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Abstract 

This diploma thesis is about Natural Language Understanding (NLU) 
in general and more concretely about applications to microbiological texts 
on the topic “gene- and protein-activations”. The first part is a review of 
different current research approaches in the field of NLU and “bio-
linguistics”. The second part will look into the bottom-up grammar 
building approach that is sketched in the article “The Construction of 
Local Grammars” by Maurice Gross. The visualization system “Unitex”, 
made by Sébastien Paumier, will be used to construct these local grammars. 
The results will be compared to the full-parsing approach used in 
GeneTUC. In the third and last part a plan for future work will be given. 

The preliminary results suggest that the medical language is 
constrained enough for the Local Grammar approach to work. 38 graphs 
were constructed to capture the essence of 59 “activate-sentences”, and 18 
graphs where created to capture all the different entity names that were 
used in the sentences. When the graphs were applied to a new text for 
testing, many of the constructed “activation-patterns” also matched in the 
new text. 
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Preface 

This diploma thesis serves both as a large final project after 5 years of 
computer science education and as the beginning of a PhD work that will 
last another 3 years. The thesis contains three main parts. Part 1 (Chapter 1 
and 2) is a literature review with the goal of determining where the current 
research barriers in computational linguistics applied to micro-biological 
texts are. Part 2 (Chapter 3, 4 and 5) describes the project part of the work, 
and part 3 (Chapters 6 and 7) describes how the PhD work should proceed 
in the next phase. 

Because of a “sudden” invitation to spend this semester in Munich, part 
2 turned out to be quite different from what was originally expected. To 
begin with, the plan was to focus on how to develop GeneTUC further, but 
my advisor in Munich is very interested in Local Grammars and he 
convinced me to try using that approach instead of following the original 
idea. That means that my part in the GeneTUC project was put on hold for 
half a year, and I learned how to use the Unitex system to solve the same 
kind of tasks that the parser in GeneTUC solves during the database build-
up phase (the tell-phase, in a tell-and-ask system). 

GeneTUC and Unitex use two different approaches to solve the parsing 
problem, but after this project I believe that GeneTUC could benefit greatly 
from using parts of the Unitex system. Especially, the use of graphs when 
constructing grammars is very promising, and makes it easy also for people 
with little computer knowledge to produce grammars to fit their needs. 
How the two systems should be integrated is an open question that will be 
decided in the following PhD work. 

This thesis is written in Microsoft Word, using font Palatino Linotype 
11pt. 

 
Rune Sætre, April 25, 2003 
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1 “Natural Language Understanding” 
Articles Reviewed 

 
The purpose of this chapter is to give an overview of existing literature 

and methods used in the field of Natural Language Processing (NLP) with 
a special focus on Natural Language Understanding (NLU) and 
Information Extraction (IE). The domain of the IE will be biomedical texts 
describing gene and protein interactions. 15 NLP articles have been 
selected, and together they cover most of the recent advances in biomedical 
IE. This diploma thesis is leading up to a PhD thesis that involves working 
with a system called GeneTUC, and the idea in GeneTUC is that the text is 
to be fully parsed. Only one other article has been found that describes full 
parsing of biomedical texts [18], and that article will therefore receive extra 
attention in this review. The other articles in the collection use various 
methods of shallow (partial) parsing, or stochastic (statistical) calculations 
to analyze the language. One of the 15 articles is an interesting article on 
Local Grammars [8]. It describes the use of Finite State Transducers 
(Pattern Matching) to extract exact knowledge from texts. This represents a 
bottom-up approach that will be compared to the top-down approach used 
in GeneTUC. 
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1.1 Introduction 
There are two current main approaches to information extraction from 

biomedical texts. One approach is the rule-based and grammatical one that 
is often called Natural Language Understanding (NLU). The other 
approach is the statistical or pattern matching one, usually referred to as 
Natural Language Processing (NLP). Future systems are likely to be hybrid 
systems, including techniques from both of these approaches, since NLU 
and NLP often offer complementary solutions to the same problem. 
Sometimes NLU is thought of as a subset of NLP, since “understanding” is 
also really just some kind of processing. The way GeneTUC understands a 
text is by translating it into an event-logic form called TUC Query 
Language (TQL). 

This chapter is split into several sections, each dealing with a special 
topic regarding NLU/NLP of microbiological texts: The next section will 
discuss the terminology of the field, and give some definitions of common 
terms. It is followed by sections about full parsing, what the common goals 
of microbiological IE are, what specific systems are implemented around the 
world, and last a short conclusion. 

 

1.2 Terminology 
One of the goals in the GeneTUC project [16] is to do full parsing of 

microbiological texts. This section will briefly explain the terminology of 
full parsing and all the other approaches that are being used to reach the 
end goal of automatic Information Extraction (IE) in the medical domain. 
Specifically the following will be explained: The difference between IE and 
IR, NLU and NLP, full parsing and partial parsing, global and local 
grammars, and finally the difference between robust and non-robust 
parsers. The last section provides an explanation of what is meant by 
corpus-based approaches. 

 

1.2.1 Information Retrieval and Information Extraction 

While Information Retrieval (IR) and IE are both dealing with some 
form of text searching, they are quite different in terms of what output or 
results they produce. IR is the simple classical approach to text searching, 
as it is done e.g. in Google [28] and other search engines on the Internet. In 
IR the user enters some words of interest, and then all the documents 
containing these words are listed. The document list can be ordered 
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accordingly to how many times each search word occurs, how close the 
different search words are clustered in the document and so on. In this 
approach, the user has to run many different searches to cover all the 
possible different search words to describe the fact that she is actually 
looking for. Also, for every search she might have to read all the articles 
returned by the search engine, just to see if they really are of interest or not. 

Information Extraction (IE) seeks to reduce the user’s workload by 
adding reasoning to the IR process. With IE the computer will have some 
knowledge about synonyms and different sentence forms that actually 
express the same basic facts. That means that the user only has to specify 
the question that she has, and then the computer will do the tedious work 
of running several different IR searches, and skimming every single 
retrieved article to see whether or not it is of interest. The end result from 
IE can be simple yes/no answers to different questions or it can be specific 
facts that are extracted from various articles and then used to build 
databases for quick and easy lookup later. 

 

1.2.2 NLP and NLU, Statistical and Rule-based Approaches 

In the literature, full parsing and other symbolic approaches are 
commonly called Natural Language Understanding. Symbolic approaches 
means using symbols that have a defined meaning both for humans and 
machines. The other approaches, e.g. statistical, are often called Natural 
Language Processing. This use of terms tells us that NLU seeks to do 
something more than just process the text from one format to another. The 
end goal is to transform the text into something that computers can 
“understand”. That means that the computer should be able to answer 
natural language (e.g. English) questions about the text, and also be able to 
reason about facts from different texts. The field of NLU is strongly 
connected to the field of Artificial Intelligence (AI). 

 

1.2.3 Partial Parsing or Full Parsing 

Regardless of whether a symbolic or sub-symbolic approach is being 
used, there is a distinction between full and partial parsing. Full parsing 
means that every sentence must be completely analyzed from the 
beginning to the end. The output from full parsing is usually a parse tree 
saying what Part-Of-Speech (POS) each word has, how words are 
connected to one another in phrases, and how the phrases together make 
up the entire sentence. Quite often there will be more than one possible 
legal parse tree, and then the sentence must be disambiguated (possibly in 
a larger context) to find the one intended parse tree (with the right 
semantics). Another possibility is to simply list all legal parse trees without 
considering semantics. Partial parsing, on the other hand, means that the 
output is not a complete parse tree for the entire sentence. Instead it can be 
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smaller parse trees for specific phrases that are recognized in the sentence, 
or simply a POS-tag for each word, saying nothing about how they connect 
to each other. 

 

1.2.4 Local or Global Grammars 

The difference between local and global grammars is somewhat similar 
to the difference between partial and full parsing. With a global grammar, 
the dependencies between words far away from each other are modelled 
explicitly with complex high-level grammatical rules. In the local grammar 
approach [8], pattern-recognizing automata are built to deal with 
neighbouring word dependencies. Later these automata can be group into 
larger units and thereby implicitly solve the long range constraints. 

 

1.2.5 Robust Parsers 

Another criterion under which a parser is evaluated is whether it is 
robust or not. Robust in this sense means if the parser is able to deal with 
all reasonable inputs. All parsers are constructed with specific sentence 
constructions and words in mind, or they are trained (statistically) on a 
corpus of relevant and already correctly parsed/annotated sentences. 
However, the human language is so flexible that new and previously 
unseen constructs or names are bound to appear all the time. When a 
parser is able to deal in some intelligent manner also with all the examples 
that it was not specifically constructed or trained for, it is called a robust 
parser. Most full parsers are not robust, since they are built on the premises 
that all possible sentence constructs must be known in advance. 

 

1.2.6 Corpus-Based Approaches 

In both NLP and NLU many researchers are now trying different 
corpus-based approaches. That means that they take some collection of 
actual texts from the domain (e.g. Medline) as a starting point. Then, this 
text must be manually analyzed by experts in the domain (e.g. Biologists), 
and tagged by linguistic experts. This pre-processed text can then act as 
source for learning rules etc., or it can be used as a golden standard when 
testing parsers, saying exactly what the desired results are for this specific 
collection of texts. 
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1.3 Full Parsing 
Searching Medline [39], Cite-seer [24] and Google [28], only one article 

that describes full-parsing of microbiological texts was found. This article is 
discussed in depth below, and then the remaining sections will describe 
various other methods that are used to achieve the goal of IE in the 
microbiological domain. 

Yakushiji et al. [18] was the only paper found that describes the pure 
full parsing approach to biomedical texts. It is an early report on an 
experiment that the authors carried out to see if this approach can be used, 
even when the texts are more complex than e.g. newspaper texts. Their 
long term goal is to build an information extraction system that can extract 
specific facts from Medline abstracts. Their short-term experimental goal 
was to automatically extract 133 (already known) facts from 97 manually 
annotated test sentences. 

The reason for trying full parsing is that current information retrieval 
and IE methods are not scalable enough. Today, extraction of a fact is done 
by syntactic (surface form) pattern matching against all possible ways of 
expressing that fact. That means that for every type of fact (relation) many 
handmade patterns are needed, and this technique is too expensive when 
the number of different relations gets bigger. 

The Yakushiji et al. system is based on a general purpose (domain 
independent) parser. The parser transforms each sentence into an argument 
structure (AS). Each AS contains a verb as the title, the semantic subject and 
object(s) of the verb, and possibly adjective modifiers. The AS is a canonical 
structure, and that means that the parser has already taken care of all the 
variations that can occur in the text because of for example passivization 
and nominalization in the verbal phrases. 

Next comes the domain specific part of the system. For each type of AS, 
a transformation rule (pattern matching) must be written, that converts the 
AS into a corresponding frame representation (FR). The FR is a possible 
end result of IE, and contains the semantics of the original verbal phrase. 
This technique scales better with large number of different relations, since 
the parser deals with the different syntactic ways of writing a verbal 
phrase, and only a few IE transformation rules must be written for each 
type of relation. 

The article deals with three well-known problems of full parsing: 
Inefficiency, ambiguity and low coverage. These problems are partially 
solved with the use of pre- and post-processors. One pre-processor is the 
shallow parser. It introduces local constraints (a little stronger than Part-Of-
Speech tagging) whenever possible in the text, and this increases the 
efficiency of the parser since obviously illegal (and computationally 
expensive) parse attempts can then be avoided. The other pre-processor is a 
term recognizer. It is not yet implemented, but it was simulated by hand-
annotating the complex names in the sentences as units belonging to a 
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given class. This gave a 10-fold increase in parsing speed, and also reduced 
the coverage problem since failure to recognize a complex term is often the 
reason that the parse fails. 

The results of the experiment are not extremely good (23% success rate), 
but they give hope that this method can work (67% success rate) when 
more pre-/post-processing techniques are applied. 23% of the facts were 
uniquely (correctly) extracted. 24% of the facts were extracted with more 
than 1 possible FR (ambiguity) and 20% of the facts were extractable 
(without modifiers) from the partial results of the failed parses. 

 

1.4 Goals 
The goal of Information Extraction (IE) in the medical domain is as 

follows: We need to automate the task of IE from biomedical papers, 
because there are simply too many new papers every day for the 
researchers to keep up with. On the way to solving this goal many sub-
problems must first be solved. Most of these sub-problems have already 
been identified by others, for example in the review that is summarized in 
this section. 

 

1.4.1 Other Reviews 

Text-based knowledge discovery is discussed in the review by Mack & 
Hehenberger [11]. They identify several of the common goals for the search 
and mining of life-sciences documents. Both Mack and Hehenberger work 
for IBM, and in the article they naturally also present IBM’s solutions to the 
tasks that they are discussing. They begin by stating that the main point of 
biomedical Knowledge Discovery (KD) is to create an interpretive context 
for biology researchers, and that text-mining is of great use when 
modelling complex biomedical structures and processes. Quite often an 
important part of the puzzle exists only as written text, in some publication 
somewhere. Currently many databases are being built to contain these facts 
in an organized way, and IE can help speeding up this work. 

Mack & Hehenberger also point out that there is currently a shift from 
simple Information Retrieval (IR) to more advanced IE techniques. Theses 
techniques include both stochastic (statistic) and symbolic (rule-based) 
methods. Until only recently the IE community has been focusing mainly 
on extraction of named entities (e.g. protein and gene names) from the 
medical texts. Now there is a shift towards extracting concrete relations 
between these entities, and we are getting one step closer to the next goal of 
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building more complex structures (such as networks of connected facts). 
What is really needed is a standard way of describing these facts, so that 
the databases don’t become as unstructured and inaccessible as the huge 
amount of free text was in the first place! 

 

1.4.2 Tagging 

No matter what method is used to analyze the text, the first sub-goal of 
NLU is usually to mark-up the single words in the text with tags (e.g. labels 
such as N for Noun, and V for Verb). One very popular tool for doing this 
is the Brill tagger [3], and it was used in many of the projects that are being 
reviewed in this article. The Brill tagger is a robust, statistical, 
transformation-based POS-tagger. Unlike other pure statistical approaches, 
this tagger tries to learn common sense rules about how the tags should be 
applied, based on a given correctly tagged example text. These rules can 
then be manually modified later, in order to optimize the performance of 
the tagger on specific texts. 

 

1.5 Systems 
In this section three different types of systems will be reviewed: Term 

recognizers, Relation discovery systems and Visualization systems. 
 

1.5.1 Term Recognizers 
Results from full-parsers are much better when some pre-parser can 

recognize and cluster long names/Noun Phrases (NP) in advance [18]. One 
such NP-recognizer is implemented in Bennett et al. [2].  Their approach is 
to use the Brill tagger [3] to assign POS-tags to all the words in the text, and 
then they build patterns to say which combinations of POS-tags are legal 
NPs. They have taken ideas and techniques from different commercial 
software systems and implemented them in a publicly available free 
system. In this way they save other researchers from having to make or buy 
their own NP-extractors, and thus they free resources that instead can be 
used for further research in the field of biomedical IE. The article also 
describes how the software must be run on a multiprocessor 
supercomputer with tapes as the input medium. Thanks to Moore’s law 
[35], the same system can today effectively be run on a PC with a cluster of 
large hard drives. 

In “Contrast and Variability in Gene Names”, 2002, Cohen et al. [4] 
found common patterns among gene names and symbols from the 
LocusLink Database [33]. Based on these regularities, they suggest four 
heuristics for clustering different variations of the same gene, protein or 
RNA names together: equivalence of vowel sequences, optional hyphens, 
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optional parenthesized material, and case insensitivity. The researchers ran 
their heuristics against Medline abstracts and, as expected, got better 
results than what is achieved with normal strict pattern matching. 
Unfortunately, manual examination showed that there were many false 
positives, i.e. names and symbols were clustered even if they were not 
related. Cohen et al. argue that discerning between documents on different 
organisms may improve the results. They are to research for more contrast 
features, which discerns similar name for different genes and more closely 
examine the false positives. This is an example of a project where no NLU 
is involved, but the system can still be interesting as a pre-parser for a NLU 
system. 

Another approach to recognizing gene names and gene symbols in 
biomedical texts was investigated by Proux et al. in “Detecting gene 
symbols and names in biological texts: A first step toward pertinent 
information extraction” [14]. Proux et al. built a cascade of transducers to 
extract gene names from biological documents. The first transducer 
tokenizes the input before a probabilistic HMM part-of-speech tagger 
assigns categories to known words. This leaves most gene names and 
symbols in an undefined group. Two error-correcting steps clean the 
unknown words: First a biological dictionary removes common biological 
terms and adds common language words that potentially are gene names 
when occurring in Medline abstracts. Then, another error-recovery 
algorithm removes nucleotide and peptide sequences, components and 
special terms with the help of special sequence detection rules succeeded 
by suffix and prefix recognition. Before validating the results, the system 
performs a contextual analysis where it interprets any unknown word 
preceding “gene” as a gene name. Proux et al.’s system showed good 
results, but it only studied gene names from the fly Drosophila. This may 
introduce problems when generalizing the method since the Drosophila 
database, FlyBase, uses only standard gene symbols as opposed to the case 
of normal biological texts and genes from other organisms. Scaling will also 
be of concern when moving from small, directed circumstances to the 
amounts of data in e.g. Medline. Nevertheless, using statistical methods 
Proux et al. have introduced a gene name allocation method that works 
well within its domain. 

The last term-recognizing system to be reviewed is the PROPER system 
[7]. Their approach is purely syntactic, and they claim that this is the only 
sensible approach since new terms are created quicker than the dictionaries 
can be updated. In their test they got 99% recall and 95% precision. They 
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have already identified one of the major sources of precision problems and 
they plan to get rid of that problem as future work. 

 

1.5.2 Relation Discovery 
The first example of relation extraction uses pattern-matching, and is 

from the article “Robust Relational Parsing over Biomedical Literature: 
Extracting Inhibit Relations” by Pustejovsky et al. [15]. It was presented 
on Pacific Symposium on Biocomputing 2002 (PSB02) [38], which is 
probably the most important conference for IE from biomedical texts 
(among other topics), since it includes many potential users (biologists) and 
the most significant recent papers in the field. The parser presented here is 
a robust, shallow, corpus-based parser. Relational parsing means that they 
extract information on the form X relates to Y. In this case the specific 
relations are all inhibiting relations, and the X and Y can be entities (genes 
and proteins) or processes (e.g. binding). Their results are much better than 
previously published results, with 90% precision and 57% recall plus 22% 
partial recall. Partial recall means that just X or Y, but not both, was 
extracted. The way they get these good results is by their use of cascades of 
Finite States Automata (FSA), more or less in the same way that is done 
with local grammars [8] in Unitex [36]. One important step in getting good 
results was to realize that nominal-based relations (Predicative Nouns) had 
to be dealt with separately from normal verbal-based relations. All this 
work is a part of the Medstract project [34], building on the old Acromed 
system. 

Another interesting approach to doing relation extraction is presented 
by Park [13]. They use a parser with combinatory categorial grammar to 
parse the relatively complex biomedical sentences, and they combine this 
with the corpus-based approach. In the end they do a gold standard test, 
with 48% recall and 80% precision, and these numbers are better than any 
other previously published comparable attempts. The conclusion of the 
article more or less agrees with [18], in that full-parsing can be made to 
work, and it is worth the effort, because then we can extract more specific 
and meaningful facts from the abstracts. One example where full-parser 
usually performs better is anaphoric resolution, meaning the ability to 
recognize what is pointed to by terms such as “it”. 

 

1.5.3 Visualization 

Visualization is another important area, because the biologists (end 
users) need to understand the information that is extracted from the 
biological texts. In the article “A literature network of human genes for 
high-throughput analysis of gene expression” [10], Jenssen et al. introduce 
a program called PubGene. It creates and visualizes an overview network of 
possibly related genes. The network is built on the assumption that gene 



 
 
 
 
 SYSTEMS 
 
  

 10

names co-occurring in Medline abstracts also have a related function or 
another relevant connection. The network is especially useful in Microarray 
experiments, because then many genes must be explored simultaneously. 
The methodology includes a database of gene names, a gene-to-article 
index, a gene-to-gene network, a gene network browser, and a gene 
expression and literature score. To handle the gene name problems the 
authors collected gene name variations from LocusLink [33], Human Gene 
Nomenclature Committee [30], the Genome Database [27] and GENATLAS 
[25]. The resulting gene identifier database contained 13712 different genes, 
and each became a node in the gene-to-gene network. Using the 
accumulated identifiers, the authors searched Medline and found 7512 co-
occurring genes. Each co-occurrence linked two network nodes or added 
one to the weight of an existing link. The finished network allowed 
searches for individual nodes, resulting in a sub-network of the gene’s 
closest neighbours, or an expression set from e.g. a Microarray experiment. 
The sub-networks of the searches indicate functional relations that the 
biologist should consider in her further work. Jenssen et al. proved their 
concept with a subset of well-known expressions. According to error 
analysis, most false positive errors stem from gene identifier problems, e.g. 
the gene names are too general. 

The visualization of gene-interaction networks, e.g. as in [10], is very 
important for the biologists who are trying to understand what the role of a 
single gene is. Another field where visualization is very important is in the 
construction of local grammars. The idea behind local grammars is that you 
cannot write general rules about how nouns and verbs combine into phrases 
and sentences, because there are simply too many irregularities or 
exceptions. In the end, you really need an exhaustive list of specific rules 
for every single possible use of a given verb: Normally accepted 
complements (e.g. nouns), all legal adverbial phrases for the verb, 
idiomatic uses with their allowed complement structures, and so on. This is 
an enormous work, since there is more than 1050 ways to build a sentence 
with at most twenty words [8], and therefore it is very important with a 
good visualization tool so that all these rules can be built fast with a 
minimum of extra work. The kind of local grammars described here are 
implemented in the visualization system Unitex [36]. 

Other examples of systems that include some sort of visualization are 
described in [9, 12, 17, and 5]. These articles describe complete approaches, 
with all the necessary steps from plain texts via knowledge bases to 
actually useful systems for the end users. They are written in the early 
stages of IE from biomedical papers, and they are giving general pointers 
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and plans about what has to be done. It is also interesting that Internet is 
pointed out as a new kind of “Corpus” for IE systems to take advantage of, 
especially as databases such as Medline [39] become more accessible and 
structured. 

 

1.6 Conclusion 
There are mainly two current approaches to Information Extraction 

from Biomedical Texts. One is the search for golden language rules and 
good heuristics as presented in [18], and the other is the rather tedious 
work of collecting all necessary examples from maybe 1050 possible 
different 20-words sentences [8]. Almost all the articles criticise the other 
approach, namely the one that they are not using, but future systems will 
probably include techniques from both of these approaches, since they 
really just try to solve the same problem from two complementary sides. 
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2 Computational Linguistics 

This chapter gives the background information and terminology that is 
needed to understand the rest of this thesis. It gives definitions of 
important linguistic and computational linguistic terms, and starts by 
giving a definition of the main term:  “Computational Linguistics”. 

 

2.1 Introduction 
Simply put, computational linguistics is the scientific study of language 

from a computational perspective. Computational linguists are interested 
in providing computational models of various kinds of linguistic 
phenomena. These models may be "knowledge-based" ("hand-crafted") or 
"data-driven" ("statistical" or "empirical"). Work in computational 
linguistics is in some cases motivated from a scientific perspective in that 
one is trying to provide a computational explanation for a particular 
linguistic or psycholinguistic phenomenon; and in other cases the 
motivation may be purely technological in that one wants to provide a 
working component of a speech or natural language system [17] 

Computational linguistics is a pragmatic approach to the field of 
language. In the end we want to build a working system that solves a 
particular task. In the case of GeneTUC, this task can be the automatic 
generation of gene interaction databases or the construction of a “Tell and 
Ask” gene oracle. 

 

2.2 Linguistic Terminology 
An important part of analyzing a sentence is to tag each word with its 

correct Part-of-Speech (POS) tag. The challenge then is that many words are 
highly ambiguous, and different approaches must be used to find the 
correct tag. The definition and meaning of some none-trivial POS tags are 
given below. 
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2.2.1 Pronoun 
Definition: A pronoun always stands in the place of a noun in the 

sentence. The pronouns can be tagged with information such as  
Is it a Possessive (Poss) Pronoun? 
The Person (1st, 2nd, 3rd) 
The Number (Singular, Plural) 
For third person singular pronouns; the gender: 

Masculine, Feminine or Neutral (m, f or n) 
The Unitex tag for pronouns is “PRO”. 
 

2.2.2 Determiner 

Determiners are said to "mark" nouns. That is to say, you know a 
determiner will always be followed by a noun. Some categories of 
determiners are limited (there are only three articles, a handful of 
possessive pronouns, etc.), but the possessive nouns are as limitless as 
nouns themselves. This limited nature of most determiner categories, 
however, explains why determiners are grouped separately from adjectives 
even though both serve a modifying function. We can imagine that the 
language will never tire of inventing new adjectives; the determiners 
(except for those possessive nouns), on the other hand, are well established, 
and this class of words is not going to grow in number. These categories of 
determiners are as follows: the articles (an, a, the); possessive nouns (Joe's, 
the priest's, my mother's); possessive pronouns (his, your, their, whose, 
etc.); numbers (one, two, etc.); indefinite pronouns (few, more, each, every, 
either, all, both, some, any, etc.); and demonstrative pronouns. Notice that 
the possessive nouns differ from the other determiners in that they, 
themselves, are often accompanied by other determiners: "my mother's 
rug," "the priest’s collar," "a dog's life" [44]. 

The Unitex tag for determiners is “DET”. 
 

2.2.3 Adverb 

Adverbs are words that modify 
•  A verb (He drove slowly. — How did he drive?)  
•  An adjective (He drove a very fast car. — How fast was his car?)  
•  Another adverb (She moved quite slowly down the aisle. — 

How slowly did she move?) 
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Adverbs often tell when, where, why, or under what conditions 
something happens or happened. Adverbs frequently end in -ly; however, 
many words and phrases not ending in -ly serve an adverbial function and 
an -ly ending is not a guarantee that a word is an adverb [45]. 

One of the highly ambiguous words is “that”, and in a few rare 
occurrences it should also actually be tagged as adverb. One example is “It 
was that easy!” 

The Unitex tag for adverbs is “ADV”. 
 

2.2.4 Conjunctions 
A conjunction is a word that connects (conjoins) parts of a sentence. 

Conjunctions are split into two classes: coordinating and subordinating 
conjunctions [46]. The coordinating conjunctions are used to put two 
sentences of equal importance together, while a subordinating conjunction 
promotes one of the two sentences as being more important. 

There are seven coordinating conjunctions: “And, but, or, yet, for, nor, 
so”. 

There are several subordinating conjunctions, and the most common 
ones are: “after, although, as, as if, as long as, as though, because, before, 
even if, even though, if, if only, in order that, now that, once, rather than, 
since, so that, than, that, though, till, unless, until, when, whenever, where, 
whereas, wherever, while.” 

The Unitex tag for all conjunctions is “CONJ” 
  

2.2.5 Pre-determiners 
Pre-determiners are small words (e.g. prepositions) that can stand 

directly before the main determiner, like “about” in the following example: 
I have bought about 2000 candles. 

The Unitex tag for pre-determiners is “PRED”. 
 

2.2.6 Particle 

Particles often occur in phrasal verbs. Phrasal verbs consist of a verb and 
another word or phrase, usually a preposition. The word that is joined with 
a verb in this construction should then be tagged as a particle. 

The most common particle is the infinitive particle “to”. A golden rule 
for disambiguation is that when “to” is found directly in front of a verb in 
infinite form, it should always be tagged as a “particle”. 

The Unitex tag for particles is “PART”. 
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2.3 Computational Linguistic Terminology 
In the following sub sections some important computational linguistic 

terms will be given: Ontology, Dictionary, Multi-Word Unit (MWU) and 
different word-counts. 

 

2.3.1 Ontology 

Ontology is defined as follows in WordNet [42]: “the metaphysical 
study of the nature of being and existence”. Ontology is a structured 
description of what we know about “the world” that we are interested in 
modelling. 

The “correct” classification of Nouns (and other words) into ontologies 
is tricky. The decisions to be made are largely dependent on what the end 
use of the ontology is. Choices must be made about the granularity and 
about how much ambiguity that should be allowed. 

In the biomedical texts acronyms are being heavily used, and two 
different acronyms can often refer to the same entity. Therefore, a strategy 
should be selected so that all acronyms are represented in a uniform way. 
One important point is to decide what the main entry in the dictionary 
should be. The problem with storing acronyms as main entries is that one 
acronym often has several different meanings, and thus extra ambiguity 
problems are introduced. The problem with storing the expanded (full) 
forms as main entries in the dictionary is that one acronym can often be 
expanded in many different ways where the difference is very small. E.g. 
different authors have different styles, but they still refer to the same entity. 
In this case, all the possible full forms must be stored in the dictionary, 
perhaps with a common reference to a unique identifier (e.g. the “right” or 
standardized full form). 

Another approach that was tested in this project was to build a small 
grammar for each acronym that has several different full forms. Such small 
“dictionary grammars” are called lexicon grammars in the Unitex 
terminology. Figure 1 shows a lexicon grammar that will recognize all 
occurrences referring to the CREB protein. The bottom line in this graph is 
not really a part of the name of the CREB protein, but it is still included 
because it is a unique remark that describes only this CREB protein. In 
addition, there are also other ways to talk about the CREB protein, so the 
graph is not complete (yet), but in the Unitex approach the idea is to keep 
adding new entries to the graphs until no more new entries are discovered. 
Then the graph will be “complete enough” for our purposes. 
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Figure 1. Lexicon Grammar for CRE 

Synonyms raise similar problems as the entities that have multiple full 
form names do. When two words are truly “identical” (within the 
ontology) they should then be linked in some way, for example with the 
help of a unique concept-id number or similar techniques. By marking the 
word entries like that, some semantics will be brought into the dictionary. 
Normally a dictionary should contain only syntactic and morphologic 
information, but if such simple semantic information is needed by the 
system at a later stage anyway, it is easiest to store this information during 
the dictionary building. An example is while importing the gene name lists, 
all the entries can automatically receive the tag “+Gene”. 

 

2.3.1.1 TUC Ontology 
The ontology in TUC is, like the WordNet ontology, built as a 

heterarchy. That means that each node can have multiple parent nodes in 
addition to having multiple children nodes as in a normal hierarchy. One 
constraint that is imposed in the TUC ontology is that all nodes must have 
the node “Thing” as their single highest ancestor in the network. That 
means that all concepts are ultimately classified as “Things”, and “Thing” 
is the most general concept in the TUC ontology. The TUC Ontology is 
partly based on the WordNet ontology (see below). 

 

2.3.1.2 WordNet Ontology 
The WordNet ontology is a little more general and comprehensive, and 

it contains more concepts than the TUC ontology. With a few exceptions, 
the WordNet is a superset of the GeneTUC ontology. The main difference is 
that WordNet have several different top nodes, while TUC requires all 
concepts to be “Things” ultimately. Since these ontologies are so similar, it 
should be possible to automatically update the TUC ontology based on 
changes in WordNet Ontology. This could save a lot of work, since 
classifying unknown words and storing them in the TUC ontology (files: 
“semantic.pl” and “facts.pl”) is always a necessary first step in the TUC 
approach, and somewhat time demanding. The creation of a good ontology 
is also necessary using the Unitex approach, so it would be well worth the 
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effort trying to make a good interface between WordNet and the other 
systems. WordNet already has an application programming interface (API, 
e.g. for java) to ease this work. 

Another advantage of fully integrating WordNet with GeneTUC is that 
WordNet contains glosses for every concept (see Figure 2). That makes it 
easier for others (e.g. biologists) to do the classification of new unknown 
words into existing concepts, or new ones when needed. 

One challenge during the integration work will be that some WordNet 
concepts have quite complex names, compared to the single word terms in 
GeneTUC. Several different TUC concepts can sometimes be seen clustered 
together as one long comma-separated WordNet concept. One possible 
solution to this “unification problem” is to use only the words before the 
first comma in the WordNet entry as the unique identifier for that (sub-) 
concept in GeneTUC. 

 
 

salt -- (a compound formed by replacing hydrogen in an acid by a metal (or a radical that 
acts like a metal)) 

=> compound, chemical compound –  
((chemistry) a substance formed by chemical union of two or more elements or 
ingredients in definite proportion by weight) 

=> substance, matter -- (that which has mass and occupies space; "an atom is the smallest 
indivisible unit of matter") 

=> entity, physical thing -- (that which is perceived or known or inferred to have its own 
physical existence (living or nonliving)) 

Figure 2. WordNet definition of Salt 

2.3.2 Dictionaries and MWUs 
The work with dictionaries is somewhat overlapping with the 

ontology-work, because both are dealing with the fact that all words need 
to be known by the system, before any meaningful processing can be done. 
The creation of a dictionary can be almost as tricky as the ontology work 
because new words are created all the time, and especially in the 
biomedical domain. This is especially true in the naming of new genes and 
proteins. 

There is also the question of what granularity the dictionary should 
have. A phenomenon called Multi-Word Units (MWUs) deals with the fact 
that quite often a group of words only has the right meaning as a group, 
and not as single words. One example is “Bananas as well as apples” (Ref 
Sentence 44 and 58). In this sentence the three words “as well as” just take 
the place of the single word “and” (or maybe “and also”), and therefore 
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they should also be tagged as one MWU (namely conjunction). In many 
current systems “as well as” would be tagged as for example “PREP ADV 
PREP”, but this is not a correct POS sequence between two sentences, and it 
gives no hints that we are semantically dealing with a conjunction. In 
Unitex this can be solved by using the DELACF dictionary format to store 
“as well as” on one line as a MWU, and tag it as conjunction. 

 

2.3.3 Word Counting 

Unitex lists some basic statistics every time a new text is pre-parsed, 
and every time patterns are located in the text using regular expressions or 
search graphs. To understand this statistics, it is helpful to know how the 
word count is done. Words are counted in these three different ways: 

Running Words: Everything between two word separators (normally 
space) is counted as a word, regardless of whether that particular word has 
already been counted. 

Unique Words: Only count the first occurrence of every word. This 
gives the number of different words used in the text 

Frequency Count: Tells you how many times every given word is used. 
 

2.4 Biological Terminology 
This section will describe some of the particular language constructs 

and problems that were encountered during the work with texts from the 
Medline database. 

 

2.4.1 Protein 

Proteins are the agents/actors of interest. See Figure 3 and Figure 4 for 
the definition. 

 
protein -- any of a large group of nitrogenous organic compounds that are essential 

constituents of living cells; consist of polymers of amino acids; essential in the diet of 
animals for growth and for repair of tissues; can be obtained from meat and eggs and 
milk and legumes; "a diet high in protein" 

Figure 3. WordNet definition (with gloss) for Protein 
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Protein 
       => Macromolecule, super-molecule 
           1=> molecule 
               => Unit, building block 
                   => Entity, physical thing 
           2=> organic compound 
               => Compound, chemical compound 
                   => Substance, matter 
                       => Entity, physical thing 

Figure 4. WordNet ontology entry for Protein 

2.4.2 Genes 
For every protein there are one or more genes that “code for it”. Quite 

often the gene and the protein will then have the same name. When such 
ambiguities arise in the semantic tagging of the text, the gene-tag should be 
selected, for the sake of consistency. Exceptions should be made for 
example when the sentence contains the word “protein” directly after the 
protein/gene name. 

 

2.4.3 Enzymes 

Here is the definition of enzyme from Kimball's Biology Pages [22]: 
Enzymes are catalysts. Most are proteins. (A few ribonucleoprotein 

enzymes have been discovered and, for some of these, the catalytic activity 
is in the RNA part rather than the protein part; Link to discussion of these 
ribozymes.) Enzymes bind temporarily to one or more of the reactants of 
the reaction they catalyze. In doing so, they lower the amount of activation 
energy needed and thus speed up the reaction. 

Many enzyme names are encountered during classification of unknown 
words in Medline texts, and to speed up the process it helps with a few 
good heuristics. One such heuristic is that all names with “ase”-ending are 
enzymes (and therefore protein) names. 

 

2.4.4 Latin: Cis and Trans 

Dealing with medical texts, one always encounters many Latin words 
that are not so common in other texts. Two of these rare words will be 
discussed in this sub-section, namely cis and trans. 

In the activate sentences (See Appendix B, Sentence 6) “cis-acting 
elements” are mentioned. Cis is a Latin prefix that means something like 
“on this side”. Its Latin counterpart is “trans”, which means “on the other 
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side”. The MIT Bio-pages [23] has a more medically precise definition of the 
two terms. Figure 5 shows how this works on the molecular level: 

“We can use these techniques to see if a DNA sequence can act from 
afar on another DNA sequence. If it can, then it is a diffusible protein. 
These sites are called trans-acting sites, since they act from afar. If the site 
cannot act from afar, then it is a DNA binding site that needs to be near 
other DNA sites (such as coding sequences) in order to function. These sites 
are called cis-acting sites, since they need to be next to other DNA to 
work.” 

The Unitex semantic tag for prefix is PFX. 
 

 
Figure 5. Cis- and trans-acting proteins. Courtesy of the MIT Bio-pages 

 

2.4.5 Greek Letters 

Another typical feature of biomedical texts is that they contain many 
Greek letters that have no standard plain-text coding format. Many of the 
proper nouns (e.g. protein names) contain Greek letters, and various types 
of sub and superscripts. This problem is encountered when PS, PDF or 
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Word files are converted into other formats, and especially into plain text 
format. 

The activate-sentences (Appendix B) used in this experiment were 
collected from various PDF files from the internet (via Medline), but when 
these PDF files were downloaded as Word (Doc) files, a special coding was 
used for Greek letters. Instead of α, the text “small alpha, Greek” was 
inserted, instead of β “small beta, Greek” and so on. This creates some extra 
problems in the tokenisation of the text, since e.g. “Greeksmall” is an 
unknown word in our language. In this experiment the original texts was 
changed manually to solve this problem, but when dealing with large 
amounts of text, some automatic way should be found to solve these 
problems. 
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3 Unitex Tutorial 

This chapter describes the Unitex system, and can act as a preliminary 
English translation of the manual. It will explain the basic functionality in 
Unitex in the form of a step-by-step tutorial convenient for new users. 

 

3.1 Introduction 
Most of the “tricks” in this chapter had to be learned by trial and error, 

since the manual only exists in French and a partial Portuguese translation 
[37]. Writing an English translation of the manual is one of top priorities of 
the Unitex team, but there is no official deadline given for this task yet. The 
main programmer of Unitex, Sébastien Paumier [40], has been very helpful 
and answers all questions about the program rapidly by email. He also 
came to LMU Munich (to the CIS institute) at the beginning of this Diploma 
work (November) to give a guest lecture on Unitex. The main points from 
that introduction will be summarized in this chapter. 

Sébastien Paumier worked for the LADL institute in France [32], where 
both the INTEX and the Unitex systems were developed. Unitex is more or 
less just a GNU General Public License (GPL) version of INTEX, but it still 
lacks some of the semantic disambiguation support that INTEX gives. 

 

3.2 Installation 
Unitex [41] can be downloaded and installed together with the Java 

Runtime Environment (JRE) version 1.4.1. The installation takes only a few 
minutes, and any standard PC should be adequate in terms of system 
requirements. 

Version 1.1 has been available since the beginning of February 2003. It 
was released as a beta version, but it was already running stable and has 
been used in this project since then without any particular problems. The 
biggest change from version 1.0 is that the graph editor GUI has been 
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improved, and a few general bugs have been removed. All the data files 
can also be transferred between the two different versions without any 
problems (Tested for text, graph and dictionary files). 

 

3.3 Text Format 
All the texts that shall be used by Unitex must be stored in Unicode 

format, and with the little endian byte order (standard for Intel-type 
processors). The text format conversion must be done before the file can be 
opened in UniTex, and can be done by most semi advanced text editors, 
including Word and TextPad (but not Notepad). There is also a support 
program in the Unitex package that will do this conversion. This program 
is located in the “Unitex\App” directory and is called “asc2uni”. The input 
file must be ASCII-coded, and then a Unicode output file will be created. 

 

3.4 Pre-processing and Lexical Analysis of the Text 

 
Figure 6. After opening a new text 

The first time a Unicode text-file is opened in UniTex, one is given the 
option to pre-process the text. During pre-processing, sentence delimiters 
({S}) are inserted into the text. At the same time, lexical analysis can be 
done (“Apply All default Dictionaries”); meaning that every word is 
tagged with all the possible tags it can have according to the dictionaries. 

Unitex has two already compiled English system dictionaries: One for 
single words (delas.bin or delaf.bin), and one for compound terms 
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(delac.bin or delacf.bin). Other self-made dictionaries (e.g. gene and protein 
names) can also be used during the pre-processing phase. The difference 
between DELAS/DELAC and DELAF/DELACF is that DELAF dictionaries 
contain inflected forms of all the words. Normally a DELAF can be 
automatically created from DELAS/DELAC with a few good inflection 
rules. 

In connection with the lexical analysis it is also possible to construct 
Finite State Text (FST) automatons for the sentences, by using the bottom 
left checkbox in Figure 6: “Construct Text Automaton”. FST (see section 
3.6) is a good idea, because it will give you a feeling about how ambiguous 
the sentences are, based on the current dictionaries. FST automatons can 
also be constructed later by choosing “Construct FST-text” from the “Text” 
menu in Unitex. 

When pre-processing and lexical analysis is done, some common files 
are automatically created: 
DLF Contains all possible simple word dictionary entries 

matching the text 
DLC Contains all the possible compound lexical entries that were 

recognized 
ERR Contains all the simple words that were not found in any 

dictionary 
Tokens Contains an unsorted list of different tokens from the text 
Tok_by_freq Contains different tokens sorted by frequency of use 
Tok_by_alph Contains all different tokens sorted alphabetically 

 

3.5 Graphs 
In this section, a simple description of the syntax that is used to read 

and write graphs is given. The description is largely derived from Chapter 
4 in the Unitex Manual [37]. 

 
+ Separate (OR) different word (or sequences of words) choices in a box 
- Logical “And Not” with the next grammatical/semantic code in the 

<X> forms. For example, <N-hum> recognizes all nouns that do not 
have the human mark 

/ Separate box input from box output 
<X> Match all the words with ground (lemma) form X, or with X as a 

grammatical/semantic code. Examples: 
<be> recognizes be, are, am, is, etc… 
<N> recognizes any simple or compound word that has the noun 
mark 

() Group elements (for regular expressions) 



 
 
 
 
 GRAPHS 
 
  

 26

* Kleene Closure: Match none ore more instances of the previous 
(grouped) term 

Figure 7. Graph writing syntax 

<E> Empty string 
<MOT> Token with only letters 
<MIN> Token with only lower case letters 
<MAJ> Token with only upper case letters 
<PRE> Token with only letters (like MOT), but starting with an upper 

case letter 
<DIC> matches any simple or compound word in the dictionary 
<SDIC> matches only simple words from the dictionary 
<CDIC> matches only complex words from the dictionary 
<NB> Token with only contiguous numbers (no spaces within) 
<PNC> Punctuation (; , ! ? :) is only available during pre-processing. 
<^> Matches a new-line (\n) and is only available during pre-

processing. 
# forbids the presence of a space at the given position. For example, 

<MOT>#-#<MOT> will recognize “tam-tam” but not “tam – tam”. 

Figure 8. Special lemma-forms (from [37], chapter 4.3.1) 

While looking at a graph with subgraphs, a specific subgraph can be 
opened by pressing the <alt> key while clicking on the subgraph’s named 
box representation. 

A graph can be used to recognize/locate given fragments (local 
grammars) in a text, and it can be applied with different output modes: 
Ignore, Merge or Replace. 

In ignore mode the original text is not changed, and all the matches are 
given in a separate list. This is called a concordance list and contains the 
context for each of the matches. The concordance list is also hypertext 
marked-up, so it is easy to jump to the right place in the original text, and 
to the appropriate FST-text (see section 3.6) if it has already been made and 
is currently visible in another open window. 

When searching for a pattern in merge mode, the output from a graph 
will be inserted in the original text, just before the starting point of whatever 
the graph matched. 

Finally in replace mode, everything that matches the graph is removed 
from the input text, and only the output from the graph is left in that place.  
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3.5.1 Variables 

In Unitex graphs, variables can be used to produce just the output that 
is wanted. In Figure 9 two variables ($activator and $activated) is being used 
to transform the extracted facts from natural language into a very general 
predicate logic form. 

 

 
Figure 9. Variables in Unitex 

The middle window in this figure shows a graph were the sub-graph 
“GeneNameNP” is called two times. The text that matches the sub-graph 
the first time is stored in the $activator variable, and the “Gene Noun-Phrase” 
that matches the sub-graph the second time is store in the variable 
$activated. At the end is just an empty box that produces the desired output 
in the form of a logic predicate (activate) with two arguments, and the entire 
output is placed in angle brackets, in order to make it easier to separate it 
from the remaining text later. 

The top window shows a concordance structure with the results of 
applying this simple graph in replace mode, and the bottom window show a 
concordance structure for all occurrences of the word “activates” found in 
the 59 sentences. 

 

3.6 FST-text 
FST-text is a special kind of graphs. These can be automatically created 

(see section 3.4), there is one FST-graph per input sentence, and they 
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represent every possible parse of the sentence given the entries in the 
inflected dictionaries. 

FST is an excellent starting point for disambiguating the sentences 
manually, since one only has to delete the boxes that do not fit. When an 
FST sentence is modified, the changes will be stored in the working 
directory as a temporary file called “sentenceX” (X is the number of the 
current sentence). When the “Rebuild FST-text” button is pushed, the 
“sentenceX” files are used to update the more permanent file “text.fst2”. If 
you later choose “build FST-text” again from the menu, also this file will be 
overwritten. 

 

3.7 Dictionaries 
This subsection will give a brief overview of the different dictionary 

formats and explain how they are used in Unitex. 
 

3.7.1 Dictionary Format and Syntax 

There are two main types of dictionaries in the Unitex system: Inflected 
(DELAF/DELACF) and uninflected (DELAS/DELAC). These can be further 
divided into simple-form (DELAF or DELAS) and complex-form (DELAC 
or DELACF) dictionaries. The only extra feature in complex form 
dictionaries compared to the simple ones, is that they accept MWUs, i.e. the 
complex forms can have the space character in them. 

Figure 10 shows the format of the uninflected and Figure 11 shows the 
format of the inflected dictionaries. 

 
“Word surface form, POS + Semantic: Morphology: Syntactic: Inflection” 
 
Diacyl-glycerol, N+Glycerol: s 
Down regulate, V 

Figure 10. Format for uninflected (DELAS/DELAC) dictionaries 

 “Word surface form, lemma form. POS + Semantic: Morphology/Syntactic/Inflection” 
 
Diacyl-glycerol, .N+Glycerol: s 
Down regulates, down regulate.V+P3s 

Figure 11. Format for inflected (DELAF/DELACF) dictionaries 
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For word entries without any morphological information the last “:” 
should be dropped, and when the lemma form in a complex dictionary is 
equal to the word (surface) form the lemma place should be left empty. 

Not all characters can be used freely when writing the dictionaries. 
Figure 12 gives a list of the special characters. These characters must be 
protected by a \ (backslash) when they are used as “themselves” as a part 
of a dictionary entry. If it is possible to avoid entering these characters into 
a dictionary, it would save a lot of trouble later, because the dictionary, 
FST-text and graph modules of Unitex do not deal with escaped characters 
100% consistently. 

 
/ Comment (Chapter 3, page 24 in manual, examples) 
= Hyphen or Space (Can be used to represent both forms with just one entry, page 23) 
, between token, lemma 
. Between lemma. Grammatical info 
: Between grammatical info (lexical info) and Inflexion information (info about inflected 

forms) 
+ Between parts of lexical info 
\\ Used as folder separator in graphs on Windows systems 

Figure 12. Special dictionary characters 

 

3.7.2 Dictionary Tags 
Here the different standard tag types are explained with examples. 

Also, a few self-defined tags from the dictionaries Genes and ProtHum are 
used. The Gene and Protein dictionaries were created by converting the 
GeneTUC files “genebase.pl” and “protbase.pl” into Unitex format. 

 
A Adjective 
ADV Adverb 
CONJC Conjunction, Coordinating 
CONJS Conjunction, Subordinating 
DET Determiner 
INTJ Interjection 
N Noun 
PART Particle, including infinitive particle 
PRED Pre-determiner (I bought about 200 balloons) 
PREP Preposition 
PRO Pronoun 
V Verbs 
X Words that cannot stand alone, without prefix, suffix etc (in situ) 
XI Parts of MWUs (et, al.) 

Figure 13. Word class dictionary tags 
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3.7.2.1 Morphological tags 
This list includes all syntactic and morphological tags, and the 

information they can contain 
 

:m Masculine 
:f Feminine 
:n Neutral 
:s Singular (Number) 
:p Plural (Number) 
:1 First (Person) 
:2 Second (Person) 
:3 Third (Person) 
:P Present Indicative 
:I Imperfect Indicative 
:S Present Subjunctive 
:T Imperfect Subjunctive 
:Y Present Imperative 
:C Present Conditional 
:J Past (simple) 
:W Infinite 
:G Present Participle (Gerundive) 
:K  Past Participle 
:F Future 

Figure 14. Morphological dictionary tags 

 

3.7.2.2 Semantic tags 
Here are the semantic tags that are described in the Manual [37] 

+z1 Common word 
+z2 uncommon word 
+z3 Very rare word 
+Abst Abstract 
+Anl Animal 
+AnlColl Animal Group 
+Conc Concrete 
+ConcColl Concrete Group 
+Hum Human 
+HumColl Human Group 
+t Transitive Verb 
+i Intransitive Verb 

Figure 15. Semantic dictionary tags 

There also are also a few other system-defined semantic tags that are 
not described in the manual: 



 
UNITEX TUTORIAL 
 
 

 31

+A Adjectively used adverb (ADV that can be used as A) 
+DA A or DA (as in “poorly understood”) 
+2X A+2X (in situ). X always marks words that should not stand alone 
 
For PRO and DET: 
+Dadj Det Adjective 
+Ddem Det Demonstrative 
+Nomin Nominative (for PRO) 
+Pdem Pronoun Demonstrative 
+Poss3ns  Possessive 3.person neutral single (for PRO and DET) 
+PR Province (Monaco et al., here it is a Personal Name!) 

Figure 16. "Undefined" semantic dictionary tags 

And here are two self-made semantic tags, particular for Microbiology-
linguistics. 

 
+Gene Gene 
+ProtHum Human Protein 

Figure 17. Self-defined semantic dictionary tags 

 

3.7.3 Dictionary Update 

After the lexical resources (dictionaries) have been applied to the text, 
all unknown words will be stored in the file “ERR”. In order to be able to 
do intelligent parsing of the text, all these words must first be added to a 
dictionary. 

When new words have been added to a dictionary file (e.g. name.dic), 
this file must then be compiled into a .bin file, so that it can be used 
together with the system dictionaries the next time lexical parsing is done. 
The main reason for this precompiling is that binary compiled graphs give 
a much higher parsing speed than one can get when interpreting the 
graphs on-the-fly. This is more or less in analogy with the fact that 
compiled (e.g. C++) programs run much quicker than interpreted (e.g. Java) 
programs. The compiling of new dictionaries can be done by opening the 
Unicode “file.dic” from the “DELA” menu in Unitex. Then, from the same 
menu one has the choice to check the format or to compress the dictionary 
into a finite state automaton (FST). It is also possible to use the program 
“Compress” in the “Unitex\App” folder to do this compiling. The result in 
both cases is that a file called “name.bin” will be created. 

To use the new compiled dictionaries every time a new text is being 
pre-processed, they must first be added as default lexical resources. This 
can be done from the “Text” menu, but only when an arbitrary text is 
already open. So the first step is to open the text, and choose to skip the 
preprocessing. Then, choose from the “Text” menu “Apply Lexical 
Resources” (see Figure 18). In this window, all the .bin files in the 
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“Unitex\English\Dela” folder are listed. New dictionaries can be selected 
in addition to the old ones, by pressing the <ctrl> key while clicking the 
new names with the mouse pointer. After all the standard dictionaries have 
been selected, it is important to click the “Set Default” button, so that the 
changes are made permanent and all the selected dictionaries will be used 
next time preprocessing and lexical parsing is being done. 

 

 
Figure 18. Menu: Text->Apply Lexical Resources 

 
The selected dictionaries can be directly (re-) applied from the window 

in Figure 18, or when the “Set Default” button has been clicked, from the 
Preprocessing and Lexical Parsing window, see Figure 6. 
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3.7.3.1 Creating a context for “unknown words” 
 

 
Figure 19. Creating a context for “unknown words” 

A simple way to speed up the process of classifying unknown words is 
by making a graph that contains one box with all the unknown words in it 
(See Figure 19, left side). When this graph is stored, it can later be applied 
for locating patterns in the text, and for building concordance structures, as 
it was done in Figure 19, bottom right side. This is very useful, since the 
unknown words are then highlighted and display together with their 
context (approximately the 12 nearest words) in the text. This can save a lot 
of time since unknown words are often declared (explicit or implicit) in the 
text where they are first used, and by using these definitions one can save 
valuable time that would otherwise have to be spent searching the Internet 
or other dictionary sources. 

When searching for the 52 unknown words in the text, it was 
discovered that they constitute almost 4% of the total text. That means that 
every 26th (running) word is an unknown. 

 

3.7.4 Filter Dictionaries 

Filter dictionaries are dictionaries with a name ending with a – (minus) 
sign before the “.DIC” ending. They can be used for example to solve a 
very particular problem raised by the fact that “a” and “as” are treated as 
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nouns. First of all, there is a valid reason for treating “a” and “as” as nouns, 
for example in the sentence: 

 
“I tell you that bazaar takes three as and bizarre just one a.” 

Figure 20. A "bizarre" sentence 

But even though “a” and “as” can be nouns in this particular sentence, 
they will usually not be in the kind of micro-biological sentences of this 
project. The noun interpretation is not just unlikely, but it actually causes 
some problems for example when locating all indefinite articles; it should 
be possible to searched for the lemma form <a> to matched both “a” and 
“an”, since these two indefinite articles have “a” as their lemma form. 
Unfortunately, also “as” has the lemma form “a” (because of the many “a”-s 
interpretation), and this causes a lot of noise in out search. 

Therefore, to avoid this interpretation of a, you can use a filter 
dictionary: Put all the interpretations you want for a and as in a DELAF, for 
example: 

 
a,.DET 
as,.PREP 

Figure 21. Filter dictionary: a_filter-.dic 

 
Give the file a name with a - sign before .DIC, such as “filter-.DIC”. 
Then, compile your dictionary and select it to be applied in the default 

dictionary selection (menu Text>Apply lexical resources). This will filter for 
“a” and “as” only your given solution and you won't have to worry 
anymore about the noun interpretation for a and as. 

 

3.7.5 Complex Dictionary Terms 

Some of the gene names are so complex that it would be better to build 
simple NP graphs for them, than to list all possibilities in a dictionary. This 
can be compared to the way that the stock exchange index-names were 
modelled in “the construction of local grammars” [8] by Maurice Gross. See 
Figure 1 for a biomedical example. 

 

3.8 Disambiguation 
When a text is opened in Unitex the first time an FST (see 3.6) can be 

automatically constructed for all the sentences. This FST will then contain 
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graphs showing every possible parse of every sentence given the current 
dictionaries. It is then possible to manually modify the FST-text, e.g. to do 
disambiguation on it by removing un-semantic paths from the graph. 
When a sentence is changed manually, the result will be stored in a 
temporary file in the text’s working directory (e.g. 
…/English/50activate_sen/sentenceX, where X is the sentence number). 

During the disambiguation work one can also choose to give semantic 
codes to important words, for example by tagging all genes and proteins 
with genes and protein tags. One problem with such semantic tagging is 
that a word (e.g. polymerase) can belong to several different semantic 
classes, and it is not practical to give every word a complete and very long 
list of semantic tags (e.g. Enzyme, Protein, Molecule and so on). In 
GeneTUC this problem is solved by building an ontology (a semantic 
network), then giving every word (e.g. polymerase) the most detailed 
description possible in this network (e.g. Enzyme), and by having a rule 
saying that it then also belongs to all the parent nodes above this 
description (e.g. Protein, Molecule, Thing). It is an open question how such 
rules could or should be implemented in Unitex. 
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4 GeneTUC 

In order to appreciate the results made with Unitex and local 
grammars, it is important to think about how they can be used later. In our 
case, Unitex’s local grammars could be used to do effective pre-processing 
on the biomedical texts, before they are parsed by GeneTUC. This is a good 
idea because the strengths of Unitex (Fast processing, and a graphical 
interface) matches the weaknesses of GeneTUC (slow parsing, and no 
graphical interface). The reason for not doing all the work in Unitex is that 
GeneTUC already implements the entire framework for a tell-and-ask 
system, and the grammar is much more expressive than the regular 
automata in Unitex. 

This chapter will not give many details about GeneTUC, but the points 
most relevant to the work with Unitex will be discussed below. For more 
details the reader is referred to the last project report covering the 
GeneTUC system [16]. It includes a tutorial, and explains the basic need for 
pre-parsing due to punctuation, Greek letters and other such problems that 
Unitex can solve much easier. 

 

4.1 Introduction 
The end goal of GeneTUC is to build a question answering system 

about biomedical facts. Biomedical text, more often than not, contains 
Greek letters, punctuation in the middle of words, chemical formulae and 
so on. This constitutes a problem for GeneTUC, because it is not made to 
deal with anything else than standard ASCII-letters. This means one of two 
things: Either GeneTUC has to be changed in order to deal with all these 
new problems, or the input texts have to be modified in order to fit 
GeneTUC’s requirements. 

Work is being done with GeneTUC to make it deal intelligently with 
some simple punctuation (e.g. comma), but as long as the system remains 
ASCII-based, it can never deal successfully with the Greek letter problem. 
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Therefore, the approach with pre-parsing should also be explored, and 
Unitex is ideal for such “strange-letters” parsing, because it is Unicode-
based. 

 

4.2 Greek Letters 
By now there exists several different ways that the authors of the 

biomedical texts deals with Greek letters. Some simply use “a, b, g” etc 
instead of “α, β, γ” and so on, and some spell it out like “alfa, beta, 
gamma” etc. Others use the actual Greek letters in their writing, but then 
these letters are later changed into more or less cryptic representations (e.g. 
“small beta, Greek” or “small chi, Greek”) in the process of transferring 
documents between different formats such as LATEX, Word, PDF, PS and 
so on. 

One solution to this problem is to use Unitex to build local grammars 
that would recognize all these different representations and transform 
them into a standard ASCII-representation that GeneTUC could process 
further. For example, “PI3Ksmall beta, Greek” and “PI3Kβ” could both be 
replaced by “PI3Kbeta” or “PI3Kb”. This is very easy to do in Unitex, 
because the local grammars are built in the form of transducers, which 
means they can produce output in addition to reading input like normal 
automata. There are three ways that the local grammars (transducers) can be 
applied to the text: Normal, Merge and Replace modes. When the Greek-
letter term-recognizing graphs are applied in Replace mode, we get exactly 
what is needed by GeneTUC, namely a text file without Greek letters, and 
with only well defined protein and gene name IDs. Of course, this file must 
then be translated back to ASCII from Unicode, but that is a trivial task. For 
example, there is a program called Uni2Asc in the Unitex\App folder that 
does this conversion. 

 

4.3 Dictionaries / Ontologies 
Dictionaries are just as important in GeneTUC as they are in Unitex. In 

addition GeneTUC is dependent on its ontology (implemented in 
“semantic.pl” for the “ako” relations, and in “facts.pl” for the leaf nodes 
“isa” relations). The construction of ontologies is at least as time-consuming 
as the construction of dictionaries, and therefore new ways to automate this 
work should be found. 

For example, it should be possible to use WordNet to automatically 
classify unknown words into the GeneTUC ontology system, but there are 
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a few problems. First of all, the categories in GeneTUC and WordNet are 
far from 100% equal, even though the GeneTUC ontology is strongly 
“inspired” by WordNet. That means that GeneTUC must be adapted to fit 
the existing WordNet categories, before automation can take place. Second, 
also the formats of the ontologies are quite different between the two 
systems. In GeneTUC two elementary relations (inheritance and attributes) 
can be represented: “A Kind Of” or “Is A” (E.g. salt ako substance, and 
NaCl isa salt) and “Has A” (DNA has_a region). Since GeneTUC is a 
running system, the relation can only hold between well defined concept 
classes. This is not the case with WordNet (see Figure 2. WordNet 
definition of Salt), where the ontology entries are written as free-text. Still, 
with a few transformations, the simplified structure can be implemented in 
GeneTUC. The glosses can easily be stripped away, since they are already 
put in parentheses (watch out for nested parentheses!), and the comma-
separated lists of definitions can be implemented as multiple ako relations 
in GeneTUC. The only problem left then is the fact that it might be 
meaningless to have both compound and chemical compound as classes, but in 
the end that will depend on the actual use of the system. 
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5 Methods 

This chapter describes the work done with the Unitex system, and how 
it compares to GeneTUC methodology. 

 

5.1 Introduction 
The current end goal for a working biomedical parsing system, whether 

it is GeneTUC, Unitex-based, or any other parser, is to do automatic 
information extraction (IE) from the medical abstracts or full texts. In this 
project we are particularly interested in gene activation, and we want to 
extract information such as what gene/protein is the activator, what 
gene/protein is being activated, how reliable are the extracted facts, and 
what extra conditions must be satisfied. In order to start somewhere, a 
micro-biologist was asked to find around 50 sentences that contain facts 
about activation. Most of these sentences also contain the actual word 
“activate” in some form, but there are also a few sentences that use other 
words (e.g. X confer transcription of Y). 

After local grammars have been built for the given “activate-sentences”, 
a test will be run on a biological reference corpus, to see how general and 
applicable the graphs are. 

 

5.2 Text Sources 
This section describes the different sources that were used to acquire 

the text to parse. Most of the text is from the Medline abstracts database 
[39]. The first source contains an entire abstract that was previously used to 
train GeneTUC. The second source contains “random” single sentences 
selected by a biologist with the criterion that they should all contain facts 
about activation of a gene, protein or hormone. The third source is a 19.000 
sentences large biological reference corpus that will be used for testing the 
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finished local grammars in the end. This is the same text that was used to 
test GeneTUC earlier (abs2.txt). 

 

5.2.1 The Medline Abstract 

A Medline abstract about gastrin and CCK was used for preliminary 
testing, to see the number of unknown words, and how ambiguous the 
sentences are. It can be seen in Appendix A. This is the same abstract that 
was used to test GeneTUC in 2002, so it should be possible to compare the 
results, and the amount of work that is needed to successfully 
“understand” a text using either of the two different systems. 

 

5.2.2 59 Activate-Sentences 

Astrid Lægreid found more than 50 sentences describing the activation 
of different genes. Actually, the sentences are not only about gene 
activation. They also contain facts about protein and hormone activations. 
For the sake of testing the Unitex methodology, it is not so important 
whether they are genes, proteins or hormones. Genes and proteins quite 
often have the same names anyway, since a protein is usually made from 
one or more corresponding genes. Hormones actually have slightly 
different names, but the sentences about hormone activation have the same 
form and context as the gene/protein activation sentences. That means that 
we can merge the gene, protein and hormone dictionaries, and just treat all 
these names as subjects or objects of the activation relation (see Appendix D, 
Name-graph) 

 

5.2.3 Micro-Biological Reference Corpus 

The first micro-biological reference text was the same as that used to 
test GeneTUC earlier. It contained around 18.000 sentences, which is a little 
more than 5MB when it is stored in the Unicode format. 

Later a reference corpus with about 25.000 tagged tokens was acquired 
from “Centrum for Informations und Sprachverarbeitung” (CIS) at LMU in 
Munich. This reference corpus was also originally extracted from Medline, 
and it was used as a cross reference and aid during the classification of 
different medical words (primarily names) in this project. A program could 
be built that automatically classifies or suggest classification of words 
based on what tags they are given in such an already tagged reference 
corpus. This would save a lot of work, since every entity name would then 



 
METHODS 
 
 

 43

only have to be manually processed one time. Right now, every researcher 
always has to start from scratch, and often ends up solving problems that 
have already been solved by others. 

After all the graphs for the 59 activate sentences were finished, a test 
was run on “abs2.txt” to see how applicable the graphs were. The test 
results are given in 6.4. 

 

5.3 Preliminary Work with a CCK Abstract 
As a way of getting familiarized with Unitex, some preliminary work 

was done with a small familiar text sample (See Appendix A). The CCK 
abstract has previously been successfully parsed by GeneTUC, so resources 
such as the classification of previously “unknown words” were already 
available in the GeneTUC system. See Figure 22 for a step-by-step 
explanation of the transformations that were needed to import the gene 
names into Unitex via the DELA dictionary format. 

 
Manually: 
1) Delete header and footer 
2) Delete all lines beginning with % (Comment = Removed entries) 
3) Delete all gene(' 
4) Delete all '). 
5) Substitute \n with  ,.N+Gene\n 
 
Step 2-5 can be done with Perl Regular Expressions, like this: 
2) s/^%.*//; 
3-5) s/\('(.*)'\)/$1,.N+Gene/; 

Figure 22. Conversion from genes.pl (GeneTUC) to genes.dic (Unitex) 

 
After the gene, protein and substance names had been imported to give 

GeneTUC and Unitex a “common microbiological platform”, the following 
steps were taken: The CCK abstract text was stored in Unicode format, and 
then it was opened with Unitex. It was pre-processed in Unitex, with lexical 
parsing, but only using the standard dictionaries. 12 unknown words were 
found among a total of 137 words. 

 

5.3.1 Dictionary Update 
Since all the words from the CCK abstract had already been classified in 

GeneTUC, the possibility of automatic importation was explored. As many 
as 10 of the unknown words were gene/protein/substance names or 
identifiers, and should therefore be found in one of the GeneTUC files 
“genebase.pl”, “protbase.pl” or “substance.pl” in the “genes” or “database” 
folders. There are also two files, “genecmpl.pl” and “protcmpl.pl”, that 
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contains “Multi Word Units” (MWUs, or full forms) that mapp to each of 
these identifiers. All these files were auto generated from a nomenclature 
resource on the Internet [30]. 

The converted gene, protein and substance names dictionary were 
applied as default lexical resources, and text pre-processing were done 
again, but this time with all dictionaries applied (see 3.7.3). Unfortunately, 
most of the unknown identifiers were not found in new dictionary files. 
The reason for this is that all the “handcrafted” additions (during the 
GeneTUC work with this abstract in 2002) were put directly into the system 
file “facts.pl”. This practice should be changed in later versions of 
GeneTUC, to ensure that the system remains as modular as possible, and to 
allow for better “cooperation” with other systems. For now, the missing 
identifiers were manually copied from “facts.pl” to Unitex, and stored in the 
dictionaries that were automatically extracted from GeneTUC (genes, 
proteins and substances), see Figure 22. 

 

5.3.2 Disambiguation 

After all the unknown words had been put into the right dictionaries, 
“Finite State Transducers” (FSTs) were (automatically) constructed for the 
11 sentences. This turned out to be a good starting point for the 
disambiguation task, since all possible parses are then represented in the 
graph, and after removing all the invalid nodes from the graph, only the 
right path (the disambiguated sentence) will be left. There were a few 
words where the correct dictionary entry did not exist, and therefore none 
of the suggested paths through the graph were the correct one. This was 
then solved by adding the correct entry into the graph manually, to avoid 
having to do re-preprocessing of the text, since that would delete the 
disambiguation work that had already been done. In addition, the word-
entry was added to the appropriate dictionary so that it would be taken 
into account when preprocessing was done the next time. 

 

5.4 Work on the “Activate” Sentences 
This section describes the experiments that were done with the Unitex 

system on the collection of Medline sentences about gene/protein/hormone 
activation listed in Appendix B. 
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5.4.1 Preliminary Work 

The “activate-sentences” were first stored in Unicode text format, and 
pre-processed with Unitex, just like the CCK abstract. All standard 
dictionaries were used, including the imported gene, protein and substance 
dictionaries from GeneTUC (see 5.3.1). FST automata were constructed to 
see how ambiguous each sentence was. Some facts about the sentences are 
given below: 
•  The 59 sentences consisted of 1514 words (27 words per sentence), but 

just 500 different words. 
•  Of the 500 words, 52 were unknown words (not already in the 

dictionaries). See Figure 24 for a list of these words and the sources that 
were utilized to find their right semantic classes etc. 

•  Different forms of “activate” (activates, activated, activating) occurred 
23 times in the text, “activation” occurred 25 times, and activator 1 time. 
That means that at least 10 of the activate-sentences did actually not 
contain any use of the word activate. 

•  The original text was slightly modified, but only in order to avoid the 
Greek-letters errors. 
 

5.4.2 Sentence Delimiters 
During pre-processing, the 59 sentences were (wrongly) split into 61 

sentences. Three extra sentences were made because of periods in 
abbreviations (e.g. “Fig. 3”), and two separate sentences were joined 
because the second sentence was started by the name “p53” (with a small 
“p”). There were two occurrences where a semicolon was (correctly?) 
interpreted as a sentence-delimiter. 
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Figure 23. Modified Sentence.grf to correctly detect sentence boundaries 

 
The way to solve these delimiting problems is by modifying the 

Sentence.grf file (in the Graphs/Preprocessing/Sentence folder) before 
doing pre-processing again. “Fig.” was added as a “cas particuliers” 
(particular case) in this graph (see Figure 23). This means that a period does 
not count as a sentence delimiter when it follows directly after the word 
“Fig”. “p53” were also added to the graph, as a legal sentence starter, even 
though it is written with a small p. These changes will not have any effect 
on the original text before the Sentence.grf file is recompiled into an fst2 file 
and pre-processing is done again. After this was done on the original 
“50activate.txt” file, 59 sentences were correctly recognized. 

It is worth noting that every time pre-processing of a text is done, all the 
files that are stored in the corresponding text_snt folder are deleted, and 
new ones are created. That means that no useful external data should be 
store in the text_snt folders! 

 

5.4.3 Dictionary Update 

The 52 unknown words (except for a few obvious errors in the original 
text) were added in a new dictionary file in the “Dela” directory. This file 
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was later compiled into a .bin file, so that it could be used together with the 
system dictionaries during lexical parsing. Figure 24 shows the sources that 
were used in order to classify the unknown words with correct semantic 
tags. See Figure 26 for the actual semantic classifications. 

 
Word Source 

AKT http://www.sigmaaldrich.com/Area_of_Interest/Life_Science/Cell_Signa
ling/Pathway_Slides_and_Charts/Akt_Signaling.html 

Akt See AKT 
AP-1 http://journals.endocrinology.org/joe/169/joe1690447.htm 

http://www.biochemj.org/bj/360/0599/3600599.pdf 
Autoregulation http://www.cogsci.princeton.edu/cgi-

bin/webwn1.7.1?stage=2&word=autoregulation&posnumber=1&searcht
ypenumber=-2&senses=&showglosses=1 

Bn http://www.nature.com/cgi-
taf/DynaPage.taf?file=/mp/journal/v7/n1/full/4001974a.html 

BW2258U89 http://www.alzet.com/bibliography/bib_pages/ia.htm 
CCKB http://www.uni-

mainz.de/FB/Chemie/Biochemie/Fahrenholz/abstr_16.html 
CeA http://www.biomeda.com/site/cat/K052/specsheet.html 
Cis Astrid Lægreid 
Colocalisation WordNet 
CRE GeneTUC 
CTA http://www.conditionedtasteaversion.net/ 
Diacyl-Glycerol WordNet: http://www.cogsci.princeton.edu/cgi-

bin/webwn1.7.1?stage=2&word=glycerol&posnumber=1&searchtypenu
mber=-2&senses=&showglosses=1 

Dudai Original text 
FSH Original text, WordNet 
FSK GeneTUC 
GPCRs GeneTUC. www.gpcr.org/7tm/ 
hGRP-R In the text by Qu 
HuTu 80 http://www.biotech.ist.unige.it/cldb/cl1780.html 

http://www.aphis.usda.gov/ppq/manuals/pdf_files/APM%20in%20PDF/
APM.pdf (cell “part of” organism) 
Definition in the text by Qu 

ICER Definition in the text by Don 
Immunoblots http://www.ndif.org/Terms/immunoblots.html. Useful: Automatic 

dictionary creator. 
kDa From Astrid Lægreid 
Kg Kilogram 
Ksmall Error because of bad Greek letter handling 
Lamprecht Name, Author 
LH From original text 
LiCl Chloride = salt 
Lydig Used as Adjective 
MAPK From original text 
Mg Common sense: milligram 
Microdomains Obvious: Domain 
mRNA Obvious: RNA 



 
 
 
 
 WORK ON THE “ACTIVATE” SENTENCES 
 
  

 48

mRNAs See mRNA 
NaCl Chloride = salt 
Octamer From original text 
PDKs From original text 
Pheochromocytoma Used as Adjective 
Phosphatidylinositol http://www.lipid.co.uk/infores/Lipids/pi/ 
Phosphatidylinositol-
biphosphates 

http://acer.gen.tcd.ie/cgi-bin/khwolfe/gene.pl?name=PIP2&junk=no 

Phospholipase http://www.biochem.ucl.ac.uk/bsm/enzymes/ec3/ec01/ec04/ec0003/ 
(Good Enzyme Classification reference!) 

PKA From text 
PKC From text 
PVN From text 
pp90rsk http://www.colorado.edu/Chemistry/directory.dir/faculty.dir/biochem.d

ir/ahn.dir/ahnres.html 
SIIA Used as Adjective 
Small beta,Greek ERROR: Because of conversion from PDF to Word-format. Greek letters 

were translated into text-strings such as this one. See 2.4.5. 
Somatostatin http://arbl.cvmbs.colostate.edu/hbooks/pathphys/endocrine/otherendo/s

omatostatin.html 
Spermatogenic Used as Adjective 
SRE From original text 
TGACGTCA Obviously a DNA sequence 
Transactivation Obvious=Activation 

Figure 24. Information sources for unknown words 

 

5.4.4 Greek Letter Problem 
To deal with the Greek-letters problem the original text was changed in 

the following way: “Small beta, Greek” was replaced by “b” and “Small 
gamma, Greek” was replaced by “g”. For a discussion about this problem 
see section 4.2. 

 

5.4.5 Re-Preparsing 

After the original text and dictionaries had been changed to account for 
unknown words and Greek letters, pre-parsing had to be done again. 
During pre-parsing, all the preliminary work that was already done was 
deleted from the working directory “50activate_sen”. Of course, it was 
much faster doing the job the second time, since the new dictionary was 
then already in place. 
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5.4.6 Disambiguation 

Working with the automatically constructed FST-Text (graphs), it is 
possible to quickly disambiguate the input sentences manually (see section 
3.8). When the FST-text is modified in this way, each modified sentence will 
be stored in the working directory (e.g. 50activate_sen). NB: Be sure to copy 
this files out of the working directory to a safe place before you reset, 
rebuild or pre-process your graphs or text, because then all files in the 
working directory will be deleted. 

Several problems were encountered during the disambiguation work. 
These include things such as MWUs that are not listed in the dictionaries, 
single words that are highly ambiguous and cases where it is not really 
clear which tag that should actually be used. One example is sentence 
number 3 (see Appendix B): “ICER down regulates CREB expression”. The 
reason for this is that “down regulates” is really a compound verb, and 
should be represented as that in the DELACF-dictionary. This addition and 
others like it were done in the third iteration of pre-processing the text. 
Ideally, the text should only have been pre-processed one time, but because 
of “learning-by-doing”, it is sometimes necessary to start all over again. 

 

5.4.7 Building Graphs 
After the text was finally disambiguated, the next step was to build 

graphs that would match all the “activate”-facts in the text. This is tedious 
work and a lot of choices have to be made about modularity, 
recursion/iteration and semantics. The entire process is described in this 
section. 

 

5.4.7.1 Modularity 
A main goal during the graph building is to build separate units that 

can be reused later. That means that the graphs will be modified and 
“added on to” later, but never in such a way that they no longer work in 
their original settings. This requires some clever choices about which 
sentences should be merged in one graph, and which ones should be 
modelled in different graphs. In the beginning this will require some trial-
and-error attempts, but after a while one gets a better intuition about the 
problem, and some golden heuristics can be made. For example, sentences 
that seem to have similar parse trees should be kept in the same graph. 

Another criterion for how graphs should be split and merged is 
according to what semantic relations they express. This will be discussed in 
the semantics sub-section below. 
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5.4.7.2 Recursion 
Since the microbiological language is usually very complex and 

contains quite long sentences, it is necessary to use many sub-graphs in 
order to fit an entire sentence into one graph. The graph size can be 
somewhat increased to account for this problem, but if the graphs get much 
bigger than A4 paper size, the risk of losing track of the details increases 
dramatically. Of course, too much recursion can also cause problems, so 
one has to strike a balance between graph size, and recursion depth. 

Another problem with recursion is the risk of ending up with non-
terminating automata. Recursion is accepted in Unitex, because there is a 
mechanism to handle it. This mechanism is probably just a cut-off limit, so 
after a certain amount of nesting, the next recursive call is simply not 
executed. 

An alternative to recursion is iterations, meaning that a loop is formed 
in a graph. This has more or less the same advantages and disadvantages as 
recursion. Iterations allow for longer sentences to be put into one graph, 
without making too many sub-graphs. This is especially true for sentences 
of the form “X activates A, B, C, D and E”. The A-E entities in this sentence 
usually have a lot in common, and should therefore be modelled in the 
same graph. Then, this sub-graph can be iterated, just by inserting “,” or 
“and” between each iteration. This works well in order to recognize 
sentences of this form, but if the graphs were to be “run in reverse” to 
produce all such sentences, two problems will appear. First, the production 
will produce sentences of the form “X activates A, A, A, A and B”. Second, 
it will go on doing that forever, without ever terminating. In other words, a 
choice must be made about what is more important, easy functional graph-
building contra time-consuming but 100% versus graph-building. Again, 
this really depends on what the end goal and the intended use of the 
system is. 

 

5.4.7.3 Semantics 
The end goal of the system is to extract meaningful semantic relations 

from the graphs, or actually from the sentences that the graphs recognize. It 
is important to keep this in mind as the graphs are being built. For 
example, when one graph is getting too big and must be split into multiple 
separate graphs or recursive/iterative sub-graphs, it is important to think 
about things such as anaphoric resolution. 
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“Activated PKA localizes to the nucleus where it phosphorylates CREB on Ser-133 and 
activates it” 

Figure 25. Anaphoric sentence 

 
In a (quite short) example sentence as in Figure 25, there are two 

occurrences of the word “it”. In order to determine what “it” means, 
anaphoric resolution must be done. This is usually quite easy for humans to 
do, and it is more or less obvious to us that the first “it” refers to 
“(activated) PKA” and the second “it” refers to “CREB”. For the computer, 
on the other hand, explicit rules must be made about how anaphoric 
resolution should be done, and these rules are usually not straightforward. 
In any case, it will be much easier to make such rules when “it” occurs in 
the same graph as the antecedent (what is being pointed to). 

When the antecedent occurs in the same graph as the anaphoric 
reference, Unitex can use variables to solve the problem of anaphoric 
resolution (see 3.5.1). The box that will match the antecedent can be 
identified already when constructing the graph and the value that matches 
this box can be stored in a variable. Then, the box that matches the 
anaphoric reference could be identified, and the anaphoric reference could 
be replaced by the value in the antecedent-variable. This would give a 
disambiguated sentence in terms of anaphoric resolution, because all 
references have been replaced by semantically meaningful antecedents. 

If the sentence in Figure 25 was to be split between two different 
graphs, at the “and”-conjunction for example, then anaphoric resolution 
would be a little bit harder. First of all, because it is a technical challenge to 
pass variable values between different graphs, and second, because it 
would be much harder for the graph creator to keep track of what is going 
on. Some of the modularity of the system would also be lost in the process 
of splitting this sentence between different graphs, because there would 
then be a connection between the two new graphs. The second graph 
would then always expect the first graph to store an antecedent value in a 
given variable, and this does not agree with the “modularity thinking”, 
which says that all graphs should be separate, reusable modules. 
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6 Results and Discussion 

This chapter will discuss the results that were acquired with the Unitex 
system when it was applied to the different Medline text samples. 

 

6.1 Introduction 
The graphs that are being built must be general enough to also accept 

sentences that are not explicitly programmed. That means that if we have 
training examples such as “X activates A”, “X activates B” and “X activates 
D”, then the very similar sentence “X activates C” should also be 
recognized by the system. This means that we have to introduce abstract 
graphs such as “X activates <Noun>”, but if too many such abstractions are 
introduced, the system will end up also recognizing incorrect or “false” 
sentences. 

The results from the tests and the lessons learned during the different 
work phases will be summarized in this chapter. 

 

6.2 The CCK Abstract 
Here are the results from the preliminary work on the CCK abstract 

summarized. During the importation of gene, protein and substance names 
and identifiers from the GeneTUC system, a flaw was discovered. These 
names should all reside in files that were automatically generated and 
updated based on different internet ontology resources. The problem was 
that several new entity names have later been added to the system, and 
they have then been put in other files. Most of the new entries can be found 
in the “facts.pl” file where they are mixed with all other entities (such as 
face, plasma, Værnes and politiet) making it harder to extract only gene, 
protein and substances names. 

In the end, only the entities that were listed in the gene, protein and 
substance file were imported into Unitex, and the 12 unknown words in the 
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CCK abstract were then added manually to these dictionaries. In the future, 
the protein, gene and substance entries in the GeneTUC file “facts.pl” 
should be extracted and put into the right separate files, in order to keep 
GeneTUC as modular as possible, and making it easier to incorporate 
external sources. 

It was much quicker building grammars for the 11 sentences using 
Unitex than it was with the TUC-grammar in the last GeneTUC project. 
This can be because the text was already well-known when it was 
processed in Unitex. Another reason can be the fact that in the GeneTUC 
project, considerations had to be made all the time about how to keep the 
whole existing system running as good as before, when changing it to add 
new rules. This is probably not just a problem of GeneTUC, but of any 
system that grows so big. 

 

6.3 “Activate” Sentences 
This section will summarize and discuss the results from the work on 

the 59 activate-sentences. 
 

6.3.1 Sentence Boundary Detection 
The 59 sentences were first split into 61 sentences, because of three 

periods in abbreviations (e.g. “Fig. 3”) and one sentence starting by the 
name “p53” (with a small “p”). This means that the boundary detection 
graph (Sentence.grf) was 93% (55/59) accurate on these sample sentences. 
After two simple updates to the sentence delimiting preprocessing graph 
(see 5.4.2), it was working 100%. Semicolons were treated as sentence-
delimiters, but that is really just an arbitrary choice that has to be made. 

 

6.3.2 Dictionary Update 

The 52 unknown words were added to a separate dictionary 
(50activate.dic in the Dela folder), according to Figure 26. This dictionary is 
listed in DELAC format in Appendix C. Figure 27 shows how the semantic 
classes of these entries fit into the GeneTUC (and WordNet) ontology. 
When searching for the 52 unknown words in the activate-sentences, it was 
discovered that they constitute almost 4% of the total text. That means that 
every 26th running word is an unknown. 
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The following tables explain what synonyms and hypernyms were found for each word. 
Classes in parentheses () means that they are not part of the semantic network in GeneTUC, 

but they are listed in the WordNet ontology 
Asterisk (*) before a term means that it is a complex term, consisting of multiple words or 

numbers 
Word Synonyms (GeneTUC) Class 
AKT PKB Kinase 
Akt PKB Kinase 
* AP-1 Activator Protein 1 Protein 
Autoregulation  Process 
* phosphatidylinositol-
biphosphates 

PIP2 
PI(4,5)P2 

Protein 

Bn Bombesin, GRP Substance 
BW2258U89  Antagonist 
CCKB cholecystokinin B (often as ADJ before 

receptor) 
Receptor 

CeA Carcinoembryonic Antigen Antigen 
Cis On this side Prefix (PFX) 
Colocalisation  Activity 
CRE CAMP Responsive Element Element 
CTA Conditioned taste aversion Aversion 
* diacyl-glycerol DAG (Glycerol) 
Dudai Name Author 
Calcium From periodic table Element 
FSH Follicle stimulating hormone Hormone 
FSK Forskolin Substance 
GPCRs G protein-coupled receptors Receptor 
* hGRP-R human gastrin-releasing peptide 

receptor 
Receptor 

HuTu 80 (ADJ before 
cells) 

duodenal cancer (Cell_line) 

ICER Inducible cAMP early repressor Protein 
Immunoblots  Technique 
kDa  Measure 
Kg Kilogram Gram (!) 
Ksmall ERROR N/A 
Lamprecht Name Author 
LH luteinizing hormone Hormone 
LiCl lithium chloride/salt Salt 
Lydig Often ADJ before cells  
MAPK mitogen-activated protein kinase Kinase 
Mg Milligram Gram (!) 
Microdomain  Domain 
mRNA Messenger RNA RNA 
mRNAs See mRNA See mRNA 
NaCl Natrium Chloride Salt 
Octamer 8-mer Sequence 
PDKs Phosphoinositide dependent kinases Kinase 
Pheochromocytoma  Cell_line 
Phosphatidylinositol  Lipid 
Phospholipase  Enzyme 
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PKA Protein Kinase A Kinase 
PKC Protein Kinase C Kinase 
PVN Para ventricular

nucleus (of the hypothalamus) 
Nucleus 

* Pp90rsk pp90 ribosomal S6 kinase Kinase 
SIIA human gastric cancer ADJ to cell 
Small beta, Greek Error N/A 
Somatostatin  Hormone / Gene 
Spermatogenic ADJ->wave, process, stage  
SRE serum response element Element 
Testosterone  Hormone 
TGACGTCA DNA-sequence Sequence 
Transactivation “other side” activation Activation 

Figure 26. Unknown words semantic classifications 

(GeneTUC) Class Hypernyms (WordNet entries in parentheses) 
Activation Activity, Thing 
Activity Thing 
Antagonist (Drug), Agent, Thing 
Antigen Substance, Thing 
Author Person, Animate, Agent, Thing 
Aversion (Dislike), Feeling, Abstract 
Cell_line Cell, thing 
Domain Region, surface, place, thing 
Element Part, Thing 
Enzyme protein, component, part, thing 
Glycerol (Alcohol), Liquid, (Fluid, Substance), Mass, Thing 
Gram Measure, Thing 
Hormone (secretion), Thing 
Hormone / Gene (Secretion / Agent), Thing 
Kinase Enzyme, protein, component, part, thing 
Lipid Substance, Thing 
Measure Thing 
Nucleus Place, Thing 
Process Activity, Thing 
Protein Component, Part, Thing 
Receptor Protein, Component, Part, Thing 
RNA Agent, Thing 
Salt (Compound), Substance, Thing 
See mRNA See mRNA 
Sequence Set, Thing 
Substance Thing 
Technique Science, theory, abstract, thing 

Figure 27. GeneTUC (and WordNet) ontology extract 
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6.3.3 Disambiguation 

All the sentences were disambiguated and automatically stored in files 
called sentenceX, where X is the current sentence number. During this 
work, a lot of “meaningless” dictionary entries created a bit of extra work. 
One of the strange cases was that “and” is classified as a verb. This means 
that every time “and” is used (and that happens in almost all the medical 
sentences), there will always be an extra verb-box in the graph. Each such 
extra box doubles the amount of possible paths through a sentence graph, 
and also requires an extra amount of time during the manual 
disambiguation process. So far, there have been no sentences where “and” 
is actually used as a verb. Therefore, it would probably be a good idea not 
to classify it as a verb until this is really needed. This can be accomplished 
by applying filter dictionaries (see 3.7.4) similar to that done to avoid 
tagging “a” and “as” as Nouns. 

It turned out later in the project that it is not really necessary to 
disambiguate the training text in order to build local grammars, because 
when the local grammar graphs are applied, e.g. to locate patterns in a text, 
the disambiguated version of the text is not taken into account. This means 
that when a search is done for all verbs (<V>), “and” will also be listed, 
even though it is no longer marked as a verb in the disambiguated FST 
automaton. Only the untagged text and all matching dictionary entries are 
used in order to find such pattern matches. So to avoid un-meaningful 
results such “as” matching the indefinite article lemma form <a> or “and” 
matching <V>, the changes must be done using (filter-) dictionaries, and not 
by using FST disambiguation. 

Even though disambiguation of the sentences was not necessary, it was 
still a good thing to do, since it shed some light on the complexity and 
some common problems of the training sentences. Two such problems will 
be described below, with some examples. 

 

6.3.3.1 Multi Word Units (MWUs) 
During the disambiguation process, it became apparent that some of 

the single words could not be meaningfully tagged at all. One such 
example is the phrase “as well as”. This phrase is obviously used as a 
conjunction, but when trying to tag each word, one ends up with 
something like “<PREP> <ADV> <PREP>” which contains no clue that we 
are dealing with a conjunction. One could also imagine tagging the phrase 
as “<PREP> <ADV> <CONJ>” but that would mean that “as” is a 
conjunction, which is not really true. Other examples of phrases that should 
be added as MWUs to the dictionaries or modelled using lexicon grammars 
(see below) are given in Figure 28. The sentence numbers in this figure refer 
to the number given to each sentence in Appendix B. 
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Sentence#: MWU (POS) 
6: Cis-acting  (Adjective) 
19: cAMP-activated (Adjective) 
38: Phospholipase C (Noun) 
40: Fig. 1A  (Noun) 
41: p85/p110 PI 3-kinase (Noun) 
44: as well as  (Conjunction) 
47: PI3K   (Noun) 
50, 53: ser133  (Noun) 
51: Bn-induced  (Adjective) 
51: GRP-R  (Noun) 
54: FSH induced  (Adjective) 
54: Stress-activated (Adjective) 
56: GAL4-CREB  (Noun) 
57: PC12   (Noun) 

Figure 28. Sample MWUs 

 
“cAMP-activated”, “Mitogen-activated” and “stress-activated” belong 

to a class of special MWUs. The size of this class has the same infinite 
nature as the class of personal nouns. New names are being created all the 
time. Therefore, instead of trying to put all these MWUs directly into the 
dictionaries, a (lexicon grammar) rule should be made, and this rule should 
state that all nouns with the semantic tag “+activator” could stay in the 
place of X in the following MWU adjective: “X-activated”. This is easy to 
accomplish with graph building in Unitex. 

 

6.3.3.2 Gene/Protein Ambiguities 
The ambiguity between genes and proteins is a particularly tricky 

ambiguity (see 2.4.2). So far in the disambiguation work the distinction 
between these to groups has not been very firm. However, as more and 
more facts are extracted, this distinction could be used, for example, to limit 
the number of hits from a database search. Therefore, some firm rules 
should be used later to make this distinction correctly. The golden heuristic 
that was used in this project was that “gene” was chosen as the correct tag 
for a named entity when it was listed as both gene and protein in the 
dictionaries. Exceptions were made when it was obvious from the context 
that the name was referring to a protein. 
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6.3.3.3 Disambiguation Heuristics 
A few other “arbitrary” choices had to be made during the 

disambiguation work, and to keep the results consistent it is necessary to 
make the same choice every time. Therefore, golden heuristics were written, 
every time such a general choice had to be made. Two examples of such 
heuristics are given here. 

The first example is the choice between preposition (PREP) and particle 
(PART) tags. This applies most often to the word “to” which is the infinite 
verb particle: When the word and the following phrase can be removed 
without breaking the completeness of the sentence, then the word should 
always be tagged as a preposition in a prepositional phrase (also called a 
complement, which means it is not a necessary part to form a whole 
sentence). When the word is standing directly before a verb in infinite 
form, the tag should always be particle. 

The second problem is when dealing with MWUs. Unitex will as 
always suggest all alternatives, meaning the words can be tagged 
separately with separate tags, or together with one MWU tag. In these cases 
the MWU tag would normally be preferred, but sometimes the first word 
of the MWU is connected with a hyphen to the previous word in the 
sentence. Then, closer inspection is needed, but usually separate tags for all 
the words will be preferred, because the hyphen only connects semantically 
to the first word, and not the entire MWU. 

 

6.3.4 Semantic Problems 
During the first graph construction work with the sentences, problems 

were encountered regarding how to split the sentences into modular parts, 
to make them fit into the graph representation. Later, the challenge was to 
find out what semantic output the different sentences were really supposed 
to produce. The reason for this is that some of the sentences are very 
technical, and not always easy to understand for a non-microbiologist. A 
few of the semantic questions and the answers from our micro-biologist are 
listed in Figure 29, with reference to the corresponding sentence number in 
Appendix B. 
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Sentence# Question 
Answer 
6 This sentence does not use the word “activate” in any form. What is actually being 

activated by what? Which word signals that activation is going on? 
Answer: “CREB activates transcription”. This means that the sentence does not really fit the 

criteria that it should be about gene or protein activation, since “transcription” is a 
cellular process. 

7 The first part is ok. Second part: Is “phosphorylates” equal to “activates”? 
Answer: “PKA phosphorylates CREB”. Proteins (such as CREB) are often activated by 

phosphorylation, but there are also many examples where proteins are being de-
activated by phosphorylation. 

8 Without the word “activate” (See #6). What is being activated? Is “Recruit the 
transcription machinery” equal to “activate” or is “phosphorylated CREB” equal to 
“activated CREB”? 

Answer: phosphorylated CREB = activated CREB! 
9 Without the word “activate”. What is being activated, and by what? 
Answer: “cAMP activates PKA”, “PKA activates CREB” and “CREB activates transcription” 
10 “Activate it”. What is “it”? (Is “it” Ser-133?) 
Answer: “PKA activates CREB”. 
“It” is probably CREB. 
13 What is being activated, and by what? 
Answer: “FSH activates ICER isoform of CREM” 
14 What is being activated, and by what? 
Answer: “FSH activates ICER” 
17 The question in all the remaining examples is basically always: “What is being activated, 

and by what?” so only the answers are given below… 
Answer: “LiCl activates c-fos (transcription)” and “LiCl activates ICER (transcription) 
18 
Answer: LiCl activates c-fos (expression) 
19 
Answer: “Lithium (Chloride) activates c-fos (expression)”, “Lithium activates cAMP 

signalling pathway (PKA, actually)”, “cAMP signalling pathway (PKA, actually) 
activates CREB” and “CREB activates c-fos (expression)” 

20 
Answer: "LiCl activate CREM (expression)” 
21 
Answer: “LiCl activates CREM (expression), is implied by the sentence” 
22 
Answer: “LiCl activates ICER” 
24 
Answer: “LiCl activates c-fos” and “LiCl activates ICER” (CREM gene, actually) 
25 
Answer: Answer: “LiCl activates c-fos” and “LiCl activates ICER” (CREM gene, actually) 
26 
Answer: “LiCl activates c-Fos” 
27 
Answer: “LiCl activates c-fos” 
29 
Answer: “LiCl activates MAP kinase” 
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31 
Answer: “LiCl activates ICER (CREM gene, actually)” 
32 
Answer: “LiCl activates c-fos” and “LiCl activates ICER” (CREM gene, actually) 
37 Extracted fact: “In particular, activation of the p38-MAPK pathway by gastrin.” Is the 

condition “…have never been studied” important? 
Answer: “Gastrin activates p38-MAPK (signalling) pathway” 
55 
Answer: Bn activates transcription factor AP-1” 

Figure 29. Semantic challenges 

 
In Figure 29 many of the sentences express two or more different 

activation facts, and often without using the word “activate” at all. In order 
to simplify the information extraction somewhat, it would be a good idea to 
focus only on gene and protein interaction, because then there would 
usually be only one fact to extract per sentence. The other activation-facts 
are about processes, secondary messengers and so on (for example, 
sentence 9). 

Here are some other conclusions that are based on the answers to the 
general semantic questions above: 
•  Transcription (of a gene) = (gene) expression (Example #17 and #18) 
•  “Activation” is just as interesting as “de-activation” 
•  The same fact is usually expressed more than one time in the same 

abstract/article, sometimes as many as 10 (See sentences #17-#32)! 
 
When asking the questions in Figure 29 the hope was to get simple facts 

back, and then implement these facts as output into the already existing 
graphs. It turned out, however, that many of the answers were even more 
complicated than the original sentence itself. This gives reasons to believe 
that simple “black and white” answers might not be what the biologists are 
looking for in the first place. In the future, we really need to work much 
closer together with the biologists, and try to understand what their needs 
are, before implementing a system to try and solve these needs. 

 

6.4 Biomedical Corpus 
In the end the completed graphs were tested on the 5MB biomedical 

reference corpus, containing about 18.000 sentences. This was to see if the 
graphs were applicable also on texts that the system was not specifically 
trained to handle. 

From the 18.000 sentences about 400 facts were extracted. That means 
that one activation-fact was found for every 50th sentence. The real ratio is 
probably much higher, but this number (2% activation-fact per sentence) is 
still good, because it shows that the graphs have some generality in them, 
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after being trained on only 59 sentences. A problem with the extracted facts 
was that many of them only contained the activated entity, and not the 
activator. After closer inspection it is evident that this is because many of 
the activators in the test set were not in the Unitex dictionaries, and 
therefore could not be matched by any Unitex graph. 

 

6.5 Building Graphs 
This section contains a general discussion about the graph-building 

work, and a few notes that can be useful to others undertaking such work 
later. 

 

6.5.1 Different Stages 
The building of the graphs went through three more or less well 

defined iterations. The first iteration felt like putting different sentences 
together almost at random, but it was soon discovered that many sentences 
were too long for all the words to fit beside each other in one graphpage, so 
the second iteration consisted of constructing subgraphs to cluster groups 
of words together and represent them as just one box (subgraph). These 
graphs were made so that words that often stood together in different 
sentences were put into the same subgraph. That allowed entire sentences 
to be represented in the main (top node) graph while still maintaining the 
desired left-to-right reading property. As the number of subgraphs grew, it 
became obvious that a good naming scheme was needed. It took some time 
to work this out, and that means that some graphs had to be completely 
rearranged later, and a few of the graph names had to be changed. It is a 
good idea to avoid this, because it will definitely introduce some new 
errors into the system, e.g. sentences that were recognized by the old graph 
might not be recognized by the new graph, and it will often take a lot of 
debugging to figure out exactly why. This phenomenon also happens for 
example when a function name is being changed in the code of a big 
program: When the name of a function is changed, all the places that call 
this function must also be updated. There is no support for such name 
changes in Unitex, so a lot of time will be spent doing this manually, and it 
is very easy to miss something, and get strange errors. 

The third iteration was caused by the fact that too many different 
semantic meanings often ended up in a single graph, making it hard to 
extract meaningful facts from these specific graphs later. So another 
rearrangement consisting of splitting the graphs with ambiguous meanings 
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into separate disambiguate graphs had to be done. This caused the 
“height” of the graphs (number “of lines” or “parallelism” in the graph) to 
increase, since different paths leading into one “ambiguous” box, now had 
to go to new separate disambiguated boxes. That also means that some 
boxes had to be duplicated, which is generally not a good thing, because 
then all subsequent work on the specific boxes must also be duplicated. 
Still, this is necessary, since the semantic output from the different boxes in 
the end must be different. For example “activation of X” can mean that X is 
being activated in one sentence, but that X is the activator in another 
sentence. 

 

6.5.2 Naming Scheme 

Different abstractions were tried in order to find good names for the 
subgraphs during the construction work. This consisted of splitting the 
sentences into well defined semantic and/or POS-based units. This turned 
out to be harder than expected, because quite often there would be an 
overlap between the units, and this would often be discovered long after 
the choice was made and the graph already constructed. The most 
successful abstractions were those including Gene Name Noun Phrases 
(POS), and the Activator/Activated (Semantic) sub-graphs. Since 
Protein/Gene name discovery in biomedical texts is considered a more or 
less solved problem [6], it is not necessary to be too careful about the 
explicit content of these graphs. In this work, these graphs were simply 
manually filled with the explicit coding of the names as they appeared in 
the text. For the sake of building a complete system later, it is very 
important to find one of these systems that does protein/gene name 
discoveries in medical texts, because the current solutions are either too 
slow (manually coding every entry) or not accurate enough (importing 
probable entity names from nomenclature resources on internet). 

Another very successful abstraction/naming scheme for the graph-
building work was to make separate subgraphs for every prepositional 
phrase (PP), based on what leading preposition they contained. This was 
very practical when new sentences were added into the graph system, 
because one only had to identify the prepositions of the sentence, and then 
it was already obvious how the sentence should be split into subgraphs. 
The problem with this approach was that it sometimes led to “collisions” 
with the “gene name, activator and activated” naming scheme. Many 
sentences are on the form shown in Figure 30, and then a choice must be 
made whether “of Y by Z” should be coded by the “of” and “by” PP-
graphs, or by the “activated” and “activator” sub-graphs. Regardless of 
what choice is being made, these different forms should be located close to 
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each other in the parent graph, to ease the work later of debugging and 
add-ons to the system. 

 
Ser-133 phosphorylation of CREB by PKA 

Figure 30. X Activation of Y by Z 

 
Another problem with the PP-graphs naming abstraction became 

evident later, as semantics were incorporated into the graphs. For example, 
the PP-graph called "inPP” (Appendix D), contains prepositional phrases 
with very different semantic meanings, and the only thing they have in 
common is the fact that all this phrases start with the word “in”. Because 
the semantics of these phrases are so different from each other, it would be 
better to spread them across different graphs. This is already partly done 
for example with the “InResponseToPP” graph. 

 

6.5.3 Time Representation 

Many sentences in the biomedical domain contain sentences describing 
the timing between different events, or the duration of one specific event. It 
would therefore be useful to build dedicated subgraphs to represent such 
sub-sentence fragments. This was not done in this project, because too few 
“time” examples occurred for any useful generalizations to be made. E.g. 
the occurrences that appeared were just “hard coded” into the appropriate 
higher-level graphs. 
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7 Future Work 

This chapter will give an overview of what tasks that should be solved 
during the rest of this PhD work. 

 

7.1 Results and Standards 
Before this work can be taken any further, with GeneTUC or Unitex, it 

is important to decide exactly what we want to extract from the biomedical 
texts. It is apparent that simple “X activates Y” facts are usually not what 
should be extracted, because the reality is almost always more complex 
than that (see 6.3.4). 

In this project an attempt has been made to parse entire sentences, just 
like it is being done in GeneTUC, but this might be a waste of time if the 
real goal is just to extract activators and their activated entities. Additional 
facts that could be extracted with the activation facts include: 
•  …by method 
•  …in cell/area 
•  …with certainty 

 

7.2 Unitex Integration with GeneTUC 
The thesis work has been an effort to identify specific ways that 

“interesting facts” are actually written in the texts at our disposal. This was 
done with the graph drawing tool Unitex, but the results are also directly 
relevant to GeneTUC, as the same sentences should ideally also be 
recognized by TUC’s grammar. Different ways of integrating the two 
systems will be discussed below. 
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7.2.1 TQL-Code 

Since Unitex consists of Finite State Transducers (FSTs), it can produce 
output as well as “understanding” the input. This means that one way of 
integrating the two systems, is to let Unitex do the preliminary parsing, and 
then produce TQL-code that can be further processed by GeneTUC, e.g. in 
question-answering tasks. This would be very efficient, since FSTs are 
much faster than context sensitive grammars of TUC. The problem is that 
FSTs are not as expressive as the TUC grammar, and they might not 
recognize all the sentences of interest (Or it would take a huge amount of 
work to build all the corresponding local grammars!) 

Another problem with the TQL-code is that no formal specification 
exists, because the format has been made bit by bit, in a slightly ad-hoc and 
pragmatic way. And since the TQL-code “standard” is subject to 
modification at any time, it is a little like shooting a moving target. In other 
words, if TQL-code is chosen as the future language of choice to formulate 
golden standards for example, the first step should be to make a more 
formal description of the “TQL-language” in order to avoid the problems 
mentioned above. 

 

7.2.2 Pre-Processing 

Another way of integrating the two systems is by letting Unitex do 
some simple pre-processing of the text, and then let GeneTUC build the 
TQL-code. This would greatly increase GeneTUC parsing rate, because one 
of the major reasons for parsing failures on unseen material is the fact the 
TUC “crashes” when unknown names are being used in the sentences. The 
only way around this problem is to explicitly encode every possible name 
into the TUC grammar, and this is more or less impossible, as new names 
are being “generated” every day. 

Using Unitex, the problem can be solved in a slightly different way. In 
Unitex it would be necessary, or at least a great advantage, to build one 
local grammar for every single entity (Gene, protein, hormone etc.) 
covering all the different ways the specific entity can be named. However, 
after enough examples have been collected, it is possible to generalize the 
local grammars using semantic tags or regular expressions so that they also 
recognize similar but not already explicitly coded names. The idea behind 
this approach is that there is some sort of system or conventions for making 
up new names, and such conventions can easily be expressed using local 
grammars. A lot of research has been done in this kind of named entity 
extraction the last years, and it should be possible to build on some of this 
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work when constructing the local grammar entity graphs. The main idea for 
future work in this area is to contact the authors of for example [6], since 
they also focus on protein names. Contact was already made with this 
research group last year, as we all were at the same conference (ACL 
HLT2002, [19]). A question should be forwarded to this group to see if they 
would be interested in any sort of cooperation, or if we could base our 
entity-naming algorithm on the results that they got in their work. 

 

7.3 General Linguistic Topics 
After discussions with people at the CIS group at LMU Munich, it has 

become obvious that many of the challenges of parsing biomedical texts are 
just the same as are encountered in parsing in almost any other domain. A 
few such example problems are “predicative nouns”, “sentence conjunction 
handling”, “anaphoric resolution” and “the use of not and negated facts”. 
All these problems were encountered during this project work, and they 
were solved in an ad-hoc fashion, using the Unitex graph-tools. In order to 
reduce the time needed to parse new training sentences, and to improve the 
quality of the graphs being built, the problems above should be attacked in 
a systematic manner in the future. Each of these problems is complex 
enough to be the topic of its own PhD thesis, so it should not be attempted 
to solve all of them. But many other researchers are already starting to find 
solutions to these challenges, so a very important part of the future work is 
to keep up-to-date on these four topics and keep thinking about how new 
solutions can be integrated with or benefit the GeneTUC system. 

Another topic that is starting to get a lot of attention is the question: 
“How can the construction of (local) grammars be automated?” It is clear 
after spending a lot of time with only 59 training sentences, that the manual 
construction of local grammars is too time-consuming, and without some 
automation the goal of complete coverage will probably not be reached in 
our life-time. The “induction” of such grammars, based for example on a 
(semantically) tagged corpus, is therefore another idea for future research. 

The last linguistic problem that should be solved using a general 
methodology is the problem of representing synonyms (for example PKB = 
AKT). This problem is not as complex as some of the others, but it can lead 
to a lot of trouble and bad results at later stages if it is not handled properly 
from the beginning. In the GeneTUC system a solution to this problem is 
the predicate synword. It is currently largely used to handle spelling errors, 
but can also be used to handle synonyms. In Unitex synonyms could be 
handled for example by using one common lemma form for all the words 
that have the same meaning. Another alternative is using distinctive 
semantic tags for groups of synonyms. The main challenge will anyway be 
to find good sources of already identified synonyms in the medical domain. 
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Good starting points for this work will be existing online ontologies, for 
example Gene Ontology [26]. 

 

7.4 Conclusion 
In this thesis GeneTUC and Unitex have been compared. They 

represent two different approaches to the same text-parsing problem, even 
though GeneTUC should be more than just a parser in the end. Unitex is 
based on the view that we have to collect all valid sentence examples from 
a domain, before we can hope to do successful parsing in this domain. This 
has been done with good success in the domain of stock market news from 
newspapers, but it might not be possible to “collect all sentences” in the 
medical domain, because there are simply too many “different sentences”. 
GeneTUC uses the approach of building a context sensitive grammar that 
should cover all valid biomedical sentences, but this is also hard, because 
the sentences are usually quite complex, and the grammar must be tailored 
to fit also the tricky cases. The claim behind Unitex is that there are usually 
more differences between two sentences than there are common features, so 
trying to make general rules will usually not be good enough. 

Sooner or later, in a working system these two approaches should meet 
each other “somewhere in the middle”, because they are working on the 
same problem, but from two different ends. After enough local grammars 
have been built with Unitex, they should act together in a high-level super-
graph as a complete grammar. And after the GeneTUC grammar has been 
adopted to fit enough different sentence examples, it should be able to 
parse as good as the grammars that were built in the bottom-up fashion. 

Since it is not clear whether the coding of (possibly infinitely) many 
specific example sentences is more effective than the constant refining of a 
general grammar, it makes sense to keep pulling at the rope from both 
ends. In the future we will have to keep collecting actual sentences from the 
domain in question, and these sentences can be easily modelled with 
Unitex. After enough examples have been coded in Unitex, general rules or 
patterns are bound to emerge, and these rules could then also be 
implemented in the general TUC grammar. 

Before any grammar can be built, both systems are dependent on good 
dictionaries and ontologies, and the only way to make them is by collecting 
all the specific examples from the domain, and grouping them together in 
some meaningful fashion. GeneTUC already has a pretty good 
microbiological ontology that has been built in a very pragmatic way; a 
new entry is added whenever it is needed to parse a new training or test 
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sentences. A part of the future works would be to keep adding to this 
ontology, with the goal of one day making it a “complete” ontology. The 
speed of this work can be greatly increased with the help of already 
existing ontologies such as WordNet and Gene Ontology [26], and other 
online resources. 
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A CCK Abstract 

The CREM gene encodes both activators and repressors of cAMP-
induced transcription.  

ICER (Inducible cAMP Early Repressor) isoforms are generated upon 
activation of an alternative, intronic promoter within the CREM gene. 

ICER is proposed to down-regulate both its own expression and the 
expression of other genes that contain cAMP responsive elements (CREs) 
such as a number of growth factors. 

Thus, ICER has been postulated to play a role in proliferation and 
differentiation. 

Here we show that ICER gene expression is induced by gastrin, 
cholecystokinin (CCK) and epidermal growth factor (EGF) in AR42J cells. 

The time course of gastrin- and CCK-mediated ICER induction is rapid 
and transient, similar to forskolin- and PMA- induced ICER expression. 

The specific CCK-B receptor antagonist L740093 blocks the gastrin- but 
not the CCK -response. This indicates that both the CCK-B receptor and the 
CCK-A receptor can mediate ICER gene activation. 

Noteworthy, CREB is constitutively phosphorylated at Ser 133 in AR42J 
cells, and ICER induction proceeds in the absence of increased CREB Ser 
133 -P. 

Gastrin-mediated ICER induction was not reduced in the presence of 
the PKA inhibitor H-89. This indicates a PKA independent mechanism. 

This is the first report on ICER inducibility via Gq-G11 protein coupled 
receptors. 
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B 59 Activate Sentences 

1. Follicle stimulating hormone (FSH) activates the cAMP signaling 
pathway and consequently, CREB positively auto-regulates its own 
expression (by binding to a CRE like element in its promoter). 

2. Subsequently, activated CREB activates transcription of genes essential 
for proper germ cell differentiation. 

3. Inducible cAMP early repressor (ICER), a suppressor isoform of CREM, 
also activated by CREB, down regulates CREB expression together with 
its own expression, resetting CREB to basal level that enables a new 
spermatogenic wave. 

4. FSH binds to Sertoli cells and thus activates the production and 
secretion of factors needed for germ cell survival and differentiation. 

5. LH binds the Lydig cells, somatic cells located in the interstitial regions 
(between tubules), and activates production and secretion of 
testosterone, which exerts its effect on spermatogenesis, again, through 
Sertoli cells. 

6. CREB was first identified during a search for factors that recognize the 
cis-acting element TGACGTCA (CRE element) that was shown to 
confer cAMP-inducible transcription of the neuropeptide hormone gene 
somatostatin 

7. Elevation in intracellular cAMP activates PKA activity, by releasing its 
regulatory subunit, and this activated PKA is transported to the 
nucleus, where it phosphorylates CREB at Ser-133, within the KID 
domain. 

8. Only Ser-133 phosphorylated CREB can bind CREB binding protein 
(CBP), a co-activator that is needed to recruit the basal transcription 
machinery (Fig. 2). 

9. Ser-133 phosphorylation of CREB by PKA, CBP binding and CBP 
dependent recruitment of the basal transcription machinery is, 
therefore, the path through which cAMP can regulate transcription of 
specific genes. 
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10. Activated PKA localizes to the nucleus where it phosphorylates CREB 
on Ser-133 and activates it. 

11. The positive autoregulation, therefore, consists of FSH that activates 
PKA activity in Sertoli cells resulting in Ser-133 phosphorylation and 
hence activation of CREB. 

12. Activated CREB bound to its own promoter amplifies CREB 
transcription, leading to CREB dependent transactivation of genes 
important to support spermatogenesis (Fig. 4). 

13. Monaco et al. (1995) have shown that FSH stimulates expression of the 
ICER isoform of CREM in primary culture of rat Sertoli cells. 

14. This implies that the FSH induced expression of ICER, is a link in a 
negative auto-regulation chain of CREB. 

15. FSH induced CREB binds to the CRE elements within the ICER 
promoter and activates its expression. 

16. In addition, it has been well documented that FSH binding to Sertoli 
cells results in elevation of cAMP levels and activation of the PKA 
signaling pathway. 

17. We hypothesized that c-fos gene transcription is rapidly stimulated by 
LiCl, followed later by the expression of the inducible cAMP early 
repressor (ICER) transcription factor, a negative modulator of cAMP-
mediated gene transcription. 

18. Several studies have shown by either in situ hybridization or 
immunohistochemistry that doses of lithium chloride (LiCl) sufficient 
to produce CTA (76 mg/kg or higher) induce c-fos gene expression in 
rat brain. 

19. Induction of c-fos gene expression by lithium may be mediated by the 
cAMP signaling pathway and cAMP-activated transcription factors 
such as cAMP response element-binding protein (CREB). 

20. LiCl has been shown to induce CREM gene expression in vivo; 
21. using in situ hybridization (ISH), Lamprecht and Dudai observed 

increased CREM mRNA levels in rat CeA 40 min following LiCl 
injection [21]. 

22. The specific induction of ICER expression after LiCl has not been 
previously described, however. 

23. These prior studies provide compelling evidence, especially in the rat 
CeA, that LiCl activates both c-fos- and cAMP-mediated gene 
transcription. 

24. In summary, we have shown that (1) expression of the immediate-early 
genes c-fos and ICER was induced by LiCl injection, but not by NaCl 
injection, in the CeA, PVN and SON regions of rat-forebrain; 
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25. We conclude that (1) c-fos and ICER mRNAs are rapidly and 
transiently induced by LiCl in the SON, PVN and CeA, with the peak of 
ICER expression delayed relative to the peak of c-fos expression; 

26. The pattern of c-fos mRNA expression induced by LiCl agrees with the 
pattern of LiCl-induced c-Fos protein expression observed by others 

27. As expected, there was a rapid and transient induction of c-fos mRNA 
expression by LiCl. 

28. Although the co-activation of c-fos and ICER suggests activation of 
cAMP pathways, evidence exists for the activation of other pathways 
by LiCl; 

29. for example, phosphorylation of MAP kinase is observed in mouse 
insular cortex and CeA 30 min after LiCl injection [49]. 

30. MAP kinase phosphorylates and activates serum response element 
(SRE)-binding proteins which increase c-fos transcription through the 
SRE site in the c-fos promoter [35]. 

31. Our results showed that ICER mRNA was specifically and transiently 
induced in rat CeA, PVN and SON by LiCl injection. 

32. This study provides evidence that LiCl induces gene expression of c-fos 
and ICER transcription factors within that 6-h window. 

33. We present evidence that gastrin, next term binding to a G protein-
coupled receptor, activates the p38-mitogen-activated protein kinase 
(MAPK) pathway. 

34. Our results demonstrate that gastrin-induced DNA synthesis requires 
p38-MAPK activation through mechanisms that involve calcium 
mobilization, PKC and Src family kinases. 

35. Several laboratories, including ours, have reported the activation of the 
ERK pathway by the CCKB receptor and the contribution of this 
signaling cascade in growth-promoting effects mediated by this 
receptor [7, 8 and 9]. 

36. p38-MAPK has also been shown to be activated by GPCRs [15 and 16]. 
37. In particular, activation of the p38-MAPK pathway by gastrin and its 

role in the proliferative effects mediated by the CCKB receptor have 
never been studied. 

38. Gastrin-dependent activation of the CCKB receptor has been shown to 
induce the rapid hydrolysis of phosphatidylinositol-biphosphates by 
phospholipase C (PLC) to generate inositol triphosphates and diacyl-
glycerol which respectively mobilizes intracellular calcium and 
stimulates protein kinase C (PKC). 

39. Since we have previously reported that ERK activation by gastrin is 
mediated by a signaling cascade including the phosphorylation of Shc 
proteins by Src-like tyrosine kinases [7], we have also analyzed the 
possibility that Src family kinases could serve as intermediates between 
the CCKB receptor and the activation of the p38-MAPK pathway. 
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40. Here, we report the activation of p38-MAPK by gastrin through a 
mechanism that involves PKC, calcium mobilization and Src family 
kinases. 

41. We have previously reported the activation of the p85/p110 PI 3-kinase 
by the CCKB receptor [17] and its role upstream of the ERK pathway 
induced by gastrin [21]. 

42. In summary, our study reports the activation of p38, MAPK by the 
CCKB through a mechanism that involves PKC, intracellular calcium 
mobilization and Src family kinases. 

43. From a molecular point of view, two types of PI3Ks can be activated in 
response to LPA stimulation. 

44. Transactivation of the epidermal growth factor receptor (EGFR), as well 
as G protein bg subunits, is thought to play an important role in PI3Kb 
activation [6 and 7], but the molecular determinants of these processes 
have remained elusive. 

45. Because the mechanisms underlying PI3K activation by LPA in non-
haematopoietic cells remain poorly understood, we have explored 
whether lipid rafts could participate in this process. 

46. Because the mechanisms coupling LPA stimulation to PI3K activation 
remain poorly understood, we searched for a participation of detergent-
resistant membrane microdomains, putative regulatory platforms for 
proximal signalling events. 

47. We thus observed that cholesterol level strongly modulated the 
activation of PI3K in response to LPA. 

48. In brief, PI3K lipid products do not directly activate Akt but induce its 
membrane translocation and colocalisation with its upstream activating 
kinases, the phosphoinositide-dependent kinases (PDKs) that are also 
controlled by PI3K lipid products. 

49. Here, we demonstrated hGRP-R activation stimulated sustained cyclic 
AMP response element binding protein (CREB) phosphorylation and 
transactivation in duodenal cancer cells through a protein kinase C and 
partially p38 mitogen-activated protein kinase-dependent pathway. 

50. Using a specific antibody against the phosphorylated form of CREB at 
Ser133 in immunoblots, we showed that hGRP-R mediated Bn-
dependent CREB phosphorylation in HuTu 80 cells in a dose-
dependent manner (Fig. 1A). 

51. To determine the specificity of Bn-induced CREB phosphorylation 
through hGRP-R activation, we used the specific GRP-R antagonists 
BW2258U89 and ME 20 min before stimulation with Bn. 
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52. CREB, a 43 kDa leucine zipper transcription factor, is a main regulator 
of gene expression which mediates the activation of cAMP-responsive 
genes by binding as a dimer to a conserved cAMP-responsive element 
(CRE), characterized by the nucleotide octamer sequence TGACGTCA 
[6 and 9]. 

53. We showed that CREB phosphorylation at Ser133 occurred in response 
to FSK, a stimulus known to produce CREB phosphorylation via a 
cAMP-dependent pathway, in duodenal cancer cells. 

54. CREB is a substrate for many kinases other than PKA, including PKC, 
AKT, calcium-calmodulin-dependent kinases, mitogen/stress-activated 
kinase, and pp90rsk [6]. 

55. Bn has previously been shown to regulate transcription factor AP-1 
activation through a PKC-dependent pathway in human gastric cancer 
SIIA cells [13]. 

56. Furthermore, Bn also resulted in transcriptional CREB activation using 
a GAL4-CREB luciferase reporter system. 

57. Insulin-like growth factor I and nerve growth factor were shown to 
elicit p38 MAPK activation and result in CREB phosphorylation in 
PC12 cells, a pheochromocytoma cell line [15 and 16]. 

58. In rat pancreatic acini, Bn as well as cholecystokinin stimulated p38 
MAPK activation [17]. 

59. We show in this study that Bn induced sustained p38 MAPK 
phosphorylation for at least 4 h. 
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C Unknown Words Dictionary 

AKT,.N+Kinase:s 
Akt,AKT.N+Kinase:s 
AP-1,.N+ProtHum:s 
autoregulation,.N+Process:s 
bg,.A 
Bn,.N+Substance:s 
BW2258U89,.N+Antagonist:s 
calcium,.N+Element:s 
CCKB,.N+Receptor:s 
CeA,.N+Antigen:s 
c-fos,.N+Gene:s 
cis,.PFX 
colocalisation,.N+Activity:s 
CRE,.N+Element:s 
CTA,.N+Aversion:s 
diacyl-glycerol,.N+Glycerol:s 
down regulates,down regulate.V+P3s 
Dudai,.N+Author:s 
FSH,.N+Hormone:s 
FSK,.N+Substance:s 
gastrin,.N+Substance:s 
GPCRs,GPCR.N+Receptor:p 
hGRP-R,.N+Receptor:s 
HuTu 80,.A 
ICER,.N+ProtHum:s 
immunoblots,.N+Technique:s 
kDa,.N+Measure:s 
kg,.N+Measure:s 
Lamprecht,.N+Author:s 
LH,.N+Hormone:s 
LiCl,.N+Salt:s 
Lydig,.A 
MAPK,.N+Kinase:s 
mg,.N+Measure:s 
microdomains,microdomain.N+Domain:p 
mRNA,.N+RNA:s 
mRNAs,mRNA.N+RNA:p 
NaCl,.N+Salt:s 
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octamer,.N+Sequence:s 
PDKs,PDK.N+Kinase:p 
pheochromocytoma,.A 
phosphatidylinositol,.N+Lipid:s 
phosphatidylinositol-biphosphates,phosphatidylinositol-biphosphate.N+ProtHum:p 
phospholipase,.N+Enzyme:s 
PI3Kb,.N+Gene:s 
PKA,.N+Kinase:s 
PKC,.N+Kinase:s 
pp90rsk,.N+Kinase:s 
PVN,.N+Nucleus:s 
SIIA,.A 
somatostatin,.N+Hormone:s 
spermatogenic,.A 
SRE,.N+Element:s 
testosterone,.N+Hormone:s 
TGACGTCA,.N+Sequence:s 
transactivation,.N+Activation:s 
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D Local Grammar Graphs 

In this appendix a representative sample of all the graphs that were constructed is given. 
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In addition to the graphs presented in this appendix, there are around 20 “named entity 

graphs” (or lexicon grammars), such as the one presented in Figure 1. 
 
The graphs presented in this Appendix are: 

•  Activate 
•  ActivateActive 
•  ActivatedByNP 
•  ActivatedNP 
•  ActivateNP 
•  ActivatePassive 
•  Activation 
•  ActiovationInsert 
•  ActivatorNP 
•  atPP 
•  bountToPP 
•  byMethod 
•  byPP 
•  Citation 
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•  Counterfact 
•  duringPP 
•  forPP 
•  GeneNameNP 
•  inPP 
•  inResponseToPP 
•  Name 
•  NameDependentActivation 
•  ofPP 
•  onPP 
•  PP 
•  PreBind 
•  PreCondition 
•  PreHybridization 
•  PreRegulation 
•  PreSentence 
•  PreSentencePassive 
•  ResultingActivation 
•  thatPP 
•  throughPP 
•  top 
•  usingPP 
•  viaPP 
•  withinPP 
 
The lexicon grammars not shown in this Appendix are: 
•  CCKBR 
•  CRE 
•  DNA 
•  EGFR 
•  FSH 
•  GF 
•  GPCR 
•  ICER 
•  LiCl 
•  LydigCells 
•  MAPK 
•  PC12 
•  Phosphate 
•  PI3K 
•  PKA 
•  PLC 
•  Ser133 
•  SRE 
 


