name of the term to be classified
priority

Specifies the level of priority the user should give to
classifying this term

Part III Developing the Ontool application

 - 106 -

12.3.3 User
Attribute Description
user_ID Unique ID
username Specified the system name of the user
password Specifies the system password for the user
name Specifies the real name of the user
email Specifies the email address of the user
last_login Specifies the date when the user logged on “this time”
previous_login Specifies the date when the user was last logged on

12.3.4 Message
Attribute Description
message_ID Unique ID
author Specifies who inserted/edited this record
posted_time Specifies when this record was inserted/edited
subject Specifies the message header
content Specifies the message body

12.3.5 Term
Attribute Description
term_ID Unique ID
name Specified the rule type
def Argument 1 of the rule
GO_ID The Gene Ontology ID (if existing for this term)
GO_namespace The Gene Ontology namespace (if existing for this

term)
GO_is_obsolete This tag specifies if the term is obsolete in the Gene

Ontology knowledge base
original_name Holds the name of the term, as it was before the

Ontool application enforces rules on term names
author Name of the user who inserted/edited this record
entry_date The date when the record was inserted/edited
comment Any comments the author might have
term_source The origin of the record (name of file, web, etc)
hidden_rule Specifies if the record is enabled or disabled
hidden_author Specifies which user disabled the record
hidden_date Specifies when the record was disabled

Part III Developing the Ontool application

 - 107 -

12.3.6 Relations
Attribute Description
relation_ID Unique ID
term1_ID ID of the first term involved in the relation
rel_ID Specifies the type of the relation
term2_ID ID of the second term involved in the relation
author Name of the user who inserted/edited this record
entry_date The date when the record was inserted/edited
comment Any comments the author might have
relation_source The origin of the record (name of file, web, etc)
hidden_relation Specifies if the record is enabled or disabled
hidden_author Specifies which user disabled the record
hidden_date Specifies when the record was disabled

12.3.7 Grammar
Attribute Description
rule_ID Unique ID
predicate Specified the rule type
arg1 Argument 1 of the rule
arg2 Argument 2 of the rule
arg3 Argument 3 of the rule
arg4 Argument 4 of the rule
arg5 Argument 5 of the rule
arg6 Argument 6 of the rule
author Name of the user who inserted/edited this record
entry_date The date when the record was inserted/edited
comment Any comments the author might have
rule_source The origin of the record (name of file, web, etc)
hidden_rule Specifies if the record is enabled or disabled
hidden_author Specifies which user disabled the record
hidden_date Specifies when the record was disabled

Part III Developing the Ontool application

 - 108 -

Part III Developing the Ontool application

 - 109 -

13 Ontool System Test

The purpose of software testing is to assess and evaluate the quality of
work performed at each step of the software development process. In
other words; to reveal bugs, weaknesses and other errors. Another
objective is to ensure that the system is doing what it is actually meant to
do.

The Ontool testing process includes

 a set of sub-unit tests
 two system tests
 a quality requirements test

All tests were carried out by the author. All test behavior was thoroughly
checked before a test result was set. The tests were carried out while the
system resided on the following platform:

Operating system Microsoft Windows XP
Web server Apache 1.3.29 (Win32)
PHP PHP 4.3.4 for Windows
MySQL server MySQL 4.0.17-nt
Web browser Microsoft Internet Explorer 6

Opera 7

Table 13.1 Platform used when testing Ontool

The documented tests involve central parts of the Ontool application. An
explicit test of every single aspect of the application was not possible due
to lack of resources. An indirect test of these aspects was carried out
during prototyping and implementation. Each documented test is given a
description, a link to functional requirements, and a test-result.

In this chapter we will present the executed tests, and comment on the
result of these tests. The test conclusion and discussion is presented in part
IV of the thesis.

Part III Developing the Ontool application

 - 110 -

13.1 Sub-unit tests
The sub-unit tests concentrates on the individual sub-units of the
application, to ensure that they have the intended behavior. Test results
and conclusions will be further explained in chapter 16.3.

Sub-unit tests
(with F-#)

Description Result

Logging on
(F-1)

The test is passed if a user can log on with a
valid username/password. An invalid
username/password will not log the user on,

Passed

User
administration
(F-2)

The test is passed if the user can:
 retrieve user information from the

database
 add a new user
 retrieve the new user information
 edit user information
 retrieve the new user information again
 delete a user

Passed

Message
Forum
(F-3)

The test is passed if a user can:
 add a new message to the database
 retrieve it from the database
 edit and save it again
 retrieve it again
 delete the message
 The user should not be able to edit or

delete messages written by others.

Passed

Assign tasks to
users
(F-4)

The test is passed if a user can:
 add a list of terms to a user
 retrieve the list from the database
 edit the list, and save it again
 retrieve the list again
 delete the list

Passed

GeneTUC
Settings
(no F#)

The test is passed if the user can:
 Retrieve the settings from the file
 Edit the settings, and save them
 Retrieve the settings from the file again

Passed

Show a
personalized
opening page,
with ”My
Assignments”

The test is passed if the user is presented with
a personalized opening page when logging
onto the application, and this page contains
information and links to help the user carry
out his tasks.

Passed

Part III Developing the Ontool application

 - 111 -

Show
Ontology as a
hyperlinked
tree structure.
(F-6)

The test is passed if the user can show the
ontology as a hyperlinked tree structure,
where it is possible to click a term to show its
related terms.

Passed

Show
Grammar.
(F-7)

The test is passed if the user can show all rules
in the KB Grammar, and all arguments are
presented as search hyperlinks.

Passed

Search
Ontology
(F-8)

The test is passed if the user can search for
terms in the ontology, and the result is
presented as a set of hyperlinks to show all
information about the terms.

Passed

Search
Grammar
(F-9)

The test is passed if the user can search for
rules (both predicates and arguments), and the
result, among with all meta data is presented
to the user.

Passed

Edit terms
(F-26,27,28)

The test is passed if a user can:
 add a new term to the KB
 retrieve the term from the KB
 edit and save the term again
 retrieve the term again
 delete the term

Passed

Edit relations
(F-10,11,12,13)

The test is passed if a user can:
 add a new relation to the KB
 retrieve the relation from the KB
 edit and save the relation again
 retrieve the relation again
 enable and disable the relation
 delete the relation

Passed

Edit rules
(F-14,15,16,17)

The test is passed if a user can:
 add a new rule to the KB
 retrieve the rule from the KB
 edit and save the rule again
 retrieve the rule again
 enable and disable the rule
 delete the rule

Passed

Show a
chronological
list of updates
to the KB
(F-18)

The test is passed if the user can get a list of all
TERMS, RELATIONS and RULES with a more
recent entry_date than the date specified.

Passed

Part III Developing the Ontool application

 - 112 -

Review
classifications
(F-19)

The test is passed if the user can search for
classifications, by author and confidence level,
and limit the search to a specific number of
matches. All classifications in the result should
be presented with meta-data.

Passed

View statistics
about the KB
(F-20)

The test is passed if the user can access
statistical information about the contents of the
KB.

Passed

Import flat text
files into KB.
(also Gene
Ontology)
(F-21)

The test is passed if the user can import rules
and relations from flat text files into the KB.
The rules and relations should pass an
extensive validity check before they are stored
in the KB. Rules and relations that already exist
in the KB should not be overwritten.

Passed

The possibility
to manually
type in Prolog
code that does
not interact
with the
application DB
(F-22)

The test is passed if the user can manually edit
Prolog code through the Ontool interface. The
Prolog code should not affect the Ontool
database, but should be directed at the
GeneTUC system. The Prolog code mentioned,
should be exported along with the Ontool
database when the user chooses to ”export the
KB to Prolog file format”.

Passed

Export KB to
Prolog file
format.
(F-23)

The test is passed if the user can export KB
contents (rules and relations) to the Prolog file
format. The manually typed Prolog code
mentioned in F-22, should also be exported.

Passed

Table 13.2 Sub unit tests for the Ontool application

13.2 System test
When specifying the functional requirements of the system, two actors
were identified. For this reason, there are presented two system test; one
for each type of user (actor). The system test consists of a set of sub-unit
tests, and is passed only if all of the sub-systems are passed.

Part III Developing the Ontool application

 - 113 -

System test # 1 The expert contributes to the contents of the KB
Description / Sub Unit
tests

 Log on to the application
 Message Forum
 Show a personalized opening screen, with

”My Assignments”
 Show Ontology as a hyperlink tree

structure
 Search Ontology
 Show Grammar
 Search Grammar
 Edit term
 Edit relation
 Edit rule
 Review Ontology

Result Passed

Table 13.3 System test #1 for the Ontool application

System test # 2 The administrator maintains the KB
Description / Sub Unit
tests

 Log on to the application
 User Administration
 Assign tasks to users
 Show a chronological list of updates to

the KB
 View statistics about the KB
 Import file
 The possibility to manually type in Prolog

code that does not interact with the
application DB.

 Export KB to Prolog file format
Result Passed

Table 13.4 System test #2 for the Ontool application

Part III Developing the Ontool application

 - 114 -

13.3 Non-Functional Requirement Tests

Quality
requirement

Description

Performance Start-up: The time needed from the user start the
application, until the moment the application is ready
to be used.

 The test is passed if the application is ready
within 5 seconds, 10 out of 10 times.

Command execution:
The time from the user executes a command, to the
functionality is ready to be used.

 The test is passed if the application is ready
within 5 seconds, 10 out of 10 times.

Portability The system should be able to run on different
platforms, as long as the all necessary software is
present. The test is to deploy the application to two
different platforms, and execute the system test
(described earlier)
Platform 1: Microsoft Windows Operating system,
with IIS web server, PHP and MySQL for Windows
database server.
Platform 2: Linux Operating system, Apache web
server, PHP and MySQL database server.

Robustness/
Reliability

The application must be able to run even if the user
submits wrong input, i.e. letters when expecting
numbers and vice versa.

 The test is passed if the system does not crash,
and notifies the user about wrong input.

Table 13.5 Non-functional requirement test for the Ontool application

The non-functional requirement tests were carried out as part of the sub-
unit and system tests. The results and conclusion on all system tests will
be discussed in chapter 16.3.

Part III Developing the Ontool application

 - 115 -

14 Ontool Usability Test

As part of the development process, the author performed two usability
tests on the Ontool application. This chapter is concerned with the
planning and execution of these tests. Results of the tests will also be
shown. The conclusion and discussion of the two tests will be presented in
Part IV of the thesis.

14.1 Usability test # 1
This test was carried out in the end of May when Ontool was still in an
early prototype stage. The Ontology part of the application is concerned
with searching, presenting, and updating the Ontology (terms and
relations). As this part was relatively stable and functional, it was the topic
for the first usability test.

14.1.1 Test participants
The author wanted to test the prototype on the actual end users of the
system, as this feedback would be highly interesting for the further
development of the prototype. The test participants were selected from the
group of potential end users of the Ontool application. From these, 3
biologists and 1 expert on the GeneTUC system was selected. All
participants had extensive domain knowledge, and knowledge of
ontologies. All participants were used to using computers and had
experience from surfing the web.

To complement the feedback from actual users, the author decided to test
the application on participants with no domain knowledge, or knowledge
of ontologies. These users were selected from the university student body
(NTNU). None of these participants had ever worked with ontologies, but
they were all experienced with using computers and the web.

The table on the next page summarizes the participants in the usability
test # 1.

Part III Developing the Ontool application

 - 116 -

Category Actual end user Average university ”Joe”
Domain knowledge
(Genetics)

X

Knowledge about
Ontologies

X

Experience with Web X X
Sum participants 4 4

Table 14.1 Participants in usability test #1

14.1.2 Test
Due to lack of resources, the author could not be present when all users
performed the test. Therefore, a ”do it yourself” test was designed.

The test consisted of a list of tasks (scenarios) which the user would
perform. Upon finishing a scenario, the user was asked to answer a
question relevant to that task. This would act as a control to see if the
scenario was completed successfully or not. The user was also asked to
state the time used in performing the scenario. This would be used to
measure the efficiency with which the user could carry out the tasks.

A pilot test was carried out with one of the expert users. During this test
the author was present, and could follow the action- and performance of
the user. As no major flaws were uncovered in the pilot test, the test went
ahead as planned.

When testing the Average (university) Joe, the author gave a brief
introduction to ontologies and the structure of the GeneTUC Ontology.
The expert users were given no such additional information.

The author met with the participants after the execution of the test, and
both the test and its initial results were discussed.

14.1.3 Results
The author received a completed questionnaire from 6 of the users. The
below figure presents the average of the 6 users, rounding to closest whole
number. The conclusion of the usability test # 1 will be discussed in
chapter 16.4.

Part III Developing the Ontool application

 - 117 -

Figure 14.1 Results of usability test # 1

Positive aspects commented upon
 Easy to use
 Lucid interface
 Good error messages

Negative aspects commented upon
 Too many open windows
 Missing functionality

Part III Developing the Ontool application

 - 118 -

14.2 Usability test # 2
This test was carried out in the middle of July when work on the Ontool
application was almost completed. The application, as it will be delivered,
was stable and rich on functionality for both the Ontology- and the
Grammar part of the GeneTUC KB.

The author was preparing a rather extensive usability test which would
function as (1) a test of the delivered system (see System Test), (2) a
measure of the applications usability, and (3) a bases for suggestions on
future work on the application.

Due to limited time and resources in the final stage of the project, the
usability test # 2 became somewhat crippled. The execution- and results of
the test will be provided in the following.

14.2.1 Test participants
The original plan for usability test # 2 called for use of the same
participants as in usability test # 1. Due to geographical distance, and
problems with the availability of the Ontool application, the plans for
usability test # 2 was revised. The below table summarizes the test
participants.

Category Average university ”Joe”
Domain knowledge
(Genetics)

Knowledge about
Ontologies and use of
Grammar to restrict the
semantic of an ontology.

Experience with Web X
Sum participants 3

Table 14.2 Participants of usability test # 2

We note that the expert users are omitted in this test. This will affect the
conclusions which can be drawn from the test result. The author also
wishes to inform that only one of the participants in usability test # 2 is the
same as in usability test # 1.

Part III Developing the Ontool application

 - 119 -

14.2.2 Test
In usability test # 2 the author was present during test execution. This
allowed for direct monitoring-, and verbal communication with the
participant while executing the test. The test consisted of a list of tasks to
perform (scenario), and the participants were asked to evaluate a selection
of screen dialogs in respect to a chosen set of heuristics. Following these
principles, the usability test # 2 was actually based on the ”discount
usability engineering” method presented in chapter 9.1.1. The heuristics
used were alos presented in this chapter.

As mentioned earlier, the usability test # 2 would also function as a system
test, and so the scenario was similar to the system tests (S1 and S2)
presented in chapter 13. To ease the evaluation of the usability test, the
scenario was shortened somewhat, and the focus would lie on only a few
key dialogs that the author considered problematic.

The author started the test by introducing the participants to the concept
of ontologies, and explained the structure of the GeneTUC KB, focusing on
the Ontology and Grammar. The participants then carried out the test, one
by one, with only the author present in the room.

14.2.3 Results
The following pages show extracts of the GUI that the participants
evaluated. For each task in a scenario, the participants evaluated the
dialogues according to 10 heuristics. The author has calculated the average
score for each heuristic, and presents the results along with the GUI
extracts.

The conclusion of the usability test # 2 will be discussed in chapter 16.4.

Part III Developing the Ontool application

 - 120 -

User administration

Figure 14.2 Ontool GUI - User administration

Figure 14.3 Usability evaluation of User administration

Part III Developing the Ontool application

 - 121 -

Assign terms to user

Figure 14.4 Ontool GUI - Assign terms to user

Figure 14.5 Usability evaluation of Assign terms to user

Part III Developing the Ontool application

 - 122 -

My Assignments / Add a relation

Figure 14.6 Ontool GUI - My Assignments / Add a relation

Figure 14.7 Usability evaluation My Assignments / Edit a relation

Part III Developing the Ontool application

 - 123 -

Show Term

Figure 14.8 Ontool GUI - Show term

Figure 14.9 Usability evaluation Show term

Part III Developing the Ontool application

 - 124 -

Search Grammar

Figure 14.10 Ontool GUI - Search Grammar

Figure 14.11 Usability evaluation Search Grammar

Part III Developing the Ontool application

 - 125 -

Add / Edit a rule

Figure 14.12 Ontool GUI - Add/Edit a rule

Figure 14.13 Usability evaluation Add/Edit a rule

 - 127 -

Part IV
Findings and Conclusion

15 Results and Contributions 129

16 Discussion 131

17 Future Work 139

Part IV Findings and Conclusion

 - 129 -

15 Results and Contributions

15.1 The Ontool application
Part of the thesis consisted in specifying and implementing a web based
database application for administrating the GeneTUC KB. The Ontool
application was implemented according to the requirements given in
chapter 11. Details on Ontool architecture and design is given in chapter
12.

To verify the functionality of the Ontool application, a series of system
tests were carried out. The results of these tests will be discussed in
chapter 16.3.

To measure the usability of the Ontool application, a series of usability
tests were carried out. The results of these tests will be discussed in
chapter 16.4.

15.2 Importing Gene Ontology
In accordance with the user requirements, the Ontool application has a
built in function for importing information from the Gene Ontology
knowledge base.

As a part of the thesis, the information relevant to the GeneTUC
knowledge base was imported from Gene Ontology. The below table
summarizes the results of the import process.

terms imported from GO 17 142
relations imported from GO 22 304

Table 15.1 Results from importing Gene Ontology

The importation drastically increased the size of the GeneTUC Ontology;
extending it with an overall 1 263% (!).

As seen in chapter 6.2, the Gene Ontology knowledge base is
fundamentally different from the GeneTUC KB. GeneTUC’s KB is

Part IV Findings and Conclusion

 - 130 -

organized as a heterarchical tree-structure where every term must be
connected to the top-node with an ”a kind of” relation; either directly, or
through a series of intermediate terms and relations. The Gene Ontology
importation lead to an explosive increase in the number of orphan terms;
going from a modest 18 orphans to a drastic 2108. In this respect, the
aftermath of the importation is a pressing need for classifications. This
was, however, anticipated by the GeneTUC team, and one of the reasons
for developing the Ontool application.

15.3 Contributions
The main contributions of this thesis can by summarized as follows:

 Provides an overview of (1) the GeneTUC system and its
underlying framework, (2) available technology, (3) Software
development theory of Extreme Programming and (4) Usability-
and usability testing.

 Provides a web based application, Ontool, which offer a (1)
database backbone, (2) logic, and a (3) web user interface to the
GeneTUC KB. Ontool can be ported to other systems built on the
TUC framework.

 Provides detailed documentation of the Ontool development
process.

 Provides results from usability tests on the Ontool application.
 Provides an evaluation on the Ontool application, and ideas for

future extensions and improvements.
 Gene Ontology was successfully imported into the GeneTUC KB.

This resulted in a 1 263% increase in KB size.
 The author has gained invaluable experience from leading a

software development project, and communicating with the
involved participants.

Part IV Findings and Conclusion

 - 131 -

16 Discussion

This section provides a discussion of the choices made during this thesis,
and the results that have been found.

16.1 Extreme Programming in this project
As discussed in chapter 8, the author chose to apply a formalized method
of software development when working with this project. In the following
the author will present his experience with the best practices of XP, along
with an evaluation of his own work.

16.1.1 Execution of the XP best practices

Planning Game
The project was indeed driven by user stories, and plans were made based
on the author’s estimates of these stories. There were, however, no formal
agreements on delivering date or functionality. There were no
consequences for falling behind schedule; a new schedule was created in
stead.

On-site Customer
The author had good contact with Rune Sætre during the project. Other
real live customers were also kept in the loop, through monthly meetings.

Small Releases
Small releases were delivered to users for testing. When looking back, the
author feels that this was not emphasized enough, and as a consequence it
was not done in a high enough degree.

Simple Design
This practice will be discussed in detail in chapter 16.5.

Part IV Findings and Conclusion

 - 132 -

Pair Programming
The author was alone when coding, and no control of code was carried
out. When looking back, the author regrets not using the project
supervisor, Rune Sætre, to overlook the source code. This could have been
done once or twice during the project, to get feedback on code design,
level of comments etc.

Test-driven Development
Extensive use of testing was used during implementation of the Ontool
application. Both unit tests and acceptance tests were carried out, although
the acceptance tests were not specified by the actual users, but by the
author himself. When looking back, is becomes clear to the author that this
could in fact have been done by the project supervisor.

Design Improvement/Refactoring
This practice was carried out with a certain level of success. The Ontool
application uses a specific file (genetuc_common_functions.php) to
hold functions used in multiple parts of the application. This counteracts
duplication.

Continuous Integration
This was carried out with great success.

Collective Code Ownership
As the author was alone on the project, this practice does not apply.

Coding Standard
All code was written in a similar manner, to enhance readability and
comprehensibility.

Metaphor
As the author was alone on the project, this practice does not apply.

Part IV Findings and Conclusion

 - 133 -

Sustainable Pace
This practice was not carried out with success. Due to external
circumstances and the author’s wishes, the execution of the project was
highly fluctuating. There were weeks with extensive use of overtime, and
there were weeks with modest work.

16.1.2 Evaluation of the use of XP
It is the general opinion of the author that the use of XP is this project was
only a mild success. This is not due to the XP practices alone, but rather
the extent to which the author attempted to live up to the practices. The
practices were always present in the head of the author, but as there was a
lack of authority- and consequences, the author never fully committed to
the methodology. The practices became guidelines, and nothing more.

The author feels that the introduction of an authority into the XP team and
formalizing certain aspects of the development process at an earlier stage
could have been of great help to the project.

16.2 Importing Gene Ontology
We have seen how the GeneTUC KB was extended by importing
information from the Gene Ontology knowledge base. Whether this
increase in KB size will result in better performance for the GeneTUC
system is still unknown.

An initial test of the importation per se can be carried out, but the result
will hardly carry any significance. The principal test of GeneTUCʹs
performance should be carried out after the imported data has been
completely adapted to the GeneTUC KB structure; in other words, when
all orphan terms have been classified.

It is the hope and belief of the GeneTUC group that the importation and
adaptation of the Gene Ontology knowledge base will lead to better
performance of the GeneTUC system.

Part IV Findings and Conclusion

 - 134 -

16.3 Ontool System test
The Ontool system tests were presented in chapter 13 along with the
respective test results. Although all tests were given a “pass” verdict, the
author would like to comment on the execution and evaluation of the
tests.

16.3.1 Sub unit tests
Sub-unit tests
(with F-#)

Execution and evaluation Result

Logging on
(F-1)

The test was passed with no special remarks. Passed

User
administration
(F-2)

The test was passed with no special remarks. Passed

Message
Forum
(F-3)

The test was passed with no special remarks. Passed

Assign tasks to
users
(F-4)

The test was passed with no special remarks. Passed

GeneTUC
Settings
(no F#)

The test was passed with no special remarks. Passed

Show a
personalized
opening page,
with ”My
Assignments”
(F-5)

The test was passed with no special remarks. Passed

Show
Ontology as a
hyperlinked
tree structure.
(F-6)

The test was given a “pass” verdict, although
the implementation of the tree structure differ
somewhat from the specified requirement. The
tree structure only shows the “ako” relations,
and so does not provide any information about
terms which are connected by other relation
types.

Passed

Show
Grammar.
(F-7)

The test was passed with no special remarks. Passed

Part IV Findings and Conclusion

 - 135 -

Search
Ontology
(F-8)

The test was passed with no special remarks. Passed

Search
Grammar
(F-9)

The test was passed with no special remarks. Passed

Edit terms
(F-26,27,28)

The test was passed with no special remarks. Passed

Edit relations
(F-10,11,12,13)

The test was passed with no special remarks. Passed

Edit rules
(F-14,15,16,17)

The test was passed with no special remarks. Passed

Show a
chronological
list of updates
to the KB
(F-18)

The test was passed with no special remarks. Passed

Review
classifications
(F-19)

The test was passed with no special remarks. Passed

View statistics
about the KB
(F-20)

The test was passed with no special remarks. Passed

Import flat text
files into KB.
(also Gene
Ontology)
(F-21)

The test was given a “pass” verdict, although
the author did not have time to verify that the
import process was carried out without any
form of errors. The import feature has been
changed many times during implementation,
and has been prone to errors. When carrying
out the tests it seemed to be working.

Passed

The possibility
to manually
type in Prolog
code that does
not interact
with the DB
(F-22)

The test was passed with no special remarks. Passed

Export KB to
Prolog format.
(F-23)

The test was passed with no special remarks. Passed

Table 16.1 Comments on sub unit test results

Part IV Findings and Conclusion

 - 136 -

16.3.2 System tests
System test # 1 The expert contributes to the contents of the KB
Description /
Sub Unit tests

See sub test “Show Ontology as a hyperlinked tree
structure.(F-6)”

Result Passed

Table 16.2 Comments on system test#1 results

System test # 2 The administrator maintains the KB
Description /
Sub Unit tests

See sub test “Import flat text files into KB. (also Gene
Ontology) (F-21)”

Result Passed

Table 16.3 Comments on system test#2 results

16.3.3 Non-Functional Requirement Tests
Quality
requirement

Description

Performance Start-up: The test was passed with no special remarks.

Command execution: The test was passed with no
special remarks.

Portability The test was passed with no special remarks.
Robustness/
RELIABILITY

The test was passed even though the input was not
specifically tested for correct type (number, text etc).

Table 16.4 Non-functional requirement tests for the Ontool application

The system passed all tests without any major flaws. The conclusion is
that Ontool has passed the test process described in this chapter.

16.4 Ontool Usability
The Ontool application was developed for Microsoft Internet Explorer
version 6, as this is the most commonly used web browser. However, the
author performed tests on the Ontool application using a variety of client
web browsers to ensure usability. Ontool was usable in all tested
browsers, although the GUI varied slightly due to browser interpretation
of HTML and CSS.

Part IV Findings and Conclusion

 - 137 -

The Ontool GUI was designed to maximize usability of the application.
The author considered several simpler GUI designs more in line with
traditional research applications, where the functionality, not the usability
and presentation, is in focus. It is the opinion of the author that the
implemented GUI design is appealing to the user, and helps usability.
Other people are allowed to have other opinions.

16.4.1 Comments on the usability tests
Usability test # 1 was carried out while Ontool was in an early prototype
stage. The purpose was to get feedback on the chosen structure and design
of the application.

The test results were positive, and so the author continued developing the
application along the same lines as this early prototype.

Usability test # 2 was carried out when the Ontool application was stable
and almost ready for delivery. The purpose was to get feedback on the
usability of a few key functions of the application. The author had doubts
about the usability of these functions, and so a formal usability test was
the natural way to proceed.

The overall test results were positive, except for the “Help and
documentation” heuristic. At the time of executing the usability test # 2,
there existed no Help feature in the Ontool application. There existed a link
to a help page, but no actual page. All participants found this link, clicked
it, and got very disappointed when no help was provided.

When evaluation the usability on a task level the results were more or less
as expected. Especially the Error prevention of the Add/Edit a rule task was
expected, as no JavaScript check_form() function was implemented for
this page.

The author would like to remind the reader that none of the participants
in the usability test # 2 had any domain knowledge, and would not be the
actual end users of the final Ontool application. All participants
complained about the difficulty of setting the Match between system and real
world and Consistency and standards heuristics. Also, all participants in both
usability test # 1 and 2 were colleagues and friends of the author. This
might bias the evaluation and the conclusions drawn from it.

Part IV Findings and Conclusion

 - 138 -

16.5 Choice of design
The XP best practice on design, states: “An XP team keeps the design exactly
suited for the current functionality of the system. The requirements will change
tomorrow, so the team only does what is needed to meet today’s requirements”.
During execution of the thesis project, the author has followed this
principle.

The theory behind the practice sounds reasonable, and the author can
believe that successful XP projects have been carried out using this
principle. In the case of the thesis project, however, the author is critical to
the implementation of the practice. It is the opinion of the author that this
can be seen as a “lazy” strategy which tempts the XP team to renounce
responsibility, and opt for a design with a short life span. This certainly
has been the case in the thesis project. See chapter 8.2.1 for an
argumentation of Extreme Programming in the thesis project.

During execution of the thesis project the author chose a procedural
approach when implementing the application. This was done because the
requirements were unknown, and the author lacked insight into
ontologies and the GeneTUC KB.

As the project proceeded and the author gained the necessary insight, the
cost of re-designing the application had risen, and in the end seemed too
costly to consider for the author. The XP design practice lead the author
into a “it works, so let us leave it like that” mentality. If given time to re-
design Ontool, the author would choose an object oriented approach as
this lies closer to the author’s heart, and provides a cleaner, more lucid
design. See chapter 17.1 for a re-design of the application.

16.6 Porting Ontool to another TUC system
Ontool is a domain independent application, and should be easy to port to
other TUC systems. The author has not carried out such an operation, but
provides some thought on how this could be done.

The key to porting Ontool is to set up a database identical to the diplom
database which Ontool uses for the GeneTUC system. Then alter the
connect_db2() function in the genetuc_common_functions.php file. The
function can be altered so that it connects to the desired database based on
the input from the login-form. In theory, this should be enough to start
using the Ontool application with other TUC systems.

Part IV Findings and Conclusion

 - 139 -

17 Future Work

As previously discussed, the implemented application includes only the
basic features of a future complete system. This section details the future
work that can be done to improve and extend the current implementation.

17.1 Re-designing Ontool
The author would strongly recommend a re-design of the Ontool
application, as the current implementation lacks a neat and tidy design.
The author would use an object oriented approach, make classes for Term,
Relation, Rule and Database, as well as for User and Message. This
approach would help maintain and extend the application, as it is
designed in an orderly and tidy fashion.

Depending on available time, the author will start re-designing the
application upon completion of the thesis report.

17.2 New features of Ontool

Searching
Future implementations might support regular expression searches, and an
advanced search where some, or all, of the term-, rule- or relation can be
searched.

User groups
Future implementations might differentiate on the set of possible tasks a
user can perform, by not allowing an Expert to do Administrator tasks
(add users etc). In other words; a user is categorized to a certain group and
can only carry out actions according to this group.

Security
The current username/password check has limitations as browsers might
reject cookies. Future implementations might implement other security
measures.

Part IV Findings and Conclusion

 - 140 -

User notification
Users might receive automatically generated emails with the most recent
changes to the KB. Email notifications can also be given when a user has
posted a message on the forum, which is relevant for other users.

Altering the database structure
Future implementations might provide means of altering the database
structure through the web user interface. This will enable the user to alter
the attributes to terms-, rules- and relations. When developing Ontool, the
author used the PhpMyAdmin application for this purpose, and saw no
need to implement these features.

File Upload
The current version of Ontool only supports importing of files which
resides in a specific directory on the application server. Future
implementations might support file uploads, so that users can upload text
files from the web interface, and then import data from these files.

Export
The current version of Ontool only supports exporting to the Prolog file
format, as this was the only format needed by the users. Future
implementations might support exporting to other formats, as the user
needs might change.

17.3 Ontool usability
When writing this, the author has had time to distance himself from the
GUI of the Ontool application, and can look at the application with new
eyes. The following table summarizes some of the author’s new
impressions, and ideas for future improvements to the usability of the
Ontool application.

Part IV Findings and Conclusion

 - 141 -

Show Term It is the opinion of the author that this page is hard

to use. The presentation is too unstructured, and the
functionality provided is hidden.

Search GeneTUC Changing the background color of the search frame,
according to whether the user chose Grammar (red)
or Ontool (blue) could help usability. An even better
solution would be to make the search work in both
the Grammar and Ontool, so that the user did not
need to specify a search area.

Ontool menu Remove the underlining on the “GeneTUC Ontool“
in the menu, as this invites the user to click it as a
hyperlink.

Help Insert links to relevant help on all Ontool pages. The
links could be in the shape of images.

Table 17.1 Tips for improving Ontool usability

Bibliography

 - 143 -

Bibliography

[1] George F. Luger. “Artificial Intelligence – Structures and Strategies for
Complex Problem Solving”, 4th edition. Addison-Wesley, 2002.

[2] Anders Andenæs. “GeneTUC. An NLP System for Biomedical Texts”.
Master Thesis, IDI, NTNU, 2000.

[3] Browser Statistics
URL http://www.w3schools.com/browsers/browsers_stats.asp.
Accessed: 2004-07-30

[4] W3C Homepage of CSS.
URL http://www.w3c.org/CSS.
Accessed: 2004-07-30

[5] Tore Bruland. “ExamTUC – A Simple Examination System in Natural
Language”. Master Thesis, IDI, NTNU, 2002.

[6] Gene Ontology Homepage.
URL http://www.gene-ontology.net.
Accessed: 2004-07-30.

[7] About Jakob Nielsen.
URL http://www.useit.com/jakob/.
Accessed: 2004-07-30.

[8] 10 usability heuristics of Jacob Nilsen.
URL http://www.useit.com/papers/heuristic/heuristic_list.html.
Accessed: 2004-07-30.

[9] Jakob Nielsen. “Guerilla HCI: Using Discount Usability Engineering to
Penetrate the Intimidation Barrier”. Academic Press, Boston, 1994.

[10] Luke Welling. “PHP and MySQL Web development”. Sams, 2001.

[11] Nils J Nilsson. “Artificial Intelligence: A New Synthesis”. Morgan
Kaufmann Publishers Inc, 1998.

[12] Natalya F Noy and Deborah L McGuiness. “A Guide to Creating Your First
Ontologyʺ. Stanford University, Stanford, California.

[13] Open Biological Ontologies Homepage.
URL http://obo.sourceforge.net.
Accessed: 2004-07-30.

[14] Description on the Gene Ontologu OBO file format.
URL http://www.geneontology.org/GO.format.html.
Accessed: 2004-07-30.

[15] Ivan Bratko. “Prolog programming for artificial intelligence”, 3rd edition.
Addison-Wesley, 2001.

Bibliography

 - 144 -

[16] J.Ross Quinlan. “A Formal Deductive Problem-Solving System”.
ACM Press, 1968

[17] Rune Sætre. “GeneTUC v2. A Biolinguistic Project, Next Generation”.
Master Thesis, IDI, NTNU, 2002.

[18] Homepage of Rune Sætre and the GeneTUC project
URL http://www.idi.ntnu.no/~satre/genetuc/.
Accessed 2004-07-30.

[19] Tore Amble. “The Understanding Computer – Natural language
understanding in practice. Preliminary version”. IDI, NTNU, 2002.

[20] Usability.
URL http://atwww.hhi.de/USINACTS/tutorial/usabi2.html.
Accessed: 2004-07-30.

[21] UsabilityTest
URL http://www.userdesign.com/usability_uem.html.
Accessed: 2004-07-30.

[22] Martin Fowler and Kendall Scott. “UML distilled: applying the standard
object modeling language”. Addison-Wesley, 1997.

[23] World Wide Web Consortium (W3C).
URL http://www.w3c.com.
Accessed: 2004-07-30.

[24] Cascading Style Sheets Homepage at W3C.
URL http://www.w3c.com/css.
Accessed: 2004-07-30.

[25] Document Object Model Homepage at W3C.
URL http://www.w3c.com/dom.
Accessed: 2004-07-30.

[26] WebHeuristics.
URL http://user-experience.org/uefiles/writings/heuristics.html.
Accessed: 2004-07-30.

[27] WebSurvey.
URL http://news.netcraft.com/archives/web_server_survey.html.
Accessed: 2004-07-30.

[28] Extreme Programming Homepage.
URL http://www.extremeprogramming.org.
Accessed: 2004-07-30.

[29] Paul Beynon-Davies. “DataBase Systems”,3rd Edition.
Palgrave Macmillan, 2004.

Appendix

 - 145 -

Appendix

A. Ontool installation guide

This document takes us through the installation process of the Ontool
application. As described earlier, the Ontool system can be run on various
platforms, with varying underlying software. It is not the goal of the
author to write a manual for all possible environments, so general details
on installing the underlying software is omitted. The focus of this
document is to install the actual Ontool application, and to configure the
environment to run with Ontool.

Ontool environment
The following components are necessary for successfully installing and
running Ontool.
Computer No definite hardware specifications are given as this is

dependent on the chosen platform and software.
Internet
access

The computer which will host the Ontool system must be
connected to the Internet.

Web server
with PHP

A web server must be running on the system. The web
server must support PHP, and the PHP runtime engine
must be installed and configured to run with the web
server.

MySQL
server

The computer must have a MySQL server running, or be
able to access a MySQL server running on another
computer.

Components necessary to run Ontool

Installing Ontool
Install Ontool by unzipping the Ontool ZIP archive to the desired
directory. Be sure to maintain the directory structure from the zip file. If
the application is not provided as a ZIP archive, but rather a set of files,
just copy the whole file structure over to the destination directory.

Configure the web server so that it can access the directory where you
installed Ontool (destination directory).

Appendix

 - 146 -

Writing permissions must be set for the following files, as Ontool uses
these files for storing information on the file system.

Filename Description
genetuc_settings.txt Stores Ontool settings
log/activity.txt Log of Ontool activity
log/error.txt Log of Ontool errors
semanticpl_freetext.txt Prolog code relevant for exporting the KB,

and using it with the GeneTUC system.

Ontool files which need write-permissions

Configuring PHP
Make sure the display_errors flag in the PHP settings file is set to
”Off”, to avoid PHP error messages to interfere with the Ontool
application layout.

” ; Print out errors (as a part of the output). For production web sites,
; youʹre strongly encouraged to turn this feature off, and use error logging
; instead (see below). Keeping display_errors enabled on a production web site
; may reveal security information to end users, such as file paths on your Web
; server, your database schema or other information.
display_errors = Off”

Setting up the database
Set up the Ontool database, by executing the SQL queries provided in the
/db/diplom.sql file.

Connect the Ontool application to the database
The connect_db2() function in genetuc_common_functions.php
must be altered. Change the $mysql_user, $mysql_password and
$mysql_host to correspond to the MySQL configuration.

Appendix

 - 147 -

Edit this function to allow Ontool to connect to the database

If you have followed the above steps, and the underlying software is
working correctly, you should be able to access Ontool by directing your
web browser to the Ontool URL.

Log on to Ontool by typing in your username/password. For the purpose
of evaluating the thesis, a user “guest” has been created, and a password
is provided with the thesis documentation.

Appendix

 - 148 -

B. Ontool Help

The Ontool Help document is not provided with the thesis report as the
application is due to change. Please refer to the Help feature of the Ontool
application for the most recent help on the use of the application.

Appendix

 - 149 -

C. Ontool phpDOC

The author used the phpDocumentor v1.3.0RC3 application to generate
documentation of the PHP code. This documentation can be found in the
/Ontool_phpDOC directory of the Ontool application.

The Ontool phpDOC is not provided with the thesis report, as this would
probably more than double the number of pages to print. The author
provides a screen grab of the documentation so that the reader can get an
idea of the documentation structure.

GeneTUC Ontool PHP Documentation

Appendix

 - 150 -

D. Usability tips for Web pages

The author found this web-usability check list very useful. It is taken from
a thesis on web usability and supporting software tools
(http://www.tri.sbc.com/hfweb/brajnik/hfweb-brajnik.html).

consistency of presentation and controls

 underline: avoid mixing underlined text with underlined links
 link label: different links pointing to the same resource should have

the same label
 email label: labels associated to a given email address should be

consistent
 color consistency: colors used for background/foreground/links

should be consistent among pages
 background consistency: background images should be consistently

used
 nav-bar consistency: links included in navigation bars should be

consistent among pages
adequate feedback

 freshness: pages should be time- and author- stamped
natural organization of the information
contextual navigation (in each state the required navigation options are
available)

 NOFRAMES validity: NOFRAMES should be present and it should
contain equivalent navigation options

 link to home: each page should contain a link to the home page
 logical path: each page should contain links to each intermediate

page in the path connecting the page to the home
 self-referential pages: pages should not contain links to themselves
 frame titles: frames should set the “title” attribute
 local links validity: links that are local to the website should point to

existing resources
 external links validity: links to external resources should be

periodically checked
efficient navigation

 site depth: the number of links that need to be followed from home
page to other pages should not exceed a threshold

 table coding: table components should have explicit width and
height

 image coding: images should also have explicit width and height
 download time: pages should download within given time threshold

Appendix

 - 151 -

 recycled graphics: images used in the website should be shared (so
that browsers can cache them)

 hidden elements: pages should not contain elements that cannot be
shown (like maps not associated to any image)

clear and meaningful labels
 informative link labels: links pointing to heavy/plug-in dependent

resources should specify that in the label
 explicit mailto addresses: labels of “mailto:” links should contain the

actual email address
 missing page title: pages should have a title
 table headers: tables should have headers and summaries
 form prompts: within forms, text input fields should have a label

robustness (of the site with respect to the technology used by users)
 browser compatibility: HTML code should not use proprietary

structures
 safe colors: page elements should use web-safe colors
 link targets: avoid “_blank” target in frames; use correct targets for

links leaving the frames
 HTML validity: only standard HTML code should be used
 portable font-faces: standard font faces should be used in addition to

desired ones
 color contrast: background and foreground colors combinations

should provide sufficient contrast
flexibility

 image ALT: images should have alternative textual descriptions
 other media ALT: videos, audios, applets and other objects should

have alternative textual descriptions
 imagemap links: links embedded in images should be available also

in textual format
 auto-refresh: duplicate auto-refresh links in the page body (both

forward and backward ones)
 forced downloading: links embedding an image in their label cannot

be followed without downloading the image
 tables/frames/font resizing: relative sizes should be used

support of users’ goals
 form coding: forms should have “submit”, “reset” buttons

maintainability
 relative links: URLs that are local to the website should be relative

other
 spelling: spell-check the content of pages
 different media: report on the number of different media that are

used in pages/website

Appendix

 - 152 -

 keywords/description: pages should have appropriate META
information to be searchable by search engines

 site popularity: how many other websites point to the one under
analysis

 marquee,blink: avoid animated features

Appendix

 - 153 -

E. Gene Ontology

The ontologies
The three organizing principles of GO are molecular function, biological
process and cellular component. A gene product has one or more molecular
functions and is used in one or more biological processes; it might be
associated with one or more cellular components. For example, the gene
product cytochrome c can be described by the molecular function term
electron transporter activity, the biological process terms oxidative
phosphorylation and induction of cell death, and the cellular component
terms mitochondrial matrix and mitochondrial inner membrane. Before
we go any further, here are some definitions that should help you to
distinguish a gene product from what it does.

Molecular function
Molecular function describes activities, such as catalytic or binding
activities, at the molecular level. GO molecular function terms represent
activities rather than the entities (molecules or complexes) that perform
the actions, and do not specify where or when, or in what context, the
action takes place. Molecular functions generally correspond to activities
that can be performed by individual gene products, but some activities are
performed by assembled complexes of gene products. Examples of broad
functional terms are catalytic activity, transporter activity, or binding;
examples of narrower functional terms are adenylate cyclase activity or
Toll receptor binding.

It is easy to confuse a gene product with its molecular function, and for
that reason many GO molecular functions are appended with the word
ʺactivityʺ. The documentation on gene products (above) explains this
confusion in more depth.

Biological process
A biological process is accomplished by one or more ordered assemblies of
molecular functions. Examples of broad biological process terms are cell
growth and maintenance or signal transduction. Examples of more
specific terms are pyrimidine metabolism or alpha-glucoside transport. It
can be difficult to distinguish between a biological process and a

Appendix

 - 154 -

molecular function, but the general rule is that a process must have more
than one distinct steps.

A biological process is not equivalent to a pathway. We are specifically not
capturing or trying to represent any of the dynamics or dependencies that
would be required to describe a pathway.

Cellular component
A cellular component is just that, a component of a cell but with the
proviso that it is part of some larger object, which may be an anatomical
structure (e.g. rough endoplasmic reticulum or nucleus) or a gene product
group (e.g. ribosome, proteasome or a protein dimer).

The above text was cut from the Gene Ontology web page;
http://www.geneontology.org/GO.doc.html.

