

Natural Language Understanding (NLU)
Automatic Information Extraction (IE) from

Biomedical Texts

Author: Rune Sætre

IDI, NTNU CIS, LMU
Sem Sælands vei 7-9 Oettingenstraße 67
N-7491 Trondheim D-80538 München
NORWAY GERMANY

 iii

Abstract

This diploma thesis is about Natural Language Understanding (NLU)
in general and more concretely about applications to microbiological texts
on the topic “gene- and protein-activations”. The first part is a review of
different current research approaches in the field of NLU and “bio-
linguistics”. The second part will look into the bottom-up grammar
building approach that is sketched in the article “The Construction of
Local Grammars” by Maurice Gross. The visualization system “Unitex”,
made by Sébastien Paumier, will be used to construct these local grammars.
The results will be compared to the full-parsing approach used in
GeneTUC. In the third and last part a plan for future work will be given.

The preliminary results suggest that the medical language is
constrained enough for the Local Grammar approach to work. 38 graphs
were constructed to capture the essence of 59 “activate-sentences”, and 18
graphs where created to capture all the different entity names that were
used in the sentences. When the graphs were applied to a new text for
testing, many of the constructed “activation-patterns” also matched in the
new text.

 v

Acknowledgements

First of all I would like to thank my two supervisors for this project:
Professor Dr. Franz Guenthner at “Centrum für Informationsverarbeitung
und Sprachwissenschaft” (CIS) for inviting me to do the project at Ludwig-
Maximilian University in Munich, and associate Professor Tore Amble at
NTNU for encouraging me to go. Thanks to my co-supervisor Professor
Arne Halaas at NTNU, for introducing me to Franz Guenthner in the first
place.

During the work with chapter 1 I had many video-conferences with
Henrik Tveit at NTNU to discuss the advantages and disadvantages of
stochastic based methods versus rule-based methods. After the chapter was
finished, Nancy Lee Eik-Nes provided valuable feed-back on the language
and form of the chapter. She also deserves thanks for being very flexible
about my final exam dates last semester, and thus making it possible for me
to do this exchange project.

Chapter 2 and the parts about linguistics were written after valuable
discussions with the co-workers at CIS. Petra Maier, Holger Bosk, Jörg
Schuster and the other members of the Biopath project group, and
Sebastian Nagel, Mariya Vitusevych, Felix Golcher, Svetlana Stasiuk and
the other students in the tagging seminar provided good input to this
material. I am very grateful for the opportunity Petra Maier gave me when
she invited me to participate in the weekly Biopath meetings at CIS every
week. That gave me a great chance to present and think about my own
work, and also participating in discussions about some of the common
problems in this kind of information extraction.

Franz Guenthner deserves extra mentioning, because he was the one
who convinced me to go ahead with the Unitex approach, described in
Chapter 3. He also invited Sébastien Paumier (the creator of Unitex) to a
tagging seminar at CIS to give a first hand presentation of the system.
Sébastien Paumier has been very helpful, and has answered all questions
about Unitex promptly by e-mail.

Astrid Lægreid is our key player in the cooperation between computer
science and micro-biology. Without her help, it would have been much

 vi

harder to find the “right” (or interesting) extraction problems, good text-
sources for “training” and testing the grammars, and the correct semantics
to go with the sometimes extremely complex sentences of micro-biology.

During the final writing-phase Zoran Constantinescu-Fülöp, Sobah
Petersen, Jörg Cassens and Martin Thorsen Ranang provided very good
feed-back and spell-checking assistance.

And, finally, I would like to thank all my friends (including all the
people I forgot to mention by name in these Acknowledgements) in
Munich and Trondheim, for helping me having a good time and for
“charging my batteries” when I am away from work.

 vii

Preface

This diploma thesis serves both as a large final project after 5 years of
computer science education and as the beginning of a PhD work that will
last another 3 years. The thesis contains three main parts. Part 1 (Chapter 1
and 2) is a literature review with the goal of determining where the current
research barriers in computational linguistics applied to micro-biological
texts are. Part 2 (Chapter 3, 4 and 5) describes the project part of the work,
and part 3 (Chapters 6 and 7) describes how the PhD work should proceed
in the next phase.

Because of a “sudden” invitation to spend this semester in Munich, part
2 turned out to be quite different from what was originally expected. To
begin with, the plan was to focus on how to develop GeneTUC further, but
my advisor in Munich is very interested in Local Grammars and he
convinced me to try using that approach instead of following the original
idea. That means that my part in the GeneTUC project was put on hold for
half a year, and I learned how to use the Unitex system to solve the same
kind of tasks that the parser in GeneTUC solves during the database build-
up phase (the tell-phase, in a tell-and-ask system).

GeneTUC and Unitex use two different approaches to solve the parsing
problem, but after this project I believe that GeneTUC could benefit greatly
from using parts of the Unitex system. Especially, the use of graphs when
constructing grammars is very promising, and makes it easy also for people
with little computer knowledge to produce grammars to fit their needs.
How the two systems should be integrated is an open question that will be
decided in the following PhD work.

This thesis is written in Microsoft Word, using font Palatino Linotype
11pt.

Rune Sætre, April 25, 2003

 ix

Content

Abstract .. iii
Acknowledgements...v
Preface ... vii
Content ..ix
List of Figures .. xiii
1 “Natural Language Understanding” Articles Reviewed1

1.1 Introduction...2
1.2 Terminology ..2

1.2.1 Information Retrieval and Information Extraction2
1.2.2 NLP and NLU, Statistical and Rule-based Approaches3
1.2.3 Partial Parsing or Full Parsing ...3
1.2.4 Local or Global Grammars ...4
1.2.5 Robust Parsers ...4
1.2.6 Corpus-Based Approaches...4

1.3 Full Parsing ...5
1.4 Goals ..6

1.4.1 Other Reviews ...6
1.4.2 Tagging...7

1.5 Systems ..7
1.5.1 Term Recognizers..7
1.5.2 Relation Discovery ..9
1.5.3 Visualization ..9

1.6 Conclusion...11
2 Computational Linguistics...13

2.1 Introduction...13
2.2 Linguistic Terminology..13

2.2.1 Pronoun..14
2.2.2 Determiner ...14
2.2.3 Adverb..14
2.2.4 Conjunctions..15
2.2.5 Pre-determiners ...15
2.2.6 Particle..15

 x

2.3 Computational Linguistic Terminology...16
2.3.1 Ontology ..16
2.3.2 Dictionaries and MWUs ...18
2.3.3 Word Counting..19

2.4 Biological Terminology ..19
2.4.1 Protein ..19
2.4.2 Genes ..20
2.4.3 Enzymes ...20
2.4.4 Latin: Cis and Trans ..20
2.4.5 Greek Letters..21

3 Unitex Tutorial ..23
3.1 Introduction...23
3.2 Installation...23
3.3 Text Format ...24
3.4 Pre-processing and Lexical Analysis of the Text24
3.5 Graphs..25

3.5.1 Variables...27
3.6 FST-text ..27
3.7 Dictionaries ...28

3.7.1 Dictionary Format and Syntax...28
3.7.2 Dictionary Tags ...29
3.7.3 Dictionary Update...31
3.7.4 Filter Dictionaries ..33
3.7.5 Complex Dictionary Terms ..34

3.8 Disambiguation...34
4 GeneTUC ...37

4.1 Introduction...37
4.2 Greek Letters ...38
4.3 Dictionaries / Ontologies..38

5 Methods ...41
5.1 Introduction...41
5.2 Text Sources ..41

5.2.1 The Medline Abstract ...42
5.2.2 59 Activate-Sentences ...42
5.2.3 Micro-Biological Reference Corpus ...42

5.3 Preliminary Work with a CCK Abstract...43
5.3.1 Dictionary Update...43
5.3.2 Disambiguation ...44

5.4 Work on the “Activate” Sentences..44
5.4.1 Preliminary Work..45

 xi

5.4.2 Sentence Delimiters...45
5.4.3 Dictionary Update...46
5.4.4 Greek Letter Problem..48
5.4.5 Re-Preparsing ..48
5.4.6 Disambiguation ...49
5.4.7 Building Graphs ..49

6 Results and Discussion ...53
6.1 Introduction...53
6.2 The CCK Abstract ...53
6.3 “Activate” Sentences ..54

6.3.1 Sentence Boundary Detection ..54
6.3.2 Dictionary Update...54
6.3.3 Disambiguation ...57
6.3.4 Semantic Problems..59

6.4 Biomedical Corpus ...61
6.5 Building Graphs..62

6.5.1 Different Stages ...62
6.5.2 Naming Scheme ..63
6.5.3 Time Representation ...64

7 Future Work ..65
7.1 Results and Standards..65
7.2 Unitex Integration with GeneTUC..65

7.2.1 TQL-Code...66
7.2.2 Pre-Processing ...66

7.3 General Linguistic Topics ..67
7.4 Conclusion...68

References ..71
A CCK Abstract...75
B 59 Activate Sentences..77
C Unknown Words Dictionary..83
D Local Grammar Graphs ..85

 xiii

List of Figures

Figure 1. Lexicon Grammar for CRE ...17
Figure 2. WordNet definition of Salt ...18
Figure 3. WordNet definition (with gloss) for Protein...................................19
Figure 4. WordNet ontology entry for Protein ...20
Figure 5. Cis- and trans-acting proteins. Courtesy of the MIT Bio-pages....21
Figure 6. After opening a new text ..24
Figure 7. Graph writing syntax ..26
Figure 8. Special lemma-forms (from [37], chapter 4.3.1)..............................26
Figure 9. Variables in Unitex ..27
Figure 10. Format for uninflected (DELAS/DELAC) dictionaries28
Figure 11. Format for inflected (DELAF/DELACF) dictionaries28
Figure 12. Special dictionary characters ..29
Figure 13. Word class dictionary tags..29
Figure 14. Morphological dictionary tags ...30
Figure 15. Semantic dictionary tags...30
Figure 16. "Undefined" semantic dictionary tags ...31
Figure 17. Self-defined semantic dictionary tags..31
Figure 18. Menu: Text->Apply Lexical Resources ..32
Figure 19. Creating a context for “unknown words”.....................................33
Figure 20. A "bizarre" sentence ..34
Figure 21. Filter dictionary: a_filter-.dic ..34
Figure 22. Conversion from genes.pl (GeneTUC) to genes.dic (Unitex)......43
Figure 23. Modified Sentence.grf to correctly detect sentence boundaries..46
Figure 24. Information sources for unknown words48
Figure 25. Anaphoric sentence ...51
Figure 26. Unknown words semantic classifications56
Figure 27. GeneTUC (and WordNet) ontology extract..................................56
Figure 28. Sample MWUs ...58
Figure 29. Semantic challenges ..61
Figure 30. X Activation of Y by Z...64

NLU ARTICLES REVIEWED

 1

1 “Natural Language Understanding”
Articles Reviewed

The purpose of this chapter is to give an overview of existing literature

and methods used in the field of Natural Language Processing (NLP) with
a special focus on Natural Language Understanding (NLU) and
Information Extraction (IE). The domain of the IE will be biomedical texts
describing gene and protein interactions. 15 NLP articles have been
selected, and together they cover most of the recent advances in biomedical
IE. This diploma thesis is leading up to a PhD thesis that involves working
with a system called GeneTUC, and the idea in GeneTUC is that the text is
to be fully parsed. Only one other article has been found that describes full
parsing of biomedical texts [18], and that article will therefore receive extra
attention in this review. The other articles in the collection use various
methods of shallow (partial) parsing, or stochastic (statistical) calculations
to analyze the language. One of the 15 articles is an interesting article on
Local Grammars [8]. It describes the use of Finite State Transducers
(Pattern Matching) to extract exact knowledge from texts. This represents a
bottom-up approach that will be compared to the top-down approach used
in GeneTUC.

 INTRODUCTION

 2

1.1 Introduction
There are two current main approaches to information extraction from

biomedical texts. One approach is the rule-based and grammatical one that
is often called Natural Language Understanding (NLU). The other
approach is the statistical or pattern matching one, usually referred to as
Natural Language Processing (NLP). Future systems are likely to be hybrid
systems, including techniques from both of these approaches, since NLU
and NLP often offer complementary solutions to the same problem.
Sometimes NLU is thought of as a subset of NLP, since “understanding” is
also really just some kind of processing. The way GeneTUC understands a
text is by translating it into an event-logic form called TUC Query
Language (TQL).

This chapter is split into several sections, each dealing with a special
topic regarding NLU/NLP of microbiological texts: The next section will
discuss the terminology of the field, and give some definitions of common
terms. It is followed by sections about full parsing, what the common goals
of microbiological IE are, what specific systems are implemented around the
world, and last a short conclusion.

1.2 Terminology
One of the goals in the GeneTUC project [16] is to do full parsing of

microbiological texts. This section will briefly explain the terminology of
full parsing and all the other approaches that are being used to reach the
end goal of automatic Information Extraction (IE) in the medical domain.
Specifically the following will be explained: The difference between IE and
IR, NLU and NLP, full parsing and partial parsing, global and local
grammars, and finally the difference between robust and non-robust
parsers. The last section provides an explanation of what is meant by
corpus-based approaches.

1.2.1 Information Retrieval and Information Extraction

While Information Retrieval (IR) and IE are both dealing with some
form of text searching, they are quite different in terms of what output or
results they produce. IR is the simple classical approach to text searching,
as it is done e.g. in Google [28] and other search engines on the Internet. In
IR the user enters some words of interest, and then all the documents
containing these words are listed. The document list can be ordered

NLU ARTICLES REVIEWED

 3

accordingly to how many times each search word occurs, how close the
different search words are clustered in the document and so on. In this
approach, the user has to run many different searches to cover all the
possible different search words to describe the fact that she is actually
looking for. Also, for every search she might have to read all the articles
returned by the search engine, just to see if they really are of interest or not.

Information Extraction (IE) seeks to reduce the user’s workload by
adding reasoning to the IR process. With IE the computer will have some
knowledge about synonyms and different sentence forms that actually
express the same basic facts. That means that the user only has to specify
the question that she has, and then the computer will do the tedious work
of running several different IR searches, and skimming every single
retrieved article to see whether or not it is of interest. The end result from
IE can be simple yes/no answers to different questions or it can be specific
facts that are extracted from various articles and then used to build
databases for quick and easy lookup later.

1.2.2 NLP and NLU, Statistical and Rule-based Approaches

In the literature, full parsing and other symbolic approaches are
commonly called Natural Language Understanding. Symbolic approaches
means using symbols that have a defined meaning both for humans and
machines. The other approaches, e.g. statistical, are often called Natural
Language Processing. This use of terms tells us that NLU seeks to do
something more than just process the text from one format to another. The
end goal is to transform the text into something that computers can
“understand”. That means that the computer should be able to answer
natural language (e.g. English) questions about the text, and also be able to
reason about facts from different texts. The field of NLU is strongly
connected to the field of Artificial Intelligence (AI).

1.2.3 Partial Parsing or Full Parsing

Regardless of whether a symbolic or sub-symbolic approach is being
used, there is a distinction between full and partial parsing. Full parsing
means that every sentence must be completely analyzed from the
beginning to the end. The output from full parsing is usually a parse tree
saying what Part-Of-Speech (POS) each word has, how words are
connected to one another in phrases, and how the phrases together make
up the entire sentence. Quite often there will be more than one possible
legal parse tree, and then the sentence must be disambiguated (possibly in
a larger context) to find the one intended parse tree (with the right
semantics). Another possibility is to simply list all legal parse trees without
considering semantics. Partial parsing, on the other hand, means that the
output is not a complete parse tree for the entire sentence. Instead it can be

 TERMINOLOGY

 4

smaller parse trees for specific phrases that are recognized in the sentence,
or simply a POS-tag for each word, saying nothing about how they connect
to each other.

1.2.4 Local or Global Grammars

The difference between local and global grammars is somewhat similar
to the difference between partial and full parsing. With a global grammar,
the dependencies between words far away from each other are modelled
explicitly with complex high-level grammatical rules. In the local grammar
approach [8], pattern-recognizing automata are built to deal with
neighbouring word dependencies. Later these automata can be group into
larger units and thereby implicitly solve the long range constraints.

1.2.5 Robust Parsers

Another criterion under which a parser is evaluated is whether it is
robust or not. Robust in this sense means if the parser is able to deal with
all reasonable inputs. All parsers are constructed with specific sentence
constructions and words in mind, or they are trained (statistically) on a
corpus of relevant and already correctly parsed/annotated sentences.
However, the human language is so flexible that new and previously
unseen constructs or names are bound to appear all the time. When a
parser is able to deal in some intelligent manner also with all the examples
that it was not specifically constructed or trained for, it is called a robust
parser. Most full parsers are not robust, since they are built on the premises
that all possible sentence constructs must be known in advance.

1.2.6 Corpus-Based Approaches

In both NLP and NLU many researchers are now trying different
corpus-based approaches. That means that they take some collection of
actual texts from the domain (e.g. Medline) as a starting point. Then, this
text must be manually analyzed by experts in the domain (e.g. Biologists),
and tagged by linguistic experts. This pre-processed text can then act as
source for learning rules etc., or it can be used as a golden standard when
testing parsers, saying exactly what the desired results are for this specific
collection of texts.

NLU ARTICLES REVIEWED

 5

1.3 Full Parsing
Searching Medline [39], Cite-seer [24] and Google [28], only one article

that describes full-parsing of microbiological texts was found. This article is
discussed in depth below, and then the remaining sections will describe
various other methods that are used to achieve the goal of IE in the
microbiological domain.

Yakushiji et al. [18] was the only paper found that describes the pure
full parsing approach to biomedical texts. It is an early report on an
experiment that the authors carried out to see if this approach can be used,
even when the texts are more complex than e.g. newspaper texts. Their
long term goal is to build an information extraction system that can extract
specific facts from Medline abstracts. Their short-term experimental goal
was to automatically extract 133 (already known) facts from 97 manually
annotated test sentences.

The reason for trying full parsing is that current information retrieval
and IE methods are not scalable enough. Today, extraction of a fact is done
by syntactic (surface form) pattern matching against all possible ways of
expressing that fact. That means that for every type of fact (relation) many
handmade patterns are needed, and this technique is too expensive when
the number of different relations gets bigger.

The Yakushiji et al. system is based on a general purpose (domain
independent) parser. The parser transforms each sentence into an argument
structure (AS). Each AS contains a verb as the title, the semantic subject and
object(s) of the verb, and possibly adjective modifiers. The AS is a canonical
structure, and that means that the parser has already taken care of all the
variations that can occur in the text because of for example passivization
and nominalization in the verbal phrases.

Next comes the domain specific part of the system. For each type of AS,
a transformation rule (pattern matching) must be written, that converts the
AS into a corresponding frame representation (FR). The FR is a possible
end result of IE, and contains the semantics of the original verbal phrase.
This technique scales better with large number of different relations, since
the parser deals with the different syntactic ways of writing a verbal
phrase, and only a few IE transformation rules must be written for each
type of relation.

The article deals with three well-known problems of full parsing:
Inefficiency, ambiguity and low coverage. These problems are partially
solved with the use of pre- and post-processors. One pre-processor is the
shallow parser. It introduces local constraints (a little stronger than Part-Of-
Speech tagging) whenever possible in the text, and this increases the
efficiency of the parser since obviously illegal (and computationally
expensive) parse attempts can then be avoided. The other pre-processor is a
term recognizer. It is not yet implemented, but it was simulated by hand-
annotating the complex names in the sentences as units belonging to a

 GOALS

 6

given class. This gave a 10-fold increase in parsing speed, and also reduced
the coverage problem since failure to recognize a complex term is often the
reason that the parse fails.

The results of the experiment are not extremely good (23% success rate),
but they give hope that this method can work (67% success rate) when
more pre-/post-processing techniques are applied. 23% of the facts were
uniquely (correctly) extracted. 24% of the facts were extracted with more
than 1 possible FR (ambiguity) and 20% of the facts were extractable
(without modifiers) from the partial results of the failed parses.

1.4 Goals
The goal of Information Extraction (IE) in the medical domain is as

follows: We need to automate the task of IE from biomedical papers,
because there are simply too many new papers every day for the
researchers to keep up with. On the way to solving this goal many sub-
problems must first be solved. Most of these sub-problems have already
been identified by others, for example in the review that is summarized in
this section.

1.4.1 Other Reviews

Text-based knowledge discovery is discussed in the review by Mack &
Hehenberger [11]. They identify several of the common goals for the search
and mining of life-sciences documents. Both Mack and Hehenberger work
for IBM, and in the article they naturally also present IBM’s solutions to the
tasks that they are discussing. They begin by stating that the main point of
biomedical Knowledge Discovery (KD) is to create an interpretive context
for biology researchers, and that text-mining is of great use when
modelling complex biomedical structures and processes. Quite often an
important part of the puzzle exists only as written text, in some publication
somewhere. Currently many databases are being built to contain these facts
in an organized way, and IE can help speeding up this work.

Mack & Hehenberger also point out that there is currently a shift from
simple Information Retrieval (IR) to more advanced IE techniques. Theses
techniques include both stochastic (statistic) and symbolic (rule-based)
methods. Until only recently the IE community has been focusing mainly
on extraction of named entities (e.g. protein and gene names) from the
medical texts. Now there is a shift towards extracting concrete relations
between these entities, and we are getting one step closer to the next goal of

NLU ARTICLES REVIEWED

 7

building more complex structures (such as networks of connected facts).
What is really needed is a standard way of describing these facts, so that
the databases don’t become as unstructured and inaccessible as the huge
amount of free text was in the first place!

1.4.2 Tagging

No matter what method is used to analyze the text, the first sub-goal of
NLU is usually to mark-up the single words in the text with tags (e.g. labels
such as N for Noun, and V for Verb). One very popular tool for doing this
is the Brill tagger [3], and it was used in many of the projects that are being
reviewed in this article. The Brill tagger is a robust, statistical,
transformation-based POS-tagger. Unlike other pure statistical approaches,
this tagger tries to learn common sense rules about how the tags should be
applied, based on a given correctly tagged example text. These rules can
then be manually modified later, in order to optimize the performance of
the tagger on specific texts.

1.5 Systems
In this section three different types of systems will be reviewed: Term

recognizers, Relation discovery systems and Visualization systems.

1.5.1 Term Recognizers
Results from full-parsers are much better when some pre-parser can

recognize and cluster long names/Noun Phrases (NP) in advance [18]. One
such NP-recognizer is implemented in Bennett et al. [2]. Their approach is
to use the Brill tagger [3] to assign POS-tags to all the words in the text, and
then they build patterns to say which combinations of POS-tags are legal
NPs. They have taken ideas and techniques from different commercial
software systems and implemented them in a publicly available free
system. In this way they save other researchers from having to make or buy
their own NP-extractors, and thus they free resources that instead can be
used for further research in the field of biomedical IE. The article also
describes how the software must be run on a multiprocessor
supercomputer with tapes as the input medium. Thanks to Moore’s law
[35], the same system can today effectively be run on a PC with a cluster of
large hard drives.

In “Contrast and Variability in Gene Names”, 2002, Cohen et al. [4]
found common patterns among gene names and symbols from the
LocusLink Database [33]. Based on these regularities, they suggest four
heuristics for clustering different variations of the same gene, protein or
RNA names together: equivalence of vowel sequences, optional hyphens,

 SYSTEMS

 8

optional parenthesized material, and case insensitivity. The researchers ran
their heuristics against Medline abstracts and, as expected, got better
results than what is achieved with normal strict pattern matching.
Unfortunately, manual examination showed that there were many false
positives, i.e. names and symbols were clustered even if they were not
related. Cohen et al. argue that discerning between documents on different
organisms may improve the results. They are to research for more contrast
features, which discerns similar name for different genes and more closely
examine the false positives. This is an example of a project where no NLU
is involved, but the system can still be interesting as a pre-parser for a NLU
system.

Another approach to recognizing gene names and gene symbols in
biomedical texts was investigated by Proux et al. in “Detecting gene
symbols and names in biological texts: A first step toward pertinent
information extraction” [14]. Proux et al. built a cascade of transducers to
extract gene names from biological documents. The first transducer
tokenizes the input before a probabilistic HMM part-of-speech tagger
assigns categories to known words. This leaves most gene names and
symbols in an undefined group. Two error-correcting steps clean the
unknown words: First a biological dictionary removes common biological
terms and adds common language words that potentially are gene names
when occurring in Medline abstracts. Then, another error-recovery
algorithm removes nucleotide and peptide sequences, components and
special terms with the help of special sequence detection rules succeeded
by suffix and prefix recognition. Before validating the results, the system
performs a contextual analysis where it interprets any unknown word
preceding “gene” as a gene name. Proux et al.’s system showed good
results, but it only studied gene names from the fly Drosophila. This may
introduce problems when generalizing the method since the Drosophila
database, FlyBase, uses only standard gene symbols as opposed to the case
of normal biological texts and genes from other organisms. Scaling will also
be of concern when moving from small, directed circumstances to the
amounts of data in e.g. Medline. Nevertheless, using statistical methods
Proux et al. have introduced a gene name allocation method that works
well within its domain.

The last term-recognizing system to be reviewed is the PROPER system
[7]. Their approach is purely syntactic, and they claim that this is the only
sensible approach since new terms are created quicker than the dictionaries
can be updated. In their test they got 99% recall and 95% precision. They

NLU ARTICLES REVIEWED

 9

have already identified one of the major sources of precision problems and
they plan to get rid of that problem as future work.

1.5.2 Relation Discovery
The first example of relation extraction uses pattern-matching, and is

from the article “Robust Relational Parsing over Biomedical Literature:
Extracting Inhibit Relations” by Pustejovsky et al. [15]. It was presented
on Pacific Symposium on Biocomputing 2002 (PSB02) [38], which is
probably the most important conference for IE from biomedical texts
(among other topics), since it includes many potential users (biologists) and
the most significant recent papers in the field. The parser presented here is
a robust, shallow, corpus-based parser. Relational parsing means that they
extract information on the form X relates to Y. In this case the specific
relations are all inhibiting relations, and the X and Y can be entities (genes
and proteins) or processes (e.g. binding). Their results are much better than
previously published results, with 90% precision and 57% recall plus 22%
partial recall. Partial recall means that just X or Y, but not both, was
extracted. The way they get these good results is by their use of cascades of
Finite States Automata (FSA), more or less in the same way that is done
with local grammars [8] in Unitex [36]. One important step in getting good
results was to realize that nominal-based relations (Predicative Nouns) had
to be dealt with separately from normal verbal-based relations. All this
work is a part of the Medstract project [34], building on the old Acromed
system.

Another interesting approach to doing relation extraction is presented
by Park [13]. They use a parser with combinatory categorial grammar to
parse the relatively complex biomedical sentences, and they combine this
with the corpus-based approach. In the end they do a gold standard test,
with 48% recall and 80% precision, and these numbers are better than any
other previously published comparable attempts. The conclusion of the
article more or less agrees with [18], in that full-parsing can be made to
work, and it is worth the effort, because then we can extract more specific
and meaningful facts from the abstracts. One example where full-parser
usually performs better is anaphoric resolution, meaning the ability to
recognize what is pointed to by terms such as “it”.

1.5.3 Visualization

Visualization is another important area, because the biologists (end
users) need to understand the information that is extracted from the
biological texts. In the article “A literature network of human genes for
high-throughput analysis of gene expression” [10], Jenssen et al. introduce
a program called PubGene. It creates and visualizes an overview network of
possibly related genes. The network is built on the assumption that gene

 SYSTEMS

 10

names co-occurring in Medline abstracts also have a related function or
another relevant connection. The network is especially useful in Microarray
experiments, because then many genes must be explored simultaneously.
The methodology includes a database of gene names, a gene-to-article
index, a gene-to-gene network, a gene network browser, and a gene
expression and literature score. To handle the gene name problems the
authors collected gene name variations from LocusLink [33], Human Gene
Nomenclature Committee [30], the Genome Database [27] and GENATLAS
[25]. The resulting gene identifier database contained 13712 different genes,
and each became a node in the gene-to-gene network. Using the
accumulated identifiers, the authors searched Medline and found 7512 co-
occurring genes. Each co-occurrence linked two network nodes or added
one to the weight of an existing link. The finished network allowed
searches for individual nodes, resulting in a sub-network of the gene’s
closest neighbours, or an expression set from e.g. a Microarray experiment.
The sub-networks of the searches indicate functional relations that the
biologist should consider in her further work. Jenssen et al. proved their
concept with a subset of well-known expressions. According to error
analysis, most false positive errors stem from gene identifier problems, e.g.
the gene names are too general.

The visualization of gene-interaction networks, e.g. as in [10], is very
important for the biologists who are trying to understand what the role of a
single gene is. Another field where visualization is very important is in the
construction of local grammars. The idea behind local grammars is that you
cannot write general rules about how nouns and verbs combine into phrases
and sentences, because there are simply too many irregularities or
exceptions. In the end, you really need an exhaustive list of specific rules
for every single possible use of a given verb: Normally accepted
complements (e.g. nouns), all legal adverbial phrases for the verb,
idiomatic uses with their allowed complement structures, and so on. This is
an enormous work, since there is more than 1050 ways to build a sentence
with at most twenty words [8], and therefore it is very important with a
good visualization tool so that all these rules can be built fast with a
minimum of extra work. The kind of local grammars described here are
implemented in the visualization system Unitex [36].

Other examples of systems that include some sort of visualization are
described in [9, 12, 17, and 5]. These articles describe complete approaches,
with all the necessary steps from plain texts via knowledge bases to
actually useful systems for the end users. They are written in the early
stages of IE from biomedical papers, and they are giving general pointers

NLU ARTICLES REVIEWED

 11

and plans about what has to be done. It is also interesting that Internet is
pointed out as a new kind of “Corpus” for IE systems to take advantage of,
especially as databases such as Medline [39] become more accessible and
structured.

1.6 Conclusion
There are mainly two current approaches to Information Extraction

from Biomedical Texts. One is the search for golden language rules and
good heuristics as presented in [18], and the other is the rather tedious
work of collecting all necessary examples from maybe 1050 possible
different 20-words sentences [8]. Almost all the articles criticise the other
approach, namely the one that they are not using, but future systems will
probably include techniques from both of these approaches, since they
really just try to solve the same problem from two complementary sides.

COMPUTATIONAL LINGUISTICS

 13

2 Computational Linguistics

This chapter gives the background information and terminology that is
needed to understand the rest of this thesis. It gives definitions of
important linguistic and computational linguistic terms, and starts by
giving a definition of the main term: “Computational Linguistics”.

2.1 Introduction
Simply put, computational linguistics is the scientific study of language

from a computational perspective. Computational linguists are interested
in providing computational models of various kinds of linguistic
phenomena. These models may be "knowledge-based" ("hand-crafted") or
"data-driven" ("statistical" or "empirical"). Work in computational
linguistics is in some cases motivated from a scientific perspective in that
one is trying to provide a computational explanation for a particular
linguistic or psycholinguistic phenomenon; and in other cases the
motivation may be purely technological in that one wants to provide a
working component of a speech or natural language system [17]

Computational linguistics is a pragmatic approach to the field of
language. In the end we want to build a working system that solves a
particular task. In the case of GeneTUC, this task can be the automatic
generation of gene interaction databases or the construction of a “Tell and
Ask” gene oracle.

2.2 Linguistic Terminology
An important part of analyzing a sentence is to tag each word with its

correct Part-of-Speech (POS) tag. The challenge then is that many words are
highly ambiguous, and different approaches must be used to find the
correct tag. The definition and meaning of some none-trivial POS tags are
given below.

 LINGUISTIC TERMINOLOGY

 14

2.2.1 Pronoun
Definition: A pronoun always stands in the place of a noun in the

sentence. The pronouns can be tagged with information such as
Is it a Possessive (Poss) Pronoun?
The Person (1st, 2nd, 3rd)
The Number (Singular, Plural)
For third person singular pronouns; the gender:

Masculine, Feminine or Neutral (m, f or n)
The Unitex tag for pronouns is “PRO”.

2.2.2 Determiner

Determiners are said to "mark" nouns. That is to say, you know a
determiner will always be followed by a noun. Some categories of
determiners are limited (there are only three articles, a handful of
possessive pronouns, etc.), but the possessive nouns are as limitless as
nouns themselves. This limited nature of most determiner categories,
however, explains why determiners are grouped separately from adjectives
even though both serve a modifying function. We can imagine that the
language will never tire of inventing new adjectives; the determiners
(except for those possessive nouns), on the other hand, are well established,
and this class of words is not going to grow in number. These categories of
determiners are as follows: the articles (an, a, the); possessive nouns (Joe's,
the priest's, my mother's); possessive pronouns (his, your, their, whose,
etc.); numbers (one, two, etc.); indefinite pronouns (few, more, each, every,
either, all, both, some, any, etc.); and demonstrative pronouns. Notice that
the possessive nouns differ from the other determiners in that they,
themselves, are often accompanied by other determiners: "my mother's
rug," "the priest’s collar," "a dog's life" [44].

The Unitex tag for determiners is “DET”.

2.2.3 Adverb

Adverbs are words that modify
• A verb (He drove slowly. — How did he drive?)
• An adjective (He drove a very fast car. — How fast was his car?)
• Another adverb (She moved quite slowly down the aisle. —

How slowly did she move?)

COMPUTATIONAL LINGUISTICS

 15

Adverbs often tell when, where, why, or under what conditions
something happens or happened. Adverbs frequently end in -ly; however,
many words and phrases not ending in -ly serve an adverbial function and
an -ly ending is not a guarantee that a word is an adverb [45].

One of the highly ambiguous words is “that”, and in a few rare
occurrences it should also actually be tagged as adverb. One example is “It
was that easy!”

The Unitex tag for adverbs is “ADV”.

2.2.4 Conjunctions
A conjunction is a word that connects (conjoins) parts of a sentence.

Conjunctions are split into two classes: coordinating and subordinating
conjunctions [46]. The coordinating conjunctions are used to put two
sentences of equal importance together, while a subordinating conjunction
promotes one of the two sentences as being more important.

There are seven coordinating conjunctions: “And, but, or, yet, for, nor,
so”.

There are several subordinating conjunctions, and the most common
ones are: “after, although, as, as if, as long as, as though, because, before,
even if, even though, if, if only, in order that, now that, once, rather than,
since, so that, than, that, though, till, unless, until, when, whenever, where,
whereas, wherever, while.”

The Unitex tag for all conjunctions is “CONJ”

2.2.5 Pre-determiners
Pre-determiners are small words (e.g. prepositions) that can stand

directly before the main determiner, like “about” in the following example:
I have bought about 2000 candles.

The Unitex tag for pre-determiners is “PRED”.

2.2.6 Particle

Particles often occur in phrasal verbs. Phrasal verbs consist of a verb and
another word or phrase, usually a preposition. The word that is joined with
a verb in this construction should then be tagged as a particle.

The most common particle is the infinitive particle “to”. A golden rule
for disambiguation is that when “to” is found directly in front of a verb in
infinite form, it should always be tagged as a “particle”.

The Unitex tag for particles is “PART”.

 COMPUTATIONAL LINGUISTIC TERMINOLOGY

 16

2.3 Computational Linguistic Terminology
In the following sub sections some important computational linguistic

terms will be given: Ontology, Dictionary, Multi-Word Unit (MWU) and
different word-counts.

2.3.1 Ontology

Ontology is defined as follows in WordNet [42]: “the metaphysical
study of the nature of being and existence”. Ontology is a structured
description of what we know about “the world” that we are interested in
modelling.

The “correct” classification of Nouns (and other words) into ontologies
is tricky. The decisions to be made are largely dependent on what the end
use of the ontology is. Choices must be made about the granularity and
about how much ambiguity that should be allowed.

In the biomedical texts acronyms are being heavily used, and two
different acronyms can often refer to the same entity. Therefore, a strategy
should be selected so that all acronyms are represented in a uniform way.
One important point is to decide what the main entry in the dictionary
should be. The problem with storing acronyms as main entries is that one
acronym often has several different meanings, and thus extra ambiguity
problems are introduced. The problem with storing the expanded (full)
forms as main entries in the dictionary is that one acronym can often be
expanded in many different ways where the difference is very small. E.g.
different authors have different styles, but they still refer to the same entity.
In this case, all the possible full forms must be stored in the dictionary,
perhaps with a common reference to a unique identifier (e.g. the “right” or
standardized full form).

Another approach that was tested in this project was to build a small
grammar for each acronym that has several different full forms. Such small
“dictionary grammars” are called lexicon grammars in the Unitex
terminology. Figure 1 shows a lexicon grammar that will recognize all
occurrences referring to the CREB protein. The bottom line in this graph is
not really a part of the name of the CREB protein, but it is still included
because it is a unique remark that describes only this CREB protein. In
addition, there are also other ways to talk about the CREB protein, so the
graph is not complete (yet), but in the Unitex approach the idea is to keep
adding new entries to the graphs until no more new entries are discovered.
Then the graph will be “complete enough” for our purposes.

COMPUTATIONAL LINGUISTICS

 17

Figure 1. Lexicon Grammar for CRE

Synonyms raise similar problems as the entities that have multiple full
form names do. When two words are truly “identical” (within the
ontology) they should then be linked in some way, for example with the
help of a unique concept-id number or similar techniques. By marking the
word entries like that, some semantics will be brought into the dictionary.
Normally a dictionary should contain only syntactic and morphologic
information, but if such simple semantic information is needed by the
system at a later stage anyway, it is easiest to store this information during
the dictionary building. An example is while importing the gene name lists,
all the entries can automatically receive the tag “+Gene”.

2.3.1.1 TUC Ontology
The ontology in TUC is, like the WordNet ontology, built as a

heterarchy. That means that each node can have multiple parent nodes in
addition to having multiple children nodes as in a normal hierarchy. One
constraint that is imposed in the TUC ontology is that all nodes must have
the node “Thing” as their single highest ancestor in the network. That
means that all concepts are ultimately classified as “Things”, and “Thing”
is the most general concept in the TUC ontology. The TUC Ontology is
partly based on the WordNet ontology (see below).

2.3.1.2 WordNet Ontology
The WordNet ontology is a little more general and comprehensive, and

it contains more concepts than the TUC ontology. With a few exceptions,
the WordNet is a superset of the GeneTUC ontology. The main difference is
that WordNet have several different top nodes, while TUC requires all
concepts to be “Things” ultimately. Since these ontologies are so similar, it
should be possible to automatically update the TUC ontology based on
changes in WordNet Ontology. This could save a lot of work, since
classifying unknown words and storing them in the TUC ontology (files:
“semantic.pl” and “facts.pl”) is always a necessary first step in the TUC
approach, and somewhat time demanding. The creation of a good ontology
is also necessary using the Unitex approach, so it would be well worth the

 COMPUTATIONAL LINGUISTIC TERMINOLOGY

 18

effort trying to make a good interface between WordNet and the other
systems. WordNet already has an application programming interface (API,
e.g. for java) to ease this work.

Another advantage of fully integrating WordNet with GeneTUC is that
WordNet contains glosses for every concept (see Figure 2). That makes it
easier for others (e.g. biologists) to do the classification of new unknown
words into existing concepts, or new ones when needed.

One challenge during the integration work will be that some WordNet
concepts have quite complex names, compared to the single word terms in
GeneTUC. Several different TUC concepts can sometimes be seen clustered
together as one long comma-separated WordNet concept. One possible
solution to this “unification problem” is to use only the words before the
first comma in the WordNet entry as the unique identifier for that (sub-)
concept in GeneTUC.

salt -- (a compound formed by replacing hydrogen in an acid by a metal (or a radical that
acts like a metal))

=> compound, chemical compound –
((chemistry) a substance formed by chemical union of two or more elements or
ingredients in definite proportion by weight)

=> substance, matter -- (that which has mass and occupies space; "an atom is the smallest
indivisible unit of matter")

=> entity, physical thing -- (that which is perceived or known or inferred to have its own
physical existence (living or nonliving))

Figure 2. WordNet definition of Salt

2.3.2 Dictionaries and MWUs
The work with dictionaries is somewhat overlapping with the

ontology-work, because both are dealing with the fact that all words need
to be known by the system, before any meaningful processing can be done.
The creation of a dictionary can be almost as tricky as the ontology work
because new words are created all the time, and especially in the
biomedical domain. This is especially true in the naming of new genes and
proteins.

There is also the question of what granularity the dictionary should
have. A phenomenon called Multi-Word Units (MWUs) deals with the fact
that quite often a group of words only has the right meaning as a group,
and not as single words. One example is “Bananas as well as apples” (Ref
Sentence 44 and 58). In this sentence the three words “as well as” just take
the place of the single word “and” (or maybe “and also”), and therefore

COMPUTATIONAL LINGUISTICS

 19

they should also be tagged as one MWU (namely conjunction). In many
current systems “as well as” would be tagged as for example “PREP ADV
PREP”, but this is not a correct POS sequence between two sentences, and it
gives no hints that we are semantically dealing with a conjunction. In
Unitex this can be solved by using the DELACF dictionary format to store
“as well as” on one line as a MWU, and tag it as conjunction.

2.3.3 Word Counting

Unitex lists some basic statistics every time a new text is pre-parsed,
and every time patterns are located in the text using regular expressions or
search graphs. To understand this statistics, it is helpful to know how the
word count is done. Words are counted in these three different ways:

Running Words: Everything between two word separators (normally
space) is counted as a word, regardless of whether that particular word has
already been counted.

Unique Words: Only count the first occurrence of every word. This
gives the number of different words used in the text

Frequency Count: Tells you how many times every given word is used.

2.4 Biological Terminology
This section will describe some of the particular language constructs

and problems that were encountered during the work with texts from the
Medline database.

2.4.1 Protein

Proteins are the agents/actors of interest. See Figure 3 and Figure 4 for
the definition.

protein -- any of a large group of nitrogenous organic compounds that are essential

constituents of living cells; consist of polymers of amino acids; essential in the diet of
animals for growth and for repair of tissues; can be obtained from meat and eggs and
milk and legumes; "a diet high in protein"

Figure 3. WordNet definition (with gloss) for Protein

 BIOLOGICAL TERMINOLOGY

 20

Protein
 => Macromolecule, super-molecule
 1=> molecule
 => Unit, building block
 => Entity, physical thing
 2=> organic compound
 => Compound, chemical compound
 => Substance, matter
 => Entity, physical thing

Figure 4. WordNet ontology entry for Protein

2.4.2 Genes
For every protein there are one or more genes that “code for it”. Quite

often the gene and the protein will then have the same name. When such
ambiguities arise in the semantic tagging of the text, the gene-tag should be
selected, for the sake of consistency. Exceptions should be made for
example when the sentence contains the word “protein” directly after the
protein/gene name.

2.4.3 Enzymes

Here is the definition of enzyme from Kimball's Biology Pages [22]:
Enzymes are catalysts. Most are proteins. (A few ribonucleoprotein

enzymes have been discovered and, for some of these, the catalytic activity
is in the RNA part rather than the protein part; Link to discussion of these
ribozymes.) Enzymes bind temporarily to one or more of the reactants of
the reaction they catalyze. In doing so, they lower the amount of activation
energy needed and thus speed up the reaction.

Many enzyme names are encountered during classification of unknown
words in Medline texts, and to speed up the process it helps with a few
good heuristics. One such heuristic is that all names with “ase”-ending are
enzymes (and therefore protein) names.

2.4.4 Latin: Cis and Trans

Dealing with medical texts, one always encounters many Latin words
that are not so common in other texts. Two of these rare words will be
discussed in this sub-section, namely cis and trans.

In the activate sentences (See Appendix B, Sentence 6) “cis-acting
elements” are mentioned. Cis is a Latin prefix that means something like
“on this side”. Its Latin counterpart is “trans”, which means “on the other

COMPUTATIONAL LINGUISTICS

 21

side”. The MIT Bio-pages [23] has a more medically precise definition of the
two terms. Figure 5 shows how this works on the molecular level:

“We can use these techniques to see if a DNA sequence can act from
afar on another DNA sequence. If it can, then it is a diffusible protein.
These sites are called trans-acting sites, since they act from afar. If the site
cannot act from afar, then it is a DNA binding site that needs to be near
other DNA sites (such as coding sequences) in order to function. These sites
are called cis-acting sites, since they need to be next to other DNA to
work.”

The Unitex semantic tag for prefix is PFX.

Figure 5. Cis- and trans-acting proteins. Courtesy of the MIT Bio-pages

2.4.5 Greek Letters

Another typical feature of biomedical texts is that they contain many
Greek letters that have no standard plain-text coding format. Many of the
proper nouns (e.g. protein names) contain Greek letters, and various types
of sub and superscripts. This problem is encountered when PS, PDF or

 BIOLOGICAL TERMINOLOGY

 22

Word files are converted into other formats, and especially into plain text
format.

The activate-sentences (Appendix B) used in this experiment were
collected from various PDF files from the internet (via Medline), but when
these PDF files were downloaded as Word (Doc) files, a special coding was
used for Greek letters. Instead of α, the text “small alpha, Greek” was
inserted, instead of β “small beta, Greek” and so on. This creates some extra
problems in the tokenisation of the text, since e.g. “Greeksmall” is an
unknown word in our language. In this experiment the original texts was
changed manually to solve this problem, but when dealing with large
amounts of text, some automatic way should be found to solve these
problems.

UNITEX TUTORIAL

 23

3 Unitex Tutorial

This chapter describes the Unitex system, and can act as a preliminary
English translation of the manual. It will explain the basic functionality in
Unitex in the form of a step-by-step tutorial convenient for new users.

3.1 Introduction
Most of the “tricks” in this chapter had to be learned by trial and error,

since the manual only exists in French and a partial Portuguese translation
[37]. Writing an English translation of the manual is one of top priorities of
the Unitex team, but there is no official deadline given for this task yet. The
main programmer of Unitex, Sébastien Paumier [40], has been very helpful
and answers all questions about the program rapidly by email. He also
came to LMU Munich (to the CIS institute) at the beginning of this Diploma
work (November) to give a guest lecture on Unitex. The main points from
that introduction will be summarized in this chapter.

Sébastien Paumier worked for the LADL institute in France [32], where
both the INTEX and the Unitex systems were developed. Unitex is more or
less just a GNU General Public License (GPL) version of INTEX, but it still
lacks some of the semantic disambiguation support that INTEX gives.

3.2 Installation
Unitex [41] can be downloaded and installed together with the Java

Runtime Environment (JRE) version 1.4.1. The installation takes only a few
minutes, and any standard PC should be adequate in terms of system
requirements.

Version 1.1 has been available since the beginning of February 2003. It
was released as a beta version, but it was already running stable and has
been used in this project since then without any particular problems. The
biggest change from version 1.0 is that the graph editor GUI has been

 TEXT FORMAT

 24

improved, and a few general bugs have been removed. All the data files
can also be transferred between the two different versions without any
problems (Tested for text, graph and dictionary files).

3.3 Text Format
All the texts that shall be used by Unitex must be stored in Unicode

format, and with the little endian byte order (standard for Intel-type
processors). The text format conversion must be done before the file can be
opened in UniTex, and can be done by most semi advanced text editors,
including Word and TextPad (but not Notepad). There is also a support
program in the Unitex package that will do this conversion. This program
is located in the “Unitex\App” directory and is called “asc2uni”. The input
file must be ASCII-coded, and then a Unicode output file will be created.

3.4 Pre-processing and Lexical Analysis of the Text

Figure 6. After opening a new text

The first time a Unicode text-file is opened in UniTex, one is given the
option to pre-process the text. During pre-processing, sentence delimiters
({S}) are inserted into the text. At the same time, lexical analysis can be
done (“Apply All default Dictionaries”); meaning that every word is
tagged with all the possible tags it can have according to the dictionaries.

Unitex has two already compiled English system dictionaries: One for
single words (delas.bin or delaf.bin), and one for compound terms

UNITEX TUTORIAL

 25

(delac.bin or delacf.bin). Other self-made dictionaries (e.g. gene and protein
names) can also be used during the pre-processing phase. The difference
between DELAS/DELAC and DELAF/DELACF is that DELAF dictionaries
contain inflected forms of all the words. Normally a DELAF can be
automatically created from DELAS/DELAC with a few good inflection
rules.

In connection with the lexical analysis it is also possible to construct
Finite State Text (FST) automatons for the sentences, by using the bottom
left checkbox in Figure 6: “Construct Text Automaton”. FST (see section
3.6) is a good idea, because it will give you a feeling about how ambiguous
the sentences are, based on the current dictionaries. FST automatons can
also be constructed later by choosing “Construct FST-text” from the “Text”
menu in Unitex.

When pre-processing and lexical analysis is done, some common files
are automatically created:
DLF Contains all possible simple word dictionary entries

matching the text
DLC Contains all the possible compound lexical entries that were

recognized
ERR Contains all the simple words that were not found in any

dictionary
Tokens Contains an unsorted list of different tokens from the text
Tok_by_freq Contains different tokens sorted by frequency of use
Tok_by_alph Contains all different tokens sorted alphabetically

3.5 Graphs
In this section, a simple description of the syntax that is used to read

and write graphs is given. The description is largely derived from Chapter
4 in the Unitex Manual [37].

+ Separate (OR) different word (or sequences of words) choices in a box
- Logical “And Not” with the next grammatical/semantic code in the

<X> forms. For example, <N-hum> recognizes all nouns that do not
have the human mark

/ Separate box input from box output
<X> Match all the words with ground (lemma) form X, or with X as a

grammatical/semantic code. Examples:
<be> recognizes be, are, am, is, etc…
<N> recognizes any simple or compound word that has the noun
mark

() Group elements (for regular expressions)

 GRAPHS

 26

* Kleene Closure: Match none ore more instances of the previous
(grouped) term

Figure 7. Graph writing syntax

<E> Empty string
<MOT> Token with only letters
<MIN> Token with only lower case letters
<MAJ> Token with only upper case letters
<PRE> Token with only letters (like MOT), but starting with an upper

case letter
<DIC> matches any simple or compound word in the dictionary
<SDIC> matches only simple words from the dictionary
<CDIC> matches only complex words from the dictionary
<NB> Token with only contiguous numbers (no spaces within)
<PNC> Punctuation (; , ! ? :) is only available during pre-processing.
<^> Matches a new-line (\n) and is only available during pre-

processing.
forbids the presence of a space at the given position. For example,

<MOT>#-#<MOT> will recognize “tam-tam” but not “tam – tam”.

Figure 8. Special lemma-forms (from [37], chapter 4.3.1)

While looking at a graph with subgraphs, a specific subgraph can be
opened by pressing the <alt> key while clicking on the subgraph’s named
box representation.

A graph can be used to recognize/locate given fragments (local
grammars) in a text, and it can be applied with different output modes:
Ignore, Merge or Replace.

In ignore mode the original text is not changed, and all the matches are
given in a separate list. This is called a concordance list and contains the
context for each of the matches. The concordance list is also hypertext
marked-up, so it is easy to jump to the right place in the original text, and
to the appropriate FST-text (see section 3.6) if it has already been made and
is currently visible in another open window.

When searching for a pattern in merge mode, the output from a graph
will be inserted in the original text, just before the starting point of whatever
the graph matched.

Finally in replace mode, everything that matches the graph is removed
from the input text, and only the output from the graph is left in that place.

UNITEX TUTORIAL

 27

3.5.1 Variables

In Unitex graphs, variables can be used to produce just the output that
is wanted. In Figure 9 two variables ($activator and $activated) is being used
to transform the extracted facts from natural language into a very general
predicate logic form.

Figure 9. Variables in Unitex

The middle window in this figure shows a graph were the sub-graph
“GeneNameNP” is called two times. The text that matches the sub-graph
the first time is stored in the $activator variable, and the “Gene Noun-Phrase”
that matches the sub-graph the second time is store in the variable
$activated. At the end is just an empty box that produces the desired output
in the form of a logic predicate (activate) with two arguments, and the entire
output is placed in angle brackets, in order to make it easier to separate it
from the remaining text later.

The top window shows a concordance structure with the results of
applying this simple graph in replace mode, and the bottom window show a
concordance structure for all occurrences of the word “activates” found in
the 59 sentences.

3.6 FST-text
FST-text is a special kind of graphs. These can be automatically created

(see section 3.4), there is one FST-graph per input sentence, and they

 DICTIONARIES

 28

represent every possible parse of the sentence given the entries in the
inflected dictionaries.

FST is an excellent starting point for disambiguating the sentences
manually, since one only has to delete the boxes that do not fit. When an
FST sentence is modified, the changes will be stored in the working
directory as a temporary file called “sentenceX” (X is the number of the
current sentence). When the “Rebuild FST-text” button is pushed, the
“sentenceX” files are used to update the more permanent file “text.fst2”. If
you later choose “build FST-text” again from the menu, also this file will be
overwritten.

3.7 Dictionaries
This subsection will give a brief overview of the different dictionary

formats and explain how they are used in Unitex.

3.7.1 Dictionary Format and Syntax

There are two main types of dictionaries in the Unitex system: Inflected
(DELAF/DELACF) and uninflected (DELAS/DELAC). These can be further
divided into simple-form (DELAF or DELAS) and complex-form (DELAC
or DELACF) dictionaries. The only extra feature in complex form
dictionaries compared to the simple ones, is that they accept MWUs, i.e. the
complex forms can have the space character in them.

Figure 10 shows the format of the uninflected and Figure 11 shows the
format of the inflected dictionaries.

“Word surface form, POS + Semantic: Morphology: Syntactic: Inflection”

Diacyl-glycerol, N+Glycerol: s
Down regulate, V

Figure 10. Format for uninflected (DELAS/DELAC) dictionaries

 “Word surface form, lemma form. POS + Semantic: Morphology/Syntactic/Inflection”

Diacyl-glycerol, .N+Glycerol: s
Down regulates, down regulate.V+P3s

Figure 11. Format for inflected (DELAF/DELACF) dictionaries

UNITEX TUTORIAL

 29

For word entries without any morphological information the last “:”
should be dropped, and when the lemma form in a complex dictionary is
equal to the word (surface) form the lemma place should be left empty.

Not all characters can be used freely when writing the dictionaries.
Figure 12 gives a list of the special characters. These characters must be
protected by a \ (backslash) when they are used as “themselves” as a part
of a dictionary entry. If it is possible to avoid entering these characters into
a dictionary, it would save a lot of trouble later, because the dictionary,
FST-text and graph modules of Unitex do not deal with escaped characters
100% consistently.

/ Comment (Chapter 3, page 24 in manual, examples)
= Hyphen or Space (Can be used to represent both forms with just one entry, page 23)
, between token, lemma
. Between lemma. Grammatical info
: Between grammatical info (lexical info) and Inflexion information (info about inflected

forms)
+ Between parts of lexical info
\\ Used as folder separator in graphs on Windows systems

Figure 12. Special dictionary characters

3.7.2 Dictionary Tags
Here the different standard tag types are explained with examples.

Also, a few self-defined tags from the dictionaries Genes and ProtHum are
used. The Gene and Protein dictionaries were created by converting the
GeneTUC files “genebase.pl” and “protbase.pl” into Unitex format.

A Adjective
ADV Adverb
CONJC Conjunction, Coordinating
CONJS Conjunction, Subordinating
DET Determiner
INTJ Interjection
N Noun
PART Particle, including infinitive particle
PRED Pre-determiner (I bought about 200 balloons)
PREP Preposition
PRO Pronoun
V Verbs
X Words that cannot stand alone, without prefix, suffix etc (in situ)
XI Parts of MWUs (et, al.)

Figure 13. Word class dictionary tags

 DICTIONARIES

 30

3.7.2.1 Morphological tags
This list includes all syntactic and morphological tags, and the

information they can contain

:m Masculine
:f Feminine
:n Neutral
:s Singular (Number)
:p Plural (Number)
:1 First (Person)
:2 Second (Person)
:3 Third (Person)
:P Present Indicative
:I Imperfect Indicative
:S Present Subjunctive
:T Imperfect Subjunctive
:Y Present Imperative
:C Present Conditional
:J Past (simple)
:W Infinite
:G Present Participle (Gerundive)
:K Past Participle
:F Future

Figure 14. Morphological dictionary tags

3.7.2.2 Semantic tags
Here are the semantic tags that are described in the Manual [37]

+z1 Common word
+z2 uncommon word
+z3 Very rare word
+Abst Abstract
+Anl Animal
+AnlColl Animal Group
+Conc Concrete
+ConcColl Concrete Group
+Hum Human
+HumColl Human Group
+t Transitive Verb
+i Intransitive Verb

Figure 15. Semantic dictionary tags

There also are also a few other system-defined semantic tags that are
not described in the manual:

UNITEX TUTORIAL

 31

+A Adjectively used adverb (ADV that can be used as A)
+DA A or DA (as in “poorly understood”)
+2X A+2X (in situ). X always marks words that should not stand alone

For PRO and DET:
+Dadj Det Adjective
+Ddem Det Demonstrative
+Nomin Nominative (for PRO)
+Pdem Pronoun Demonstrative
+Poss3ns Possessive 3.person neutral single (for PRO and DET)
+PR Province (Monaco et al., here it is a Personal Name!)

Figure 16. "Undefined" semantic dictionary tags

And here are two self-made semantic tags, particular for Microbiology-
linguistics.

+Gene Gene
+ProtHum Human Protein

Figure 17. Self-defined semantic dictionary tags

3.7.3 Dictionary Update

After the lexical resources (dictionaries) have been applied to the text,
all unknown words will be stored in the file “ERR”. In order to be able to
do intelligent parsing of the text, all these words must first be added to a
dictionary.

When new words have been added to a dictionary file (e.g. name.dic),
this file must then be compiled into a .bin file, so that it can be used
together with the system dictionaries the next time lexical parsing is done.
The main reason for this precompiling is that binary compiled graphs give
a much higher parsing speed than one can get when interpreting the
graphs on-the-fly. This is more or less in analogy with the fact that
compiled (e.g. C++) programs run much quicker than interpreted (e.g. Java)
programs. The compiling of new dictionaries can be done by opening the
Unicode “file.dic” from the “DELA” menu in Unitex. Then, from the same
menu one has the choice to check the format or to compress the dictionary
into a finite state automaton (FST). It is also possible to use the program
“Compress” in the “Unitex\App” folder to do this compiling. The result in
both cases is that a file called “name.bin” will be created.

To use the new compiled dictionaries every time a new text is being
pre-processed, they must first be added as default lexical resources. This
can be done from the “Text” menu, but only when an arbitrary text is
already open. So the first step is to open the text, and choose to skip the
preprocessing. Then, choose from the “Text” menu “Apply Lexical
Resources” (see Figure 18). In this window, all the .bin files in the

 DICTIONARIES

 32

“Unitex\English\Dela” folder are listed. New dictionaries can be selected
in addition to the old ones, by pressing the <ctrl> key while clicking the
new names with the mouse pointer. After all the standard dictionaries have
been selected, it is important to click the “Set Default” button, so that the
changes are made permanent and all the selected dictionaries will be used
next time preprocessing and lexical parsing is being done.

Figure 18. Menu: Text->Apply Lexical Resources

The selected dictionaries can be directly (re-) applied from the window

in Figure 18, or when the “Set Default” button has been clicked, from the
Preprocessing and Lexical Parsing window, see Figure 6.

UNITEX TUTORIAL

 33

3.7.3.1 Creating a context for “unknown words”

Figure 19. Creating a context for “unknown words”

A simple way to speed up the process of classifying unknown words is
by making a graph that contains one box with all the unknown words in it
(See Figure 19, left side). When this graph is stored, it can later be applied
for locating patterns in the text, and for building concordance structures, as
it was done in Figure 19, bottom right side. This is very useful, since the
unknown words are then highlighted and display together with their
context (approximately the 12 nearest words) in the text. This can save a lot
of time since unknown words are often declared (explicit or implicit) in the
text where they are first used, and by using these definitions one can save
valuable time that would otherwise have to be spent searching the Internet
or other dictionary sources.

When searching for the 52 unknown words in the text, it was
discovered that they constitute almost 4% of the total text. That means that
every 26th (running) word is an unknown.

3.7.4 Filter Dictionaries

Filter dictionaries are dictionaries with a name ending with a – (minus)
sign before the “.DIC” ending. They can be used for example to solve a
very particular problem raised by the fact that “a” and “as” are treated as

 DISAMBIGUATION

 34

nouns. First of all, there is a valid reason for treating “a” and “as” as nouns,
for example in the sentence:

“I tell you that bazaar takes three as and bizarre just one a.”

Figure 20. A "bizarre" sentence

But even though “a” and “as” can be nouns in this particular sentence,
they will usually not be in the kind of micro-biological sentences of this
project. The noun interpretation is not just unlikely, but it actually causes
some problems for example when locating all indefinite articles; it should
be possible to searched for the lemma form <a> to matched both “a” and
“an”, since these two indefinite articles have “a” as their lemma form.
Unfortunately, also “as” has the lemma form “a” (because of the many “a”-s
interpretation), and this causes a lot of noise in out search.

Therefore, to avoid this interpretation of a, you can use a filter
dictionary: Put all the interpretations you want for a and as in a DELAF, for
example:

a,.DET
as,.PREP

Figure 21. Filter dictionary: a_filter-.dic

Give the file a name with a - sign before .DIC, such as “filter-.DIC”.
Then, compile your dictionary and select it to be applied in the default

dictionary selection (menu Text>Apply lexical resources). This will filter for
“a” and “as” only your given solution and you won't have to worry
anymore about the noun interpretation for a and as.

3.7.5 Complex Dictionary Terms

Some of the gene names are so complex that it would be better to build
simple NP graphs for them, than to list all possibilities in a dictionary. This
can be compared to the way that the stock exchange index-names were
modelled in “the construction of local grammars” [8] by Maurice Gross. See
Figure 1 for a biomedical example.

3.8 Disambiguation
When a text is opened in Unitex the first time an FST (see 3.6) can be

automatically constructed for all the sentences. This FST will then contain

UNITEX TUTORIAL

 35

graphs showing every possible parse of every sentence given the current
dictionaries. It is then possible to manually modify the FST-text, e.g. to do
disambiguation on it by removing un-semantic paths from the graph.
When a sentence is changed manually, the result will be stored in a
temporary file in the text’s working directory (e.g.
…/English/50activate_sen/sentenceX, where X is the sentence number).

During the disambiguation work one can also choose to give semantic
codes to important words, for example by tagging all genes and proteins
with genes and protein tags. One problem with such semantic tagging is
that a word (e.g. polymerase) can belong to several different semantic
classes, and it is not practical to give every word a complete and very long
list of semantic tags (e.g. Enzyme, Protein, Molecule and so on). In
GeneTUC this problem is solved by building an ontology (a semantic
network), then giving every word (e.g. polymerase) the most detailed
description possible in this network (e.g. Enzyme), and by having a rule
saying that it then also belongs to all the parent nodes above this
description (e.g. Protein, Molecule, Thing). It is an open question how such
rules could or should be implemented in Unitex.

GENETUC

 37

4 GeneTUC

In order to appreciate the results made with Unitex and local
grammars, it is important to think about how they can be used later. In our
case, Unitex’s local grammars could be used to do effective pre-processing
on the biomedical texts, before they are parsed by GeneTUC. This is a good
idea because the strengths of Unitex (Fast processing, and a graphical
interface) matches the weaknesses of GeneTUC (slow parsing, and no
graphical interface). The reason for not doing all the work in Unitex is that
GeneTUC already implements the entire framework for a tell-and-ask
system, and the grammar is much more expressive than the regular
automata in Unitex.

This chapter will not give many details about GeneTUC, but the points
most relevant to the work with Unitex will be discussed below. For more
details the reader is referred to the last project report covering the
GeneTUC system [16]. It includes a tutorial, and explains the basic need for
pre-parsing due to punctuation, Greek letters and other such problems that
Unitex can solve much easier.

4.1 Introduction
The end goal of GeneTUC is to build a question answering system

about biomedical facts. Biomedical text, more often than not, contains
Greek letters, punctuation in the middle of words, chemical formulae and
so on. This constitutes a problem for GeneTUC, because it is not made to
deal with anything else than standard ASCII-letters. This means one of two
things: Either GeneTUC has to be changed in order to deal with all these
new problems, or the input texts have to be modified in order to fit
GeneTUC’s requirements.

Work is being done with GeneTUC to make it deal intelligently with
some simple punctuation (e.g. comma), but as long as the system remains
ASCII-based, it can never deal successfully with the Greek letter problem.

 GREEK LETTERS

 38

Therefore, the approach with pre-parsing should also be explored, and
Unitex is ideal for such “strange-letters” parsing, because it is Unicode-
based.

4.2 Greek Letters
By now there exists several different ways that the authors of the

biomedical texts deals with Greek letters. Some simply use “a, b, g” etc
instead of “α, β, γ” and so on, and some spell it out like “alfa, beta,
gamma” etc. Others use the actual Greek letters in their writing, but then
these letters are later changed into more or less cryptic representations (e.g.
“small beta, Greek” or “small chi, Greek”) in the process of transferring
documents between different formats such as LATEX, Word, PDF, PS and
so on.

One solution to this problem is to use Unitex to build local grammars
that would recognize all these different representations and transform
them into a standard ASCII-representation that GeneTUC could process
further. For example, “PI3Ksmall beta, Greek” and “PI3Kβ” could both be
replaced by “PI3Kbeta” or “PI3Kb”. This is very easy to do in Unitex,
because the local grammars are built in the form of transducers, which
means they can produce output in addition to reading input like normal
automata. There are three ways that the local grammars (transducers) can be
applied to the text: Normal, Merge and Replace modes. When the Greek-
letter term-recognizing graphs are applied in Replace mode, we get exactly
what is needed by GeneTUC, namely a text file without Greek letters, and
with only well defined protein and gene name IDs. Of course, this file must
then be translated back to ASCII from Unicode, but that is a trivial task. For
example, there is a program called Uni2Asc in the Unitex\App folder that
does this conversion.

4.3 Dictionaries / Ontologies
Dictionaries are just as important in GeneTUC as they are in Unitex. In

addition GeneTUC is dependent on its ontology (implemented in
“semantic.pl” for the “ako” relations, and in “facts.pl” for the leaf nodes
“isa” relations). The construction of ontologies is at least as time-consuming
as the construction of dictionaries, and therefore new ways to automate this
work should be found.

For example, it should be possible to use WordNet to automatically
classify unknown words into the GeneTUC ontology system, but there are

GENETUC

 39

a few problems. First of all, the categories in GeneTUC and WordNet are
far from 100% equal, even though the GeneTUC ontology is strongly
“inspired” by WordNet. That means that GeneTUC must be adapted to fit
the existing WordNet categories, before automation can take place. Second,
also the formats of the ontologies are quite different between the two
systems. In GeneTUC two elementary relations (inheritance and attributes)
can be represented: “A Kind Of” or “Is A” (E.g. salt ako substance, and
NaCl isa salt) and “Has A” (DNA has_a region). Since GeneTUC is a
running system, the relation can only hold between well defined concept
classes. This is not the case with WordNet (see Figure 2. WordNet
definition of Salt), where the ontology entries are written as free-text. Still,
with a few transformations, the simplified structure can be implemented in
GeneTUC. The glosses can easily be stripped away, since they are already
put in parentheses (watch out for nested parentheses!), and the comma-
separated lists of definitions can be implemented as multiple ako relations
in GeneTUC. The only problem left then is the fact that it might be
meaningless to have both compound and chemical compound as classes, but in
the end that will depend on the actual use of the system.

METHODS

 41

5 Methods

This chapter describes the work done with the Unitex system, and how
it compares to GeneTUC methodology.

5.1 Introduction
The current end goal for a working biomedical parsing system, whether

it is GeneTUC, Unitex-based, or any other parser, is to do automatic
information extraction (IE) from the medical abstracts or full texts. In this
project we are particularly interested in gene activation, and we want to
extract information such as what gene/protein is the activator, what
gene/protein is being activated, how reliable are the extracted facts, and
what extra conditions must be satisfied. In order to start somewhere, a
micro-biologist was asked to find around 50 sentences that contain facts
about activation. Most of these sentences also contain the actual word
“activate” in some form, but there are also a few sentences that use other
words (e.g. X confer transcription of Y).

After local grammars have been built for the given “activate-sentences”,
a test will be run on a biological reference corpus, to see how general and
applicable the graphs are.

5.2 Text Sources
This section describes the different sources that were used to acquire

the text to parse. Most of the text is from the Medline abstracts database
[39]. The first source contains an entire abstract that was previously used to
train GeneTUC. The second source contains “random” single sentences
selected by a biologist with the criterion that they should all contain facts
about activation of a gene, protein or hormone. The third source is a 19.000
sentences large biological reference corpus that will be used for testing the

 TEXT SOURCES

 42

finished local grammars in the end. This is the same text that was used to
test GeneTUC earlier (abs2.txt).

5.2.1 The Medline Abstract

A Medline abstract about gastrin and CCK was used for preliminary
testing, to see the number of unknown words, and how ambiguous the
sentences are. It can be seen in Appendix A. This is the same abstract that
was used to test GeneTUC in 2002, so it should be possible to compare the
results, and the amount of work that is needed to successfully
“understand” a text using either of the two different systems.

5.2.2 59 Activate-Sentences

Astrid Lægreid found more than 50 sentences describing the activation
of different genes. Actually, the sentences are not only about gene
activation. They also contain facts about protein and hormone activations.
For the sake of testing the Unitex methodology, it is not so important
whether they are genes, proteins or hormones. Genes and proteins quite
often have the same names anyway, since a protein is usually made from
one or more corresponding genes. Hormones actually have slightly
different names, but the sentences about hormone activation have the same
form and context as the gene/protein activation sentences. That means that
we can merge the gene, protein and hormone dictionaries, and just treat all
these names as subjects or objects of the activation relation (see Appendix D,
Name-graph)

5.2.3 Micro-Biological Reference Corpus

The first micro-biological reference text was the same as that used to
test GeneTUC earlier. It contained around 18.000 sentences, which is a little
more than 5MB when it is stored in the Unicode format.

Later a reference corpus with about 25.000 tagged tokens was acquired
from “Centrum for Informations und Sprachverarbeitung” (CIS) at LMU in
Munich. This reference corpus was also originally extracted from Medline,
and it was used as a cross reference and aid during the classification of
different medical words (primarily names) in this project. A program could
be built that automatically classifies or suggest classification of words
based on what tags they are given in such an already tagged reference
corpus. This would save a lot of work, since every entity name would then

METHODS

 43

only have to be manually processed one time. Right now, every researcher
always has to start from scratch, and often ends up solving problems that
have already been solved by others.

After all the graphs for the 59 activate sentences were finished, a test
was run on “abs2.txt” to see how applicable the graphs were. The test
results are given in 6.4.

5.3 Preliminary Work with a CCK Abstract
As a way of getting familiarized with Unitex, some preliminary work

was done with a small familiar text sample (See Appendix A). The CCK
abstract has previously been successfully parsed by GeneTUC, so resources
such as the classification of previously “unknown words” were already
available in the GeneTUC system. See Figure 22 for a step-by-step
explanation of the transformations that were needed to import the gene
names into Unitex via the DELA dictionary format.

Manually:
1) Delete header and footer
2) Delete all lines beginning with % (Comment = Removed entries)
3) Delete all gene('
4) Delete all ').
5) Substitute \n with ,.N+Gene\n

Step 2-5 can be done with Perl Regular Expressions, like this:
2) s/^%.*//;
3-5) s/\('(.*)'\)/$1,.N+Gene/;

Figure 22. Conversion from genes.pl (GeneTUC) to genes.dic (Unitex)

After the gene, protein and substance names had been imported to give

GeneTUC and Unitex a “common microbiological platform”, the following
steps were taken: The CCK abstract text was stored in Unicode format, and
then it was opened with Unitex. It was pre-processed in Unitex, with lexical
parsing, but only using the standard dictionaries. 12 unknown words were
found among a total of 137 words.

5.3.1 Dictionary Update
Since all the words from the CCK abstract had already been classified in

GeneTUC, the possibility of automatic importation was explored. As many
as 10 of the unknown words were gene/protein/substance names or
identifiers, and should therefore be found in one of the GeneTUC files
“genebase.pl”, “protbase.pl” or “substance.pl” in the “genes” or “database”
folders. There are also two files, “genecmpl.pl” and “protcmpl.pl”, that

 WORK ON THE “ACTIVATE” SENTENCES

 44

contains “Multi Word Units” (MWUs, or full forms) that mapp to each of
these identifiers. All these files were auto generated from a nomenclature
resource on the Internet [30].

The converted gene, protein and substance names dictionary were
applied as default lexical resources, and text pre-processing were done
again, but this time with all dictionaries applied (see 3.7.3). Unfortunately,
most of the unknown identifiers were not found in new dictionary files.
The reason for this is that all the “handcrafted” additions (during the
GeneTUC work with this abstract in 2002) were put directly into the system
file “facts.pl”. This practice should be changed in later versions of
GeneTUC, to ensure that the system remains as modular as possible, and to
allow for better “cooperation” with other systems. For now, the missing
identifiers were manually copied from “facts.pl” to Unitex, and stored in the
dictionaries that were automatically extracted from GeneTUC (genes,
proteins and substances), see Figure 22.

5.3.2 Disambiguation

After all the unknown words had been put into the right dictionaries,
“Finite State Transducers” (FSTs) were (automatically) constructed for the
11 sentences. This turned out to be a good starting point for the
disambiguation task, since all possible parses are then represented in the
graph, and after removing all the invalid nodes from the graph, only the
right path (the disambiguated sentence) will be left. There were a few
words where the correct dictionary entry did not exist, and therefore none
of the suggested paths through the graph were the correct one. This was
then solved by adding the correct entry into the graph manually, to avoid
having to do re-preprocessing of the text, since that would delete the
disambiguation work that had already been done. In addition, the word-
entry was added to the appropriate dictionary so that it would be taken
into account when preprocessing was done the next time.

5.4 Work on the “Activate” Sentences
This section describes the experiments that were done with the Unitex

system on the collection of Medline sentences about gene/protein/hormone
activation listed in Appendix B.

METHODS

 45

5.4.1 Preliminary Work

The “activate-sentences” were first stored in Unicode text format, and
pre-processed with Unitex, just like the CCK abstract. All standard
dictionaries were used, including the imported gene, protein and substance
dictionaries from GeneTUC (see 5.3.1). FST automata were constructed to
see how ambiguous each sentence was. Some facts about the sentences are
given below:
• The 59 sentences consisted of 1514 words (27 words per sentence), but

just 500 different words.
• Of the 500 words, 52 were unknown words (not already in the

dictionaries). See Figure 24 for a list of these words and the sources that
were utilized to find their right semantic classes etc.

• Different forms of “activate” (activates, activated, activating) occurred
23 times in the text, “activation” occurred 25 times, and activator 1 time.
That means that at least 10 of the activate-sentences did actually not
contain any use of the word activate.

• The original text was slightly modified, but only in order to avoid the
Greek-letters errors.

5.4.2 Sentence Delimiters
During pre-processing, the 59 sentences were (wrongly) split into 61

sentences. Three extra sentences were made because of periods in
abbreviations (e.g. “Fig. 3”), and two separate sentences were joined
because the second sentence was started by the name “p53” (with a small
“p”). There were two occurrences where a semicolon was (correctly?)
interpreted as a sentence-delimiter.

 WORK ON THE “ACTIVATE” SENTENCES

 46

Figure 23. Modified Sentence.grf to correctly detect sentence boundaries

The way to solve these delimiting problems is by modifying the

Sentence.grf file (in the Graphs/Preprocessing/Sentence folder) before
doing pre-processing again. “Fig.” was added as a “cas particuliers”
(particular case) in this graph (see Figure 23). This means that a period does
not count as a sentence delimiter when it follows directly after the word
“Fig”. “p53” were also added to the graph, as a legal sentence starter, even
though it is written with a small p. These changes will not have any effect
on the original text before the Sentence.grf file is recompiled into an fst2 file
and pre-processing is done again. After this was done on the original
“50activate.txt” file, 59 sentences were correctly recognized.

It is worth noting that every time pre-processing of a text is done, all the
files that are stored in the corresponding text_snt folder are deleted, and
new ones are created. That means that no useful external data should be
store in the text_snt folders!

5.4.3 Dictionary Update

The 52 unknown words (except for a few obvious errors in the original
text) were added in a new dictionary file in the “Dela” directory. This file

METHODS

 47

was later compiled into a .bin file, so that it could be used together with the
system dictionaries during lexical parsing. Figure 24 shows the sources that
were used in order to classify the unknown words with correct semantic
tags. See Figure 26 for the actual semantic classifications.

Word Source

AKT http://www.sigmaaldrich.com/Area_of_Interest/Life_Science/Cell_Signa
ling/Pathway_Slides_and_Charts/Akt_Signaling.html

Akt See AKT
AP-1 http://journals.endocrinology.org/joe/169/joe1690447.htm

http://www.biochemj.org/bj/360/0599/3600599.pdf
Autoregulation http://www.cogsci.princeton.edu/cgi-

bin/webwn1.7.1?stage=2&word=autoregulation&posnumber=1&searcht
ypenumber=-2&senses=&showglosses=1

Bn http://www.nature.com/cgi-
taf/DynaPage.taf?file=/mp/journal/v7/n1/full/4001974a.html

BW2258U89 http://www.alzet.com/bibliography/bib_pages/ia.htm
CCKB http://www.uni-

mainz.de/FB/Chemie/Biochemie/Fahrenholz/abstr_16.html
CeA http://www.biomeda.com/site/cat/K052/specsheet.html
Cis Astrid Lægreid
Colocalisation WordNet
CRE GeneTUC
CTA http://www.conditionedtasteaversion.net/
Diacyl-Glycerol WordNet: http://www.cogsci.princeton.edu/cgi-

bin/webwn1.7.1?stage=2&word=glycerol&posnumber=1&searchtypenu
mber=-2&senses=&showglosses=1

Dudai Original text
FSH Original text, WordNet
FSK GeneTUC
GPCRs GeneTUC. www.gpcr.org/7tm/
hGRP-R In the text by Qu
HuTu 80 http://www.biotech.ist.unige.it/cldb/cl1780.html

http://www.aphis.usda.gov/ppq/manuals/pdf_files/APM%20in%20PDF/
APM.pdf (cell “part of” organism)
Definition in the text by Qu

ICER Definition in the text by Don
Immunoblots http://www.ndif.org/Terms/immunoblots.html. Useful: Automatic

dictionary creator.
kDa From Astrid Lægreid
Kg Kilogram
Ksmall Error because of bad Greek letter handling
Lamprecht Name, Author
LH From original text
LiCl Chloride = salt
Lydig Used as Adjective
MAPK From original text
Mg Common sense: milligram
Microdomains Obvious: Domain
mRNA Obvious: RNA

 WORK ON THE “ACTIVATE” SENTENCES

 48

mRNAs See mRNA
NaCl Chloride = salt
Octamer From original text
PDKs From original text
Pheochromocytoma Used as Adjective
Phosphatidylinositol http://www.lipid.co.uk/infores/Lipids/pi/
Phosphatidylinositol-
biphosphates

http://acer.gen.tcd.ie/cgi-bin/khwolfe/gene.pl?name=PIP2&junk=no

Phospholipase http://www.biochem.ucl.ac.uk/bsm/enzymes/ec3/ec01/ec04/ec0003/
(Good Enzyme Classification reference!)

PKA From text
PKC From text
PVN From text
pp90rsk http://www.colorado.edu/Chemistry/directory.dir/faculty.dir/biochem.d

ir/ahn.dir/ahnres.html
SIIA Used as Adjective
Small beta,Greek ERROR: Because of conversion from PDF to Word-format. Greek letters

were translated into text-strings such as this one. See 2.4.5.
Somatostatin http://arbl.cvmbs.colostate.edu/hbooks/pathphys/endocrine/otherendo/s

omatostatin.html
Spermatogenic Used as Adjective
SRE From original text
TGACGTCA Obviously a DNA sequence
Transactivation Obvious=Activation

Figure 24. Information sources for unknown words

5.4.4 Greek Letter Problem
To deal with the Greek-letters problem the original text was changed in

the following way: “Small beta, Greek” was replaced by “b” and “Small
gamma, Greek” was replaced by “g”. For a discussion about this problem
see section 4.2.

5.4.5 Re-Preparsing

After the original text and dictionaries had been changed to account for
unknown words and Greek letters, pre-parsing had to be done again.
During pre-parsing, all the preliminary work that was already done was
deleted from the working directory “50activate_sen”. Of course, it was
much faster doing the job the second time, since the new dictionary was
then already in place.

METHODS

 49

5.4.6 Disambiguation

Working with the automatically constructed FST-Text (graphs), it is
possible to quickly disambiguate the input sentences manually (see section
3.8). When the FST-text is modified in this way, each modified sentence will
be stored in the working directory (e.g. 50activate_sen). NB: Be sure to copy
this files out of the working directory to a safe place before you reset,
rebuild or pre-process your graphs or text, because then all files in the
working directory will be deleted.

Several problems were encountered during the disambiguation work.
These include things such as MWUs that are not listed in the dictionaries,
single words that are highly ambiguous and cases where it is not really
clear which tag that should actually be used. One example is sentence
number 3 (see Appendix B): “ICER down regulates CREB expression”. The
reason for this is that “down regulates” is really a compound verb, and
should be represented as that in the DELACF-dictionary. This addition and
others like it were done in the third iteration of pre-processing the text.
Ideally, the text should only have been pre-processed one time, but because
of “learning-by-doing”, it is sometimes necessary to start all over again.

5.4.7 Building Graphs
After the text was finally disambiguated, the next step was to build

graphs that would match all the “activate”-facts in the text. This is tedious
work and a lot of choices have to be made about modularity,
recursion/iteration and semantics. The entire process is described in this
section.

5.4.7.1 Modularity
A main goal during the graph building is to build separate units that

can be reused later. That means that the graphs will be modified and
“added on to” later, but never in such a way that they no longer work in
their original settings. This requires some clever choices about which
sentences should be merged in one graph, and which ones should be
modelled in different graphs. In the beginning this will require some trial-
and-error attempts, but after a while one gets a better intuition about the
problem, and some golden heuristics can be made. For example, sentences
that seem to have similar parse trees should be kept in the same graph.

Another criterion for how graphs should be split and merged is
according to what semantic relations they express. This will be discussed in
the semantics sub-section below.

 WORK ON THE “ACTIVATE” SENTENCES

 50

5.4.7.2 Recursion
Since the microbiological language is usually very complex and

contains quite long sentences, it is necessary to use many sub-graphs in
order to fit an entire sentence into one graph. The graph size can be
somewhat increased to account for this problem, but if the graphs get much
bigger than A4 paper size, the risk of losing track of the details increases
dramatically. Of course, too much recursion can also cause problems, so
one has to strike a balance between graph size, and recursion depth.

Another problem with recursion is the risk of ending up with non-
terminating automata. Recursion is accepted in Unitex, because there is a
mechanism to handle it. This mechanism is probably just a cut-off limit, so
after a certain amount of nesting, the next recursive call is simply not
executed.

An alternative to recursion is iterations, meaning that a loop is formed
in a graph. This has more or less the same advantages and disadvantages as
recursion. Iterations allow for longer sentences to be put into one graph,
without making too many sub-graphs. This is especially true for sentences
of the form “X activates A, B, C, D and E”. The A-E entities in this sentence
usually have a lot in common, and should therefore be modelled in the
same graph. Then, this sub-graph can be iterated, just by inserting “,” or
“and” between each iteration. This works well in order to recognize
sentences of this form, but if the graphs were to be “run in reverse” to
produce all such sentences, two problems will appear. First, the production
will produce sentences of the form “X activates A, A, A, A and B”. Second,
it will go on doing that forever, without ever terminating. In other words, a
choice must be made about what is more important, easy functional graph-
building contra time-consuming but 100% versus graph-building. Again,
this really depends on what the end goal and the intended use of the
system is.

5.4.7.3 Semantics
The end goal of the system is to extract meaningful semantic relations

from the graphs, or actually from the sentences that the graphs recognize. It
is important to keep this in mind as the graphs are being built. For
example, when one graph is getting too big and must be split into multiple
separate graphs or recursive/iterative sub-graphs, it is important to think
about things such as anaphoric resolution.

METHODS

 51

“Activated PKA localizes to the nucleus where it phosphorylates CREB on Ser-133 and
activates it”

Figure 25. Anaphoric sentence

In a (quite short) example sentence as in Figure 25, there are two

occurrences of the word “it”. In order to determine what “it” means,
anaphoric resolution must be done. This is usually quite easy for humans to
do, and it is more or less obvious to us that the first “it” refers to
“(activated) PKA” and the second “it” refers to “CREB”. For the computer,
on the other hand, explicit rules must be made about how anaphoric
resolution should be done, and these rules are usually not straightforward.
In any case, it will be much easier to make such rules when “it” occurs in
the same graph as the antecedent (what is being pointed to).

When the antecedent occurs in the same graph as the anaphoric
reference, Unitex can use variables to solve the problem of anaphoric
resolution (see 3.5.1). The box that will match the antecedent can be
identified already when constructing the graph and the value that matches
this box can be stored in a variable. Then, the box that matches the
anaphoric reference could be identified, and the anaphoric reference could
be replaced by the value in the antecedent-variable. This would give a
disambiguated sentence in terms of anaphoric resolution, because all
references have been replaced by semantically meaningful antecedents.

If the sentence in Figure 25 was to be split between two different
graphs, at the “and”-conjunction for example, then anaphoric resolution
would be a little bit harder. First of all, because it is a technical challenge to
pass variable values between different graphs, and second, because it
would be much harder for the graph creator to keep track of what is going
on. Some of the modularity of the system would also be lost in the process
of splitting this sentence between different graphs, because there would
then be a connection between the two new graphs. The second graph
would then always expect the first graph to store an antecedent value in a
given variable, and this does not agree with the “modularity thinking”,
which says that all graphs should be separate, reusable modules.

RESULTS AND DISCUSSION

 53

6 Results and Discussion

This chapter will discuss the results that were acquired with the Unitex
system when it was applied to the different Medline text samples.

6.1 Introduction
The graphs that are being built must be general enough to also accept

sentences that are not explicitly programmed. That means that if we have
training examples such as “X activates A”, “X activates B” and “X activates
D”, then the very similar sentence “X activates C” should also be
recognized by the system. This means that we have to introduce abstract
graphs such as “X activates <Noun>”, but if too many such abstractions are
introduced, the system will end up also recognizing incorrect or “false”
sentences.

The results from the tests and the lessons learned during the different
work phases will be summarized in this chapter.

6.2 The CCK Abstract
Here are the results from the preliminary work on the CCK abstract

summarized. During the importation of gene, protein and substance names
and identifiers from the GeneTUC system, a flaw was discovered. These
names should all reside in files that were automatically generated and
updated based on different internet ontology resources. The problem was
that several new entity names have later been added to the system, and
they have then been put in other files. Most of the new entries can be found
in the “facts.pl” file where they are mixed with all other entities (such as
face, plasma, Værnes and politiet) making it harder to extract only gene,
protein and substances names.

In the end, only the entities that were listed in the gene, protein and
substance file were imported into Unitex, and the 12 unknown words in the

 “ACTIVATE” SENTENCES

 54

CCK abstract were then added manually to these dictionaries. In the future,
the protein, gene and substance entries in the GeneTUC file “facts.pl”
should be extracted and put into the right separate files, in order to keep
GeneTUC as modular as possible, and making it easier to incorporate
external sources.

It was much quicker building grammars for the 11 sentences using
Unitex than it was with the TUC-grammar in the last GeneTUC project.
This can be because the text was already well-known when it was
processed in Unitex. Another reason can be the fact that in the GeneTUC
project, considerations had to be made all the time about how to keep the
whole existing system running as good as before, when changing it to add
new rules. This is probably not just a problem of GeneTUC, but of any
system that grows so big.

6.3 “Activate” Sentences
This section will summarize and discuss the results from the work on

the 59 activate-sentences.

6.3.1 Sentence Boundary Detection
The 59 sentences were first split into 61 sentences, because of three

periods in abbreviations (e.g. “Fig. 3”) and one sentence starting by the
name “p53” (with a small “p”). This means that the boundary detection
graph (Sentence.grf) was 93% (55/59) accurate on these sample sentences.
After two simple updates to the sentence delimiting preprocessing graph
(see 5.4.2), it was working 100%. Semicolons were treated as sentence-
delimiters, but that is really just an arbitrary choice that has to be made.

6.3.2 Dictionary Update

The 52 unknown words were added to a separate dictionary
(50activate.dic in the Dela folder), according to Figure 26. This dictionary is
listed in DELAC format in Appendix C. Figure 27 shows how the semantic
classes of these entries fit into the GeneTUC (and WordNet) ontology.
When searching for the 52 unknown words in the activate-sentences, it was
discovered that they constitute almost 4% of the total text. That means that
every 26th running word is an unknown.

RESULTS AND DISCUSSION

 55

The following tables explain what synonyms and hypernyms were found for each word.
Classes in parentheses () means that they are not part of the semantic network in GeneTUC,

but they are listed in the WordNet ontology
Asterisk (*) before a term means that it is a complex term, consisting of multiple words or

numbers
Word Synonyms (GeneTUC) Class
AKT PKB Kinase
Akt PKB Kinase
* AP-1 Activator Protein 1 Protein
Autoregulation Process
* phosphatidylinositol-
biphosphates

PIP2
PI(4,5)P2

Protein

Bn Bombesin, GRP Substance
BW2258U89 Antagonist
CCKB cholecystokinin B (often as ADJ before

receptor)
Receptor

CeA Carcinoembryonic Antigen Antigen
Cis On this side Prefix (PFX)
Colocalisation Activity
CRE CAMP Responsive Element Element
CTA Conditioned taste aversion Aversion
* diacyl-glycerol DAG (Glycerol)
Dudai Name Author
Calcium From periodic table Element
FSH Follicle stimulating hormone Hormone
FSK Forskolin Substance
GPCRs G protein-coupled receptors Receptor
* hGRP-R human gastrin-releasing peptide

receptor
Receptor

HuTu 80 (ADJ before
cells)

duodenal cancer (Cell_line)

ICER Inducible cAMP early repressor Protein
Immunoblots Technique
kDa Measure
Kg Kilogram Gram (!)
Ksmall ERROR N/A
Lamprecht Name Author
LH luteinizing hormone Hormone
LiCl lithium chloride/salt Salt
Lydig Often ADJ before cells
MAPK mitogen-activated protein kinase Kinase
Mg Milligram Gram (!)
Microdomain Domain
mRNA Messenger RNA RNA
mRNAs See mRNA See mRNA
NaCl Natrium Chloride Salt
Octamer 8-mer Sequence
PDKs Phosphoinositide dependent kinases Kinase
Pheochromocytoma Cell_line
Phosphatidylinositol Lipid
Phospholipase Enzyme

 “ACTIVATE” SENTENCES

 56

PKA Protein Kinase A Kinase
PKC Protein Kinase C Kinase
PVN Para ventricular

nucleus (of the hypothalamus)
Nucleus

* Pp90rsk pp90 ribosomal S6 kinase Kinase
SIIA human gastric cancer ADJ to cell
Small beta, Greek Error N/A
Somatostatin Hormone / Gene
Spermatogenic ADJ->wave, process, stage
SRE serum response element Element
Testosterone Hormone
TGACGTCA DNA-sequence Sequence
Transactivation “other side” activation Activation

Figure 26. Unknown words semantic classifications

(GeneTUC) Class Hypernyms (WordNet entries in parentheses)
Activation Activity, Thing
Activity Thing
Antagonist (Drug), Agent, Thing
Antigen Substance, Thing
Author Person, Animate, Agent, Thing
Aversion (Dislike), Feeling, Abstract
Cell_line Cell, thing
Domain Region, surface, place, thing
Element Part, Thing
Enzyme protein, component, part, thing
Glycerol (Alcohol), Liquid, (Fluid, Substance), Mass, Thing
Gram Measure, Thing
Hormone (secretion), Thing
Hormone / Gene (Secretion / Agent), Thing
Kinase Enzyme, protein, component, part, thing
Lipid Substance, Thing
Measure Thing
Nucleus Place, Thing
Process Activity, Thing
Protein Component, Part, Thing
Receptor Protein, Component, Part, Thing
RNA Agent, Thing
Salt (Compound), Substance, Thing
See mRNA See mRNA
Sequence Set, Thing
Substance Thing
Technique Science, theory, abstract, thing

Figure 27. GeneTUC (and WordNet) ontology extract

RESULTS AND DISCUSSION

 57

6.3.3 Disambiguation

All the sentences were disambiguated and automatically stored in files
called sentenceX, where X is the current sentence number. During this
work, a lot of “meaningless” dictionary entries created a bit of extra work.
One of the strange cases was that “and” is classified as a verb. This means
that every time “and” is used (and that happens in almost all the medical
sentences), there will always be an extra verb-box in the graph. Each such
extra box doubles the amount of possible paths through a sentence graph,
and also requires an extra amount of time during the manual
disambiguation process. So far, there have been no sentences where “and”
is actually used as a verb. Therefore, it would probably be a good idea not
to classify it as a verb until this is really needed. This can be accomplished
by applying filter dictionaries (see 3.7.4) similar to that done to avoid
tagging “a” and “as” as Nouns.

It turned out later in the project that it is not really necessary to
disambiguate the training text in order to build local grammars, because
when the local grammar graphs are applied, e.g. to locate patterns in a text,
the disambiguated version of the text is not taken into account. This means
that when a search is done for all verbs (<V>), “and” will also be listed,
even though it is no longer marked as a verb in the disambiguated FST
automaton. Only the untagged text and all matching dictionary entries are
used in order to find such pattern matches. So to avoid un-meaningful
results such “as” matching the indefinite article lemma form <a> or “and”
matching <V>, the changes must be done using (filter-) dictionaries, and not
by using FST disambiguation.

Even though disambiguation of the sentences was not necessary, it was
still a good thing to do, since it shed some light on the complexity and
some common problems of the training sentences. Two such problems will
be described below, with some examples.

6.3.3.1 Multi Word Units (MWUs)
During the disambiguation process, it became apparent that some of

the single words could not be meaningfully tagged at all. One such
example is the phrase “as well as”. This phrase is obviously used as a
conjunction, but when trying to tag each word, one ends up with
something like “<PREP> <ADV> <PREP>” which contains no clue that we
are dealing with a conjunction. One could also imagine tagging the phrase
as “<PREP> <ADV> <CONJ>” but that would mean that “as” is a
conjunction, which is not really true. Other examples of phrases that should
be added as MWUs to the dictionaries or modelled using lexicon grammars
(see below) are given in Figure 28. The sentence numbers in this figure refer
to the number given to each sentence in Appendix B.

 “ACTIVATE” SENTENCES

 58

Sentence#: MWU (POS)
6: Cis-acting (Adjective)
19: cAMP-activated (Adjective)
38: Phospholipase C (Noun)
40: Fig. 1A (Noun)
41: p85/p110 PI 3-kinase (Noun)
44: as well as (Conjunction)
47: PI3K (Noun)
50, 53: ser133 (Noun)
51: Bn-induced (Adjective)
51: GRP-R (Noun)
54: FSH induced (Adjective)
54: Stress-activated (Adjective)
56: GAL4-CREB (Noun)
57: PC12 (Noun)

Figure 28. Sample MWUs

“cAMP-activated”, “Mitogen-activated” and “stress-activated” belong

to a class of special MWUs. The size of this class has the same infinite
nature as the class of personal nouns. New names are being created all the
time. Therefore, instead of trying to put all these MWUs directly into the
dictionaries, a (lexicon grammar) rule should be made, and this rule should
state that all nouns with the semantic tag “+activator” could stay in the
place of X in the following MWU adjective: “X-activated”. This is easy to
accomplish with graph building in Unitex.

6.3.3.2 Gene/Protein Ambiguities
The ambiguity between genes and proteins is a particularly tricky

ambiguity (see 2.4.2). So far in the disambiguation work the distinction
between these to groups has not been very firm. However, as more and
more facts are extracted, this distinction could be used, for example, to limit
the number of hits from a database search. Therefore, some firm rules
should be used later to make this distinction correctly. The golden heuristic
that was used in this project was that “gene” was chosen as the correct tag
for a named entity when it was listed as both gene and protein in the
dictionaries. Exceptions were made when it was obvious from the context
that the name was referring to a protein.

RESULTS AND DISCUSSION

 59

6.3.3.3 Disambiguation Heuristics
A few other “arbitrary” choices had to be made during the

disambiguation work, and to keep the results consistent it is necessary to
make the same choice every time. Therefore, golden heuristics were written,
every time such a general choice had to be made. Two examples of such
heuristics are given here.

The first example is the choice between preposition (PREP) and particle
(PART) tags. This applies most often to the word “to” which is the infinite
verb particle: When the word and the following phrase can be removed
without breaking the completeness of the sentence, then the word should
always be tagged as a preposition in a prepositional phrase (also called a
complement, which means it is not a necessary part to form a whole
sentence). When the word is standing directly before a verb in infinite
form, the tag should always be particle.

The second problem is when dealing with MWUs. Unitex will as
always suggest all alternatives, meaning the words can be tagged
separately with separate tags, or together with one MWU tag. In these cases
the MWU tag would normally be preferred, but sometimes the first word
of the MWU is connected with a hyphen to the previous word in the
sentence. Then, closer inspection is needed, but usually separate tags for all
the words will be preferred, because the hyphen only connects semantically
to the first word, and not the entire MWU.

6.3.4 Semantic Problems
During the first graph construction work with the sentences, problems

were encountered regarding how to split the sentences into modular parts,
to make them fit into the graph representation. Later, the challenge was to
find out what semantic output the different sentences were really supposed
to produce. The reason for this is that some of the sentences are very
technical, and not always easy to understand for a non-microbiologist. A
few of the semantic questions and the answers from our micro-biologist are
listed in Figure 29, with reference to the corresponding sentence number in
Appendix B.

 “ACTIVATE” SENTENCES

 60

Sentence# Question
Answer
6 This sentence does not use the word “activate” in any form. What is actually being

activated by what? Which word signals that activation is going on?
Answer: “CREB activates transcription”. This means that the sentence does not really fit the

criteria that it should be about gene or protein activation, since “transcription” is a
cellular process.

7 The first part is ok. Second part: Is “phosphorylates” equal to “activates”?
Answer: “PKA phosphorylates CREB”. Proteins (such as CREB) are often activated by

phosphorylation, but there are also many examples where proteins are being de-
activated by phosphorylation.

8 Without the word “activate” (See #6). What is being activated? Is “Recruit the
transcription machinery” equal to “activate” or is “phosphorylated CREB” equal to
“activated CREB”?

Answer: phosphorylated CREB = activated CREB!
9 Without the word “activate”. What is being activated, and by what?
Answer: “cAMP activates PKA”, “PKA activates CREB” and “CREB activates transcription”
10 “Activate it”. What is “it”? (Is “it” Ser-133?)
Answer: “PKA activates CREB”.
“It” is probably CREB.
13 What is being activated, and by what?
Answer: “FSH activates ICER isoform of CREM”
14 What is being activated, and by what?
Answer: “FSH activates ICER”
17 The question in all the remaining examples is basically always: “What is being activated,

and by what?” so only the answers are given below…
Answer: “LiCl activates c-fos (transcription)” and “LiCl activates ICER (transcription)
18
Answer: LiCl activates c-fos (expression)
19
Answer: “Lithium (Chloride) activates c-fos (expression)”, “Lithium activates cAMP

signalling pathway (PKA, actually)”, “cAMP signalling pathway (PKA, actually)
activates CREB” and “CREB activates c-fos (expression)”

20
Answer: "LiCl activate CREM (expression)”
21
Answer: “LiCl activates CREM (expression), is implied by the sentence”
22
Answer: “LiCl activates ICER”
24
Answer: “LiCl activates c-fos” and “LiCl activates ICER” (CREM gene, actually)
25
Answer: Answer: “LiCl activates c-fos” and “LiCl activates ICER” (CREM gene, actually)
26
Answer: “LiCl activates c-Fos”
27
Answer: “LiCl activates c-fos”
29
Answer: “LiCl activates MAP kinase”

RESULTS AND DISCUSSION

 61

31
Answer: “LiCl activates ICER (CREM gene, actually)”
32
Answer: “LiCl activates c-fos” and “LiCl activates ICER” (CREM gene, actually)
37 Extracted fact: “In particular, activation of the p38-MAPK pathway by gastrin.” Is the

condition “…have never been studied” important?
Answer: “Gastrin activates p38-MAPK (signalling) pathway”
55
Answer: Bn activates transcription factor AP-1”

Figure 29. Semantic challenges

In Figure 29 many of the sentences express two or more different

activation facts, and often without using the word “activate” at all. In order
to simplify the information extraction somewhat, it would be a good idea to
focus only on gene and protein interaction, because then there would
usually be only one fact to extract per sentence. The other activation-facts
are about processes, secondary messengers and so on (for example,
sentence 9).

Here are some other conclusions that are based on the answers to the
general semantic questions above:
• Transcription (of a gene) = (gene) expression (Example #17 and #18)
• “Activation” is just as interesting as “de-activation”
• The same fact is usually expressed more than one time in the same

abstract/article, sometimes as many as 10 (See sentences #17-#32)!

When asking the questions in Figure 29 the hope was to get simple facts

back, and then implement these facts as output into the already existing
graphs. It turned out, however, that many of the answers were even more
complicated than the original sentence itself. This gives reasons to believe
that simple “black and white” answers might not be what the biologists are
looking for in the first place. In the future, we really need to work much
closer together with the biologists, and try to understand what their needs
are, before implementing a system to try and solve these needs.

6.4 Biomedical Corpus
In the end the completed graphs were tested on the 5MB biomedical

reference corpus, containing about 18.000 sentences. This was to see if the
graphs were applicable also on texts that the system was not specifically
trained to handle.

From the 18.000 sentences about 400 facts were extracted. That means
that one activation-fact was found for every 50th sentence. The real ratio is
probably much higher, but this number (2% activation-fact per sentence) is
still good, because it shows that the graphs have some generality in them,

 BUILDING GRAPHS

 62

after being trained on only 59 sentences. A problem with the extracted facts
was that many of them only contained the activated entity, and not the
activator. After closer inspection it is evident that this is because many of
the activators in the test set were not in the Unitex dictionaries, and
therefore could not be matched by any Unitex graph.

6.5 Building Graphs
This section contains a general discussion about the graph-building

work, and a few notes that can be useful to others undertaking such work
later.

6.5.1 Different Stages
The building of the graphs went through three more or less well

defined iterations. The first iteration felt like putting different sentences
together almost at random, but it was soon discovered that many sentences
were too long for all the words to fit beside each other in one graphpage, so
the second iteration consisted of constructing subgraphs to cluster groups
of words together and represent them as just one box (subgraph). These
graphs were made so that words that often stood together in different
sentences were put into the same subgraph. That allowed entire sentences
to be represented in the main (top node) graph while still maintaining the
desired left-to-right reading property. As the number of subgraphs grew, it
became obvious that a good naming scheme was needed. It took some time
to work this out, and that means that some graphs had to be completely
rearranged later, and a few of the graph names had to be changed. It is a
good idea to avoid this, because it will definitely introduce some new
errors into the system, e.g. sentences that were recognized by the old graph
might not be recognized by the new graph, and it will often take a lot of
debugging to figure out exactly why. This phenomenon also happens for
example when a function name is being changed in the code of a big
program: When the name of a function is changed, all the places that call
this function must also be updated. There is no support for such name
changes in Unitex, so a lot of time will be spent doing this manually, and it
is very easy to miss something, and get strange errors.

The third iteration was caused by the fact that too many different
semantic meanings often ended up in a single graph, making it hard to
extract meaningful facts from these specific graphs later. So another
rearrangement consisting of splitting the graphs with ambiguous meanings

RESULTS AND DISCUSSION

 63

into separate disambiguate graphs had to be done. This caused the
“height” of the graphs (number “of lines” or “parallelism” in the graph) to
increase, since different paths leading into one “ambiguous” box, now had
to go to new separate disambiguated boxes. That also means that some
boxes had to be duplicated, which is generally not a good thing, because
then all subsequent work on the specific boxes must also be duplicated.
Still, this is necessary, since the semantic output from the different boxes in
the end must be different. For example “activation of X” can mean that X is
being activated in one sentence, but that X is the activator in another
sentence.

6.5.2 Naming Scheme

Different abstractions were tried in order to find good names for the
subgraphs during the construction work. This consisted of splitting the
sentences into well defined semantic and/or POS-based units. This turned
out to be harder than expected, because quite often there would be an
overlap between the units, and this would often be discovered long after
the choice was made and the graph already constructed. The most
successful abstractions were those including Gene Name Noun Phrases
(POS), and the Activator/Activated (Semantic) sub-graphs. Since
Protein/Gene name discovery in biomedical texts is considered a more or
less solved problem [6], it is not necessary to be too careful about the
explicit content of these graphs. In this work, these graphs were simply
manually filled with the explicit coding of the names as they appeared in
the text. For the sake of building a complete system later, it is very
important to find one of these systems that does protein/gene name
discoveries in medical texts, because the current solutions are either too
slow (manually coding every entry) or not accurate enough (importing
probable entity names from nomenclature resources on internet).

Another very successful abstraction/naming scheme for the graph-
building work was to make separate subgraphs for every prepositional
phrase (PP), based on what leading preposition they contained. This was
very practical when new sentences were added into the graph system,
because one only had to identify the prepositions of the sentence, and then
it was already obvious how the sentence should be split into subgraphs.
The problem with this approach was that it sometimes led to “collisions”
with the “gene name, activator and activated” naming scheme. Many
sentences are on the form shown in Figure 30, and then a choice must be
made whether “of Y by Z” should be coded by the “of” and “by” PP-
graphs, or by the “activated” and “activator” sub-graphs. Regardless of
what choice is being made, these different forms should be located close to

 BUILDING GRAPHS

 64

each other in the parent graph, to ease the work later of debugging and
add-ons to the system.

Ser-133 phosphorylation of CREB by PKA

Figure 30. X Activation of Y by Z

Another problem with the PP-graphs naming abstraction became

evident later, as semantics were incorporated into the graphs. For example,
the PP-graph called "inPP” (Appendix D), contains prepositional phrases
with very different semantic meanings, and the only thing they have in
common is the fact that all this phrases start with the word “in”. Because
the semantics of these phrases are so different from each other, it would be
better to spread them across different graphs. This is already partly done
for example with the “InResponseToPP” graph.

6.5.3 Time Representation

Many sentences in the biomedical domain contain sentences describing
the timing between different events, or the duration of one specific event. It
would therefore be useful to build dedicated subgraphs to represent such
sub-sentence fragments. This was not done in this project, because too few
“time” examples occurred for any useful generalizations to be made. E.g.
the occurrences that appeared were just “hard coded” into the appropriate
higher-level graphs.

FUTURE WORK

 65

7 Future Work

This chapter will give an overview of what tasks that should be solved
during the rest of this PhD work.

7.1 Results and Standards
Before this work can be taken any further, with GeneTUC or Unitex, it

is important to decide exactly what we want to extract from the biomedical
texts. It is apparent that simple “X activates Y” facts are usually not what
should be extracted, because the reality is almost always more complex
than that (see 6.3.4).

In this project an attempt has been made to parse entire sentences, just
like it is being done in GeneTUC, but this might be a waste of time if the
real goal is just to extract activators and their activated entities. Additional
facts that could be extracted with the activation facts include:
• …by method
• …in cell/area
• …with certainty

7.2 Unitex Integration with GeneTUC
The thesis work has been an effort to identify specific ways that

“interesting facts” are actually written in the texts at our disposal. This was
done with the graph drawing tool Unitex, but the results are also directly
relevant to GeneTUC, as the same sentences should ideally also be
recognized by TUC’s grammar. Different ways of integrating the two
systems will be discussed below.

 UNITEX INTEGRATION WITH GENETUC

 66

7.2.1 TQL-Code

Since Unitex consists of Finite State Transducers (FSTs), it can produce
output as well as “understanding” the input. This means that one way of
integrating the two systems, is to let Unitex do the preliminary parsing, and
then produce TQL-code that can be further processed by GeneTUC, e.g. in
question-answering tasks. This would be very efficient, since FSTs are
much faster than context sensitive grammars of TUC. The problem is that
FSTs are not as expressive as the TUC grammar, and they might not
recognize all the sentences of interest (Or it would take a huge amount of
work to build all the corresponding local grammars!)

Another problem with the TQL-code is that no formal specification
exists, because the format has been made bit by bit, in a slightly ad-hoc and
pragmatic way. And since the TQL-code “standard” is subject to
modification at any time, it is a little like shooting a moving target. In other
words, if TQL-code is chosen as the future language of choice to formulate
golden standards for example, the first step should be to make a more
formal description of the “TQL-language” in order to avoid the problems
mentioned above.

7.2.2 Pre-Processing

Another way of integrating the two systems is by letting Unitex do
some simple pre-processing of the text, and then let GeneTUC build the
TQL-code. This would greatly increase GeneTUC parsing rate, because one
of the major reasons for parsing failures on unseen material is the fact the
TUC “crashes” when unknown names are being used in the sentences. The
only way around this problem is to explicitly encode every possible name
into the TUC grammar, and this is more or less impossible, as new names
are being “generated” every day.

Using Unitex, the problem can be solved in a slightly different way. In
Unitex it would be necessary, or at least a great advantage, to build one
local grammar for every single entity (Gene, protein, hormone etc.)
covering all the different ways the specific entity can be named. However,
after enough examples have been collected, it is possible to generalize the
local grammars using semantic tags or regular expressions so that they also
recognize similar but not already explicitly coded names. The idea behind
this approach is that there is some sort of system or conventions for making
up new names, and such conventions can easily be expressed using local
grammars. A lot of research has been done in this kind of named entity
extraction the last years, and it should be possible to build on some of this

FUTURE WORK

 67

work when constructing the local grammar entity graphs. The main idea for
future work in this area is to contact the authors of for example [6], since
they also focus on protein names. Contact was already made with this
research group last year, as we all were at the same conference (ACL
HLT2002, [19]). A question should be forwarded to this group to see if they
would be interested in any sort of cooperation, or if we could base our
entity-naming algorithm on the results that they got in their work.

7.3 General Linguistic Topics
After discussions with people at the CIS group at LMU Munich, it has

become obvious that many of the challenges of parsing biomedical texts are
just the same as are encountered in parsing in almost any other domain. A
few such example problems are “predicative nouns”, “sentence conjunction
handling”, “anaphoric resolution” and “the use of not and negated facts”.
All these problems were encountered during this project work, and they
were solved in an ad-hoc fashion, using the Unitex graph-tools. In order to
reduce the time needed to parse new training sentences, and to improve the
quality of the graphs being built, the problems above should be attacked in
a systematic manner in the future. Each of these problems is complex
enough to be the topic of its own PhD thesis, so it should not be attempted
to solve all of them. But many other researchers are already starting to find
solutions to these challenges, so a very important part of the future work is
to keep up-to-date on these four topics and keep thinking about how new
solutions can be integrated with or benefit the GeneTUC system.

Another topic that is starting to get a lot of attention is the question:
“How can the construction of (local) grammars be automated?” It is clear
after spending a lot of time with only 59 training sentences, that the manual
construction of local grammars is too time-consuming, and without some
automation the goal of complete coverage will probably not be reached in
our life-time. The “induction” of such grammars, based for example on a
(semantically) tagged corpus, is therefore another idea for future research.

The last linguistic problem that should be solved using a general
methodology is the problem of representing synonyms (for example PKB =
AKT). This problem is not as complex as some of the others, but it can lead
to a lot of trouble and bad results at later stages if it is not handled properly
from the beginning. In the GeneTUC system a solution to this problem is
the predicate synword. It is currently largely used to handle spelling errors,
but can also be used to handle synonyms. In Unitex synonyms could be
handled for example by using one common lemma form for all the words
that have the same meaning. Another alternative is using distinctive
semantic tags for groups of synonyms. The main challenge will anyway be
to find good sources of already identified synonyms in the medical domain.

 CONCLUSION

 68

Good starting points for this work will be existing online ontologies, for
example Gene Ontology [26].

7.4 Conclusion
In this thesis GeneTUC and Unitex have been compared. They

represent two different approaches to the same text-parsing problem, even
though GeneTUC should be more than just a parser in the end. Unitex is
based on the view that we have to collect all valid sentence examples from
a domain, before we can hope to do successful parsing in this domain. This
has been done with good success in the domain of stock market news from
newspapers, but it might not be possible to “collect all sentences” in the
medical domain, because there are simply too many “different sentences”.
GeneTUC uses the approach of building a context sensitive grammar that
should cover all valid biomedical sentences, but this is also hard, because
the sentences are usually quite complex, and the grammar must be tailored
to fit also the tricky cases. The claim behind Unitex is that there are usually
more differences between two sentences than there are common features, so
trying to make general rules will usually not be good enough.

Sooner or later, in a working system these two approaches should meet
each other “somewhere in the middle”, because they are working on the
same problem, but from two different ends. After enough local grammars
have been built with Unitex, they should act together in a high-level super-
graph as a complete grammar. And after the GeneTUC grammar has been
adopted to fit enough different sentence examples, it should be able to
parse as good as the grammars that were built in the bottom-up fashion.

Since it is not clear whether the coding of (possibly infinitely) many
specific example sentences is more effective than the constant refining of a
general grammar, it makes sense to keep pulling at the rope from both
ends. In the future we will have to keep collecting actual sentences from the
domain in question, and these sentences can be easily modelled with
Unitex. After enough examples have been coded in Unitex, general rules or
patterns are bound to emerge, and these rules could then also be
implemented in the general TUC grammar.

Before any grammar can be built, both systems are dependent on good
dictionaries and ontologies, and the only way to make them is by collecting
all the specific examples from the domain, and grouping them together in
some meaningful fashion. GeneTUC already has a pretty good
microbiological ontology that has been built in a very pragmatic way; a
new entry is added whenever it is needed to parse a new training or test

FUTURE WORK

 69

sentences. A part of the future works would be to keep adding to this
ontology, with the goal of one day making it a “complete” ontology. The
speed of this work can be greatly increased with the help of already
existing ontologies such as WordNet and Gene Ontology [26], and other
online resources.

 71

References

1. Andenæs, A. (2000) GeneTUC - /j&’-ne-tük/. Master’s Thesis, Department
of Computer and Information Science, Norwegian University of Science
and Technology. URL:
http://www.idi.ntnu.no/~natlang/GENETUC/thesis.ps

2. Bennett, H. A., He, Q., Powell, K., and Schatz, B. R. (1999) Extracting noun
phrases for all of Medline. In AMIA '99 (American Medical Informatics
Assoc) Conf, Washington, DC.

3. Brill, E. (1992) A simple rule-based part-of-speech tagger. In Proceedings of
ANLP-92, 3rd Conference on Applied Natural Language Processing, Trento,
Italy pages 152-155

4. Cohen, K. B., Dolbey, A. E., Acquaah-Mensah, G. K. and Hunter, L. (2002)
Contrast and variability in gene names. In Proceedings of the Workshop on
Natural Language Processing in the Biomedical Domain. Pages 14-20.

5. Collier, N., Park, H., Ogata, N., Tateishi, Y., Nobata, C., Ohta, T., Sekimizu,
T., Imai, H., Ibushi, K. and Tsujii, J. (1999) The GENIA project: corpus-
based knowledge acquisition and information extraction from genome
research papers, in Proc. of the Annual Meeting of the European
Association for Computational Linguistics (EACL-99), pp.271-272, Norway

6. Eriksson, G., Franzén K., Olsson, F., Asker, L., Lidén, P. (2002). Using
Heuristics, Syntax and a Local Dynamic Dictionary for Protein Name
Tagging. Human Language Technology Conference 2002, San Diego, USA.
URL: http://www.sics.se/~fredriko/papers/hlt02_abstract.pdf

7. Fukuda, K., Tsunoda, T., Tamura, A., and Takagi, T. (1998) toward
information extraction: Identifying protein names from biological
papers. In Proc. of the Pacific Symposium on Biocomputing '98 (PSB'98),
Hawaii. Human Genome Center, Institute of Medical Science, University of
Tokyo. Email: ichiro@ims.u-tokyo.ac.jp.

8. Gross, Maurice. (1997) the Construction of Local Grammars. In Finite-State
Language Processing, E. Roche & Y. Schabès (eds.), Language, Speech, and
Communication, Cambridge, Mass.: MIT Press, pages 329-354

9. Hishiki, T., Collier, N., Nobata, C., Ohta, T., Ogata, N., Sekimizu, T.,
Steiner, R., Park, H. S., and Tsujii, J. (1998) Developing NLP tools for
genome informatics: An information extraction perspective. In Proc. of

 APPENDIX A

 72

Genome Informatics, pages 81-90, Tokyo, Japan. Universal Academy Press,
Inc., Tokyo, Japan.

10. Jenssen, T. K., Lægreid, A., Komorowski, J., and Hovig, E. (2001) a
literature network of human genes for high-throughput analysis of gene
expression. In Nature Genetics, 28(1):21-28.

11. Mack, R. and Hehenberger, M. (2002) Text-based knowledge discovery:
search and mining of life-sciences documents. In Drug Discovery Today
7(11):S89-S98

12. Ohta, Y., Yamamoto, Y., Okazaki, T., Uchiyama, I., and Takagi, T. (1997)
Automatic Construction of Knowledge Base from Biological Papers. In
Proc. of the Fifth International Conference on Intelligent Systems for Molecular
Biology (ISMB'97), pages 218-225.

13. Park, Jong C. (2001) Using Combinatory Categorial Grammar to Extract
Biomedical Information. In IEEE Intelligent Systems, 6. Korea Advanced
Institute of Science and Technology. URL:
http://computer.org/intelligent/ex2001/x6toc.htm, pages 62-67

14. Proux, D., Rechenmann, F., Julliard, L., Pillet, V., and Jacq, B. (1998)
Detecting gene symbols and names in biological texts: A first step
toward pertinent information extraction. In Miyano, S. and Takagi, T.,
editors, Ninth Workshop on Genome Informatics, volume 9, pages 72-80,
Tokyo, Japan.

15. Pustejovsky, J., Castaño, J., Zhang, J., Kotecki, M. and Cochran, B. (2002)
Robust Relational Parsing over Biomedical Literature: Extracting Inhibit
Relations. In Proceedings of the Pacific Symposium on Biocomputing, pages
362-373. Hawaii, USA

16. Sætre, Rune. (2002) GeneTUC. Technical report, Department of Computer
and Information Science, Norwegian University of Science and
Technology, 2002. URL:
http://www.idi.ntnu.no/~satre/genetuc/GeneTUC.pdf

17. Tanabe, L., Scherf, U., Smith, L. H., Lee, J. K., Hunter, L. and Weinstein, J.
N. (1997) MedMiner: An Internet Tool for Filtering and Organizing
Gene Expression and Pharmacological Information. Biotechniques
submitted

18. Yakushiji, A., Tateisi, Y., Miyao, Y. and Tsujii, J. (2001) Event Extraction
from Biomedical Papers Using a Full Parser. In Proceedings of Pacific
Symposium on Biocomputing 2001, pages 408-419, Hawaii, USA

19. Proceedings of the Second International Conference on Human Language
Technology Research, HLT2002. ISBN: 0-12-470870-6

20. Session Proposal (2001). Large coverage dictionaries and grammars for
text processing: the INTEX system: URL:
http://www.nyu.edu/its/humanities/ach_allc2001/papers/fairon/

21. Association of Computational Linguistics. URL:
http://www.aclweb.org/archive/what.html

22. Biology Definitions. URL: http://biology-pages.info/

CCK ABSTRACT

 73

23. Cis- and trans-acting. URL:
http://web.mit.edu/esgbio/www/pge/mutants.html

24. CiteSeer. URL: http://citeseer.nj.nec.com/
25. GENATLAS. URL: www.dsi.univ-paris5.fr/genatlas/
26. Gene Ontology. URL: http://www.geneontology.org/
27. The Genome Database. URL: http://gdbwww.gdb.org/
28. Google. URL: www.google.com
29. The Human Genome Organisation (HUGO). URL:

www.gene.ucl.ac.uk/hugo/
30. The Human Genome Organisation (HUGO) Gene Nomenclature

Committee. URL: http://www.gene.ucl.ac.uk/nomenclature/
31. INTEX Tutorial. URL: http://grelis.univ-

fcomte.fr/intex/downloads/Notes.pdf
32. Laboratory for Information Retrieval Systems and Linguistics, France.

URL: http://ladl.univ-mlv.fr/index.html
33. LocusLink. URL: www.ncbi.nlm.nih.gov/LocusLink/
34. Medstract Project. URL: www.medstract.org
35. Moore’s Law. URL: www.webopedia.com/TERM/M/Moores_Law.html
36. Unitex. URL: http://www-igm.univ-mlv.fr/~unitex/
37. Unitex, Manual. URL: http://www-igm.univ-mlv.fr/~unitex/manuel.html
38. Pacific Symposium on Biocomputing. URL: http://psb.stanford.edu/psb02/
39. PubMed Medline. URL: www.pubmed.gov
40. Sébastien Paumier. E-Mail: paumier@univ-mlv.fr
41. Unitex Home Page. URL: http://www-igm.univ-mlv.fr/~unitex/index.html
42. WordNet. URL: http://www.cogsci.princeton.edu/~wn/
43. Pronouns. URL: http://webster.commnet.edu/grammar/pronouns.htm
44. Determiners. URL:

http://webster.commnet.edu/grammar/determiners/determiners.htm
45. Adverbs. URL: http://webster.commnet.edu/grammar/adverbs.htm
46. Conjunctions. URL:

http://webster.commnet.edu/grammar/conjunctions.htm

CCK ABSTRACT

 75

A CCK Abstract

The CREM gene encodes both activators and repressors of cAMP-
induced transcription.

ICER (Inducible cAMP Early Repressor) isoforms are generated upon
activation of an alternative, intronic promoter within the CREM gene.

ICER is proposed to down-regulate both its own expression and the
expression of other genes that contain cAMP responsive elements (CREs)
such as a number of growth factors.

Thus, ICER has been postulated to play a role in proliferation and
differentiation.

Here we show that ICER gene expression is induced by gastrin,
cholecystokinin (CCK) and epidermal growth factor (EGF) in AR42J cells.

The time course of gastrin- and CCK-mediated ICER induction is rapid
and transient, similar to forskolin- and PMA- induced ICER expression.

The specific CCK-B receptor antagonist L740093 blocks the gastrin- but
not the CCK -response. This indicates that both the CCK-B receptor and the
CCK-A receptor can mediate ICER gene activation.

Noteworthy, CREB is constitutively phosphorylated at Ser 133 in AR42J
cells, and ICER induction proceeds in the absence of increased CREB Ser
133 -P.

Gastrin-mediated ICER induction was not reduced in the presence of
the PKA inhibitor H-89. This indicates a PKA independent mechanism.

This is the first report on ICER inducibility via Gq-G11 protein coupled
receptors.

59 ACTIVATE SENTENCES

 77

B 59 Activate Sentences

1. Follicle stimulating hormone (FSH) activates the cAMP signaling
pathway and consequently, CREB positively auto-regulates its own
expression (by binding to a CRE like element in its promoter).

2. Subsequently, activated CREB activates transcription of genes essential
for proper germ cell differentiation.

3. Inducible cAMP early repressor (ICER), a suppressor isoform of CREM,
also activated by CREB, down regulates CREB expression together with
its own expression, resetting CREB to basal level that enables a new
spermatogenic wave.

4. FSH binds to Sertoli cells and thus activates the production and
secretion of factors needed for germ cell survival and differentiation.

5. LH binds the Lydig cells, somatic cells located in the interstitial regions
(between tubules), and activates production and secretion of
testosterone, which exerts its effect on spermatogenesis, again, through
Sertoli cells.

6. CREB was first identified during a search for factors that recognize the
cis-acting element TGACGTCA (CRE element) that was shown to
confer cAMP-inducible transcription of the neuropeptide hormone gene
somatostatin

7. Elevation in intracellular cAMP activates PKA activity, by releasing its
regulatory subunit, and this activated PKA is transported to the
nucleus, where it phosphorylates CREB at Ser-133, within the KID
domain.

8. Only Ser-133 phosphorylated CREB can bind CREB binding protein
(CBP), a co-activator that is needed to recruit the basal transcription
machinery (Fig. 2).

9. Ser-133 phosphorylation of CREB by PKA, CBP binding and CBP
dependent recruitment of the basal transcription machinery is,
therefore, the path through which cAMP can regulate transcription of
specific genes.

 APPENDIX B

 78

10. Activated PKA localizes to the nucleus where it phosphorylates CREB
on Ser-133 and activates it.

11. The positive autoregulation, therefore, consists of FSH that activates
PKA activity in Sertoli cells resulting in Ser-133 phosphorylation and
hence activation of CREB.

12. Activated CREB bound to its own promoter amplifies CREB
transcription, leading to CREB dependent transactivation of genes
important to support spermatogenesis (Fig. 4).

13. Monaco et al. (1995) have shown that FSH stimulates expression of the
ICER isoform of CREM in primary culture of rat Sertoli cells.

14. This implies that the FSH induced expression of ICER, is a link in a
negative auto-regulation chain of CREB.

15. FSH induced CREB binds to the CRE elements within the ICER
promoter and activates its expression.

16. In addition, it has been well documented that FSH binding to Sertoli
cells results in elevation of cAMP levels and activation of the PKA
signaling pathway.

17. We hypothesized that c-fos gene transcription is rapidly stimulated by
LiCl, followed later by the expression of the inducible cAMP early
repressor (ICER) transcription factor, a negative modulator of cAMP-
mediated gene transcription.

18. Several studies have shown by either in situ hybridization or
immunohistochemistry that doses of lithium chloride (LiCl) sufficient
to produce CTA (76 mg/kg or higher) induce c-fos gene expression in
rat brain.

19. Induction of c-fos gene expression by lithium may be mediated by the
cAMP signaling pathway and cAMP-activated transcription factors
such as cAMP response element-binding protein (CREB).

20. LiCl has been shown to induce CREM gene expression in vivo;
21. using in situ hybridization (ISH), Lamprecht and Dudai observed

increased CREM mRNA levels in rat CeA 40 min following LiCl
injection [21].

22. The specific induction of ICER expression after LiCl has not been
previously described, however.

23. These prior studies provide compelling evidence, especially in the rat
CeA, that LiCl activates both c-fos- and cAMP-mediated gene
transcription.

24. In summary, we have shown that (1) expression of the immediate-early
genes c-fos and ICER was induced by LiCl injection, but not by NaCl
injection, in the CeA, PVN and SON regions of rat-forebrain;

59 ACTIVATE SENTENCES

 79

25. We conclude that (1) c-fos and ICER mRNAs are rapidly and
transiently induced by LiCl in the SON, PVN and CeA, with the peak of
ICER expression delayed relative to the peak of c-fos expression;

26. The pattern of c-fos mRNA expression induced by LiCl agrees with the
pattern of LiCl-induced c-Fos protein expression observed by others

27. As expected, there was a rapid and transient induction of c-fos mRNA
expression by LiCl.

28. Although the co-activation of c-fos and ICER suggests activation of
cAMP pathways, evidence exists for the activation of other pathways
by LiCl;

29. for example, phosphorylation of MAP kinase is observed in mouse
insular cortex and CeA 30 min after LiCl injection [49].

30. MAP kinase phosphorylates and activates serum response element
(SRE)-binding proteins which increase c-fos transcription through the
SRE site in the c-fos promoter [35].

31. Our results showed that ICER mRNA was specifically and transiently
induced in rat CeA, PVN and SON by LiCl injection.

32. This study provides evidence that LiCl induces gene expression of c-fos
and ICER transcription factors within that 6-h window.

33. We present evidence that gastrin, next term binding to a G protein-
coupled receptor, activates the p38-mitogen-activated protein kinase
(MAPK) pathway.

34. Our results demonstrate that gastrin-induced DNA synthesis requires
p38-MAPK activation through mechanisms that involve calcium
mobilization, PKC and Src family kinases.

35. Several laboratories, including ours, have reported the activation of the
ERK pathway by the CCKB receptor and the contribution of this
signaling cascade in growth-promoting effects mediated by this
receptor [7, 8 and 9].

36. p38-MAPK has also been shown to be activated by GPCRs [15 and 16].
37. In particular, activation of the p38-MAPK pathway by gastrin and its

role in the proliferative effects mediated by the CCKB receptor have
never been studied.

38. Gastrin-dependent activation of the CCKB receptor has been shown to
induce the rapid hydrolysis of phosphatidylinositol-biphosphates by
phospholipase C (PLC) to generate inositol triphosphates and diacyl-
glycerol which respectively mobilizes intracellular calcium and
stimulates protein kinase C (PKC).

39. Since we have previously reported that ERK activation by gastrin is
mediated by a signaling cascade including the phosphorylation of Shc
proteins by Src-like tyrosine kinases [7], we have also analyzed the
possibility that Src family kinases could serve as intermediates between
the CCKB receptor and the activation of the p38-MAPK pathway.

 APPENDIX B

 80

40. Here, we report the activation of p38-MAPK by gastrin through a
mechanism that involves PKC, calcium mobilization and Src family
kinases.

41. We have previously reported the activation of the p85/p110 PI 3-kinase
by the CCKB receptor [17] and its role upstream of the ERK pathway
induced by gastrin [21].

42. In summary, our study reports the activation of p38, MAPK by the
CCKB through a mechanism that involves PKC, intracellular calcium
mobilization and Src family kinases.

43. From a molecular point of view, two types of PI3Ks can be activated in
response to LPA stimulation.

44. Transactivation of the epidermal growth factor receptor (EGFR), as well
as G protein bg subunits, is thought to play an important role in PI3Kb
activation [6 and 7], but the molecular determinants of these processes
have remained elusive.

45. Because the mechanisms underlying PI3K activation by LPA in non-
haematopoietic cells remain poorly understood, we have explored
whether lipid rafts could participate in this process.

46. Because the mechanisms coupling LPA stimulation to PI3K activation
remain poorly understood, we searched for a participation of detergent-
resistant membrane microdomains, putative regulatory platforms for
proximal signalling events.

47. We thus observed that cholesterol level strongly modulated the
activation of PI3K in response to LPA.

48. In brief, PI3K lipid products do not directly activate Akt but induce its
membrane translocation and colocalisation with its upstream activating
kinases, the phosphoinositide-dependent kinases (PDKs) that are also
controlled by PI3K lipid products.

49. Here, we demonstrated hGRP-R activation stimulated sustained cyclic
AMP response element binding protein (CREB) phosphorylation and
transactivation in duodenal cancer cells through a protein kinase C and
partially p38 mitogen-activated protein kinase-dependent pathway.

50. Using a specific antibody against the phosphorylated form of CREB at
Ser133 in immunoblots, we showed that hGRP-R mediated Bn-
dependent CREB phosphorylation in HuTu 80 cells in a dose-
dependent manner (Fig. 1A).

51. To determine the specificity of Bn-induced CREB phosphorylation
through hGRP-R activation, we used the specific GRP-R antagonists
BW2258U89 and ME 20 min before stimulation with Bn.

59 ACTIVATE SENTENCES

 81

52. CREB, a 43 kDa leucine zipper transcription factor, is a main regulator
of gene expression which mediates the activation of cAMP-responsive
genes by binding as a dimer to a conserved cAMP-responsive element
(CRE), characterized by the nucleotide octamer sequence TGACGTCA
[6 and 9].

53. We showed that CREB phosphorylation at Ser133 occurred in response
to FSK, a stimulus known to produce CREB phosphorylation via a
cAMP-dependent pathway, in duodenal cancer cells.

54. CREB is a substrate for many kinases other than PKA, including PKC,
AKT, calcium-calmodulin-dependent kinases, mitogen/stress-activated
kinase, and pp90rsk [6].

55. Bn has previously been shown to regulate transcription factor AP-1
activation through a PKC-dependent pathway in human gastric cancer
SIIA cells [13].

56. Furthermore, Bn also resulted in transcriptional CREB activation using
a GAL4-CREB luciferase reporter system.

57. Insulin-like growth factor I and nerve growth factor were shown to
elicit p38 MAPK activation and result in CREB phosphorylation in
PC12 cells, a pheochromocytoma cell line [15 and 16].

58. In rat pancreatic acini, Bn as well as cholecystokinin stimulated p38
MAPK activation [17].

59. We show in this study that Bn induced sustained p38 MAPK
phosphorylation for at least 4 h.

UNKNOWN WORDS DICTIONARY

 83

C Unknown Words Dictionary

AKT,.N+Kinase:s
Akt,AKT.N+Kinase:s
AP-1,.N+ProtHum:s
autoregulation,.N+Process:s
bg,.A
Bn,.N+Substance:s
BW2258U89,.N+Antagonist:s
calcium,.N+Element:s
CCKB,.N+Receptor:s
CeA,.N+Antigen:s
c-fos,.N+Gene:s
cis,.PFX
colocalisation,.N+Activity:s
CRE,.N+Element:s
CTA,.N+Aversion:s
diacyl-glycerol,.N+Glycerol:s
down regulates,down regulate.V+P3s
Dudai,.N+Author:s
FSH,.N+Hormone:s
FSK,.N+Substance:s
gastrin,.N+Substance:s
GPCRs,GPCR.N+Receptor:p
hGRP-R,.N+Receptor:s
HuTu 80,.A
ICER,.N+ProtHum:s
immunoblots,.N+Technique:s
kDa,.N+Measure:s
kg,.N+Measure:s
Lamprecht,.N+Author:s
LH,.N+Hormone:s
LiCl,.N+Salt:s
Lydig,.A
MAPK,.N+Kinase:s
mg,.N+Measure:s
microdomains,microdomain.N+Domain:p
mRNA,.N+RNA:s
mRNAs,mRNA.N+RNA:p
NaCl,.N+Salt:s

 APPENDIX C

 84

octamer,.N+Sequence:s
PDKs,PDK.N+Kinase:p
pheochromocytoma,.A
phosphatidylinositol,.N+Lipid:s
phosphatidylinositol-biphosphates,phosphatidylinositol-biphosphate.N+ProtHum:p
phospholipase,.N+Enzyme:s
PI3Kb,.N+Gene:s
PKA,.N+Kinase:s
PKC,.N+Kinase:s
pp90rsk,.N+Kinase:s
PVN,.N+Nucleus:s
SIIA,.A
somatostatin,.N+Hormone:s
spermatogenic,.A
SRE,.N+Element:s
testosterone,.N+Hormone:s
TGACGTCA,.N+Sequence:s
transactivation,.N+Activation:s

LOCAL GRAMMAR GRAPHS

 85

D Local Grammar Graphs

In this appendix a representative sample of all the graphs that were constructed is given.

 APPENDIX D

 86

LOCAL GRAMMAR GRAPHS

 87

 APPENDIX D

 88

LOCAL GRAMMAR GRAPHS

 89

 APPENDIX D

 90

LOCAL GRAMMAR GRAPHS

 91

 APPENDIX D

 92

LOCAL GRAMMAR GRAPHS

 93

 APPENDIX D

 94

LOCAL GRAMMAR GRAPHS

 95

 APPENDIX D

 96

LOCAL GRAMMAR GRAPHS

 97

In addition to the graphs presented in this appendix, there are around 20 “named entity

graphs” (or lexicon grammars), such as the one presented in Figure 1.

The graphs presented in this Appendix are:

• Activate
• ActivateActive
• ActivatedByNP
• ActivatedNP
• ActivateNP
• ActivatePassive
• Activation
• ActiovationInsert
• ActivatorNP
• atPP
• bountToPP
• byMethod
• byPP
• Citation

 APPENDIX D

 98

• Counterfact
• duringPP
• forPP
• GeneNameNP
• inPP
• inResponseToPP
• Name
• NameDependentActivation
• ofPP
• onPP
• PP
• PreBind
• PreCondition
• PreHybridization
• PreRegulation
• PreSentence
• PreSentencePassive
• ResultingActivation
• thatPP
• throughPP
• top
• usingPP
• viaPP
• withinPP

The lexicon grammars not shown in this Appendix are:
• CCKBR
• CRE
• DNA
• EGFR
• FSH
• GF
• GPCR
• ICER
• LiCl
• LydigCells
• MAPK
• PC12
• Phosphate
• PI3K
• PKA
• PLC
• Ser133
• SRE

