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Abstract

Natural Language Understanding (NLU) is a 50 years old research field, but its
application to molecular biology literature (BioNLU) is a less than 10 years old
field. After the complete human genome sequence was published by Human
Genome Project and Celera in 2001, there has been an explosion of research,
shifting the NLU focus from domains like news articles to the domain of molec-
ular biology and medical literature. BioNLU is needed, since there are almost
2000 new articles published and indexed every day, and the biologists need to
know about existing knowledge regarding their own research. So far, BioNLU
results are not as good as in other NLU domains, so more research is needed to
solve the challenges of creating useful NLU applications for the biologists.

The work in this PhD thesis is a “proof of concept”. It is the first to show that
an existing Question Answering (QA) system can be successfully applied in the
hard BioNLU domain, after the essential challenge of unknown entities is solved.
The core contribution is a system that discovers and classifies unknown enti-
ties and relations between them automatically. The World Wide Web (through
Google) is used as the main resource, and the performance is almost as good
as other named entity extraction systems, but the advantage of this approach
is that it is much simpler and requires less manual labor than any of the other
comparable systems.

The first paper in this collection gives an overview of the field of NLU and
shows how the Information Extraction (IE) problem can be formulated with
Local Grammars. The second paper uses Machine Learning to automatically rec-
ognize protein name based on features from the GSearch Engine. In the third
paper, GSearch is substituted with Google, and the task in this paper is to ex-
tract all unknown names belonging to one of 273 biomedical entity classes, like
genes, proteins, processes etc. After getting promising results with Google, the
fourth paper shows that this approach can also be used to retrieve interactions
or relationships between the named entities. The fifth paper describes an online
implementation of the system, and shows that the method scales well to a larger
set of entities.

The final paper concludes the “proof of concept” research, and shows that the
performance of the original GeneTUC NLU system has increased from handling
10% of the sentences in a large collection of abstracts in 2001, to 50% in 2006.
This is still not good enough to create a commercial system, but it is believed
that another 40% performance gain can be achieved by importing more verb
templates into GeneTUC, just like nouns were imported during this work. Work
has already begun on this, in the form of a local Masters Thesis.
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Chapter 1

Introduction

“Can Machines Think?” — Alan Turing (1912-1954)

The main introduction is given in Section 1.1. Section 1.2 states the original
task specification and Section 1.3 presents the research questions that have been
identified and explored. An outline of the thesis is shown in Section 1.4.

1.1 Introduction

The idea of intelligent machines or Artificial Intelligence (AI) is a very old con-
cept. Many philosophers have asked the question “Can Machines Think?”, and
since 1950 there have been numerous attempts to make programs that act intel-
ligent according to the Turing Test described below. Earlier it was believed that
intelligence was required to win a game of for example chess or bridge, but in
1997 the world chess champion, Gary Kasparov, was beaten by IBM’s computer
Deep Blue, and still most people do not think Deep Blue is intelligent.

In the field on Computer Science, AI is tightly connected to Natural Language
Understanding (NLU). In 1950 the British mathematician Alan Turing made the
Turing Test as a way to objectively tell if a machine is intelligent or not (“Can it
think?”) [17]. In this test, a human tester uses natural language to communicate
with an unknown entity via an electronic chat session. If the tester cannot distin-
guish a machine from another human, then the machine is judged as intelligent.

In the Natural Language Understanding research community, there has been
much focus on understanding news articles, including automatic translation
and summary generation. This has been especially well funded by USA after
the terror attack in New York, September 11th, 2001. Basically, DARPA wanted a
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system that could create a warning or a summary every time a terrorist name or
something related was mentioned on the Arabic News Channels or in a tapped
phone call. The performance of the translation programs is usually measured
automatically with BLEU (Bilingual Evaluation Understudy) scores, where 1.0
is the best [13]. The best systems only achieve around 0.5, but even human
translators cannot get a score of 1.0, unless the text matches word by word with
one of the alternative gold standards. When it comes to the simpler task of
Entity Recognition (ER), e.g. finding company or person names in the text, per-
formance is much higher, and comparable to that of humans solving the same
task.

NLU is a part of the Natural Language Processing (NLP) field, which also in-
cludes simpler methods that do not use parsing or syntax like NLU. Most of the
other NLP systems do not pretend to be intelligent, but they are still very use-
ful. One of the most useful services in this category is probably Google. Google
has a copy of all the web pages on Internet, and in less than a second, they can
tell you all the pages that contain the words you are searching for. If you type
in a question, there is usually no attempt to answer it, but you can still get the
answer, because Google points you to the correct Question and Answer page, for
example. Or, if you include a question mark in your query to Google, you will
get a tip about the Google Answer service, which involves human researchers,
and costs money.

Another important event that took place in 2001, was the publishing of the com-
plete Human Genome sequence by the International Human Genome Mapping
Consortium [6] and Celera [7]. This led to a surge of research papers in molec-
ular biology and many related fields, and the already fast growing collection
of Medical abstracts, MEDLINE, started growing even faster. See Section 2.3.1
for more details on MEDLINE. It also led to a good funding situation for other
related research areas, like NLP. The NLP community took this chance to apply
the methods from the newspaper domain to the medical domain. Unfortunately,
computers did not have nearly the same success rate at recognizing names from
medical papers, as they did in news articles. This is why more research in pars-
ing of medical domain articles is needed, and hopefully the answers will help,
also in other highly complex domains.

This thesis describes work done within the GeneTUC project. GeneTUC was
created to help biologists stay on top of the ever increasing pile of published re-
search that they should know about. GeneTUC is based on “The Understanding
Computer” (TUC) system, which was made in the early 1990s from the HSQL
system [1]. The contributions are mainly on the semantics side, but the grammar
definitions have also been improved a lot during the thesis work. Even though
GeneTUC is in the NLU domain, most of the papers in this thesis uses simpler
NLP techniques to construct parts of the overall NLU system. The most im-
portant subsystem is called Bioogle, because it uses Google to find biomedical
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facts.

The GeneTUC parser requires a semantic network (ontology) to produce correct
parses, so building the correct semantic network is very important. The net-
work is built (manually) and updated when new types of input text require it. It
is usually not possible to update the semantic network based on the input text
alone, so in situations where words are missing from the existing network, man-
ual work or programs like the ones described in this thesis are needed. Also,
because there is not yet a full consensus in the biological community about
what the “correct semantic knowledge” is (i.e. the knowledge and standards
are shifting), the ontology has to be flexible. Important standardization work is
currently being done, for example with Gene Ontology (GO), GENIA and other
ontology building projects. The work in this thesis can be used as an automatic
supplement to reduce the manual labor in some of these other resource-creating
projects.

1.2 Original Task Specification

Natural language processing of gene information:
Current knowledge about genes and their interactions exist largely only
as free text. Searching and cross-linking such information rely largely on
existing indexes created either manually or by syntactic pattern matching.
As a first step we want a tool that is able to correctly recognize occurrences
of a gene in free text, e.g. in an article abstract, and the context in which
the gene is mentioned. The project will be in cooperation with Biomedical
research at NTNU, and will partly be building on existing prototypes for
text mining of biomedical texts (GeneTUC).

The purpose of the GeneTUC project is to find out if full parsing works in the
biomedical domain. TUC has already proved that full parsing can be used in
simpler domains, like BusTUC in the bus scheduling domain [2]. The purpose
of GeneTUC is not to meet several end-user demands, or to create a commercial
product, even though BusTUC has showed that this can be a future possibility. It
should be shown that the method of full parsing works better than for example
the statistical approach used in PubGene [10] or simple lexical matching as in
Entrez PubMed1. In PubGene a relation connects two genes if there are many
text abstracts that mention both of the genes together, but this often leads to
many falsely predicted relations. The GeneTUC project should show that the
quality of the extracted relations will be better when the extraction is based on
full parsing.

1www.ncbi.nlm.nih.gov/PubMed/
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Because of the computational complexity of full parsing, some pre-processing
is needed to parse all the text in a reasonable amount of time. One example of
such pre-processing is to extract only the subset of articles that contain certain
keywords, and then do full parsing on them. In that case, less parsing is needed
before an answer can be found. Such a system will then be a hybrid between
plain text searching and strict grammar parsing. In GeneTUC, this approach
has been simulated by focusing mostly on a subset of MEDLINE, namely all
abstracts containing the word “gastrin” (more than 12.000).

The long term goal for GeneTUC is to successfully parse all grammatically cor-
rect sentences in any given abstract from MEDLINE. This is a difficult problem,
because in addition to all the usual NLP challenges, like synonyms, homonyms,
ambiguities etc, there is also the challenge that biologists use a more complex
syntax in this kind of compact text. Still, TUC is relying on full parsing, so this
is a necessary goal for GeneTUC too, as long as it is being developed using the
TUC architecture.

A follow-up goal is to make use of the semantics in the parsed sentences. Gene-
TUC should by default be able to answer questions like “What represses PKC
expression?”, if that fact is stated somewhere in the input abstract. When Gene-
TUC can answer these kinds of questions, the next step is to evaluate how useful
the system is to the biomedical society. That means that GeneTUC will have to
solve real problems, posed by practicing biologists. The last step before making
a commercial system is to make sure that the system is as good as or better than
other existing approaches. In other words, GeneTUC should be comparable to
other systems that use statistical approaches, machine learning or other tech-
niques to get similar results. These tasks are summed up as research questions
in the next section.

A sub-goal is to keep the same grammar for all the TUC applications, to main-
tain sideways compatibility with for example BusTUC2. BusTUC was launched
as a commercial on-line application in 1997, and it is able to answer 98% of all
well-formed questions about bus departure and prices in Trondheim city cor-
rectly. The input can be given in either English or Norwegian, and the system
fixes spelling errors in place names on the fly. The average response time of
BusTUC is around 1 second per question.

1.3 Research Questions

The main research question identified and explored by this thesis is:

Can computer programs like GeneTUC understand text about molecular

2http://www.idi.ntnu.no/˜tagore/bustuc/
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biology as well as humans can?

A detailed breakdown of the main research question is given here:

1. Is our approach possible?

(a) Can full parsing be used to extract information from these texts?

(b) Can new search technologies, like Google API3, be used in this work?

2. Is our approach useful?

(a) How many percent of the sentences can be understood by a computer?

(b) How fast are computers at understanding, compared to humans?

3. Is our approach better than others?

(a) Is Bioogle a better way to build dictionaries?

(b) Is Bioogle a better way to build ontologies?

(c) Is GeneTUC a better way to do Information Extraction in Medical Text?

1.4 Thesis Outline

The thesis is a collection of papers. The outline is as follows:

Part I - Context

Chapter 1 gives the introduction to the thesis.

Chapter 2 presents the relevant scientific fields.

Chapter 3 summarizes the research contributions and the motivation behind
them. Also, a complete publication list is given.

Part II - Papers

This part presents the main research contributions of the thesis. A collection of
six research papers is given, with the papers being in the same format as they
were originally published.

3Application Programming Interface
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Part III - Synopsis

Chapter 4 contains an errata for the published papers. To avoid further confu-
sion, the mistakes that have been discovered after the papers were pub-
lished, are all listed here.

Chapter 5 concludes the thesis, suggests possible avenues for future work and
gives a short outlook on the challenges facing the research field.



Chapter 2

Background

“Computers are not intelligent. They only think they are.”
— Anonymous

“The Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation.”
— Tim Berners-Lee (1955-)

In 1950 the British mathematician Alan Turing concluded that the question “Can
Machines Think?” has ambiguous meaning, so he offered his Turing Test as a
less ambiguous substitute [17]. In his test, a human tester communicates via
an electronic chat session with an unknown entity, either a machine or another
human. If the tester cannot distinguish the machine from another human, then
the machine is judged as intelligent. During the past 50 years there have been
numerous efforts to write programs that fool testers into believing that they are
human. Some of these programs, without being truly intelligent, have been
successful against some testers [9].

This chapter presents the main relevant scientific fields that intersect the NLU
research in this thesis. Section 2.1 introduces Information Retrieval (IR) in gen-
eral, and then the more specialized task of Information Extraction (IE). Sec-
tion 2.2 introduces the general notion of Natural Language Processing (NLP),
and the more specialized notion of Natural Language Understanding (NLU),
which is in the intersection between the IE and the NLP research fields (see Fig-
ure 2.1). Section 2.3 gives a brief introduction to related research in the BioNLU
domain.
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Information 
Retrieval (IR) 

Information
Extraction (IE) 

Natural Language  
Processing (NLP) 

Natural Language  
Understanding (NLU) 

Definitely relevant 
Literature 

Possibly relevant 
Literature 

All literature 

Structured 
Knowledge 

Figure 2.1: Relationship among IR, IE, NLP and NLU, and the “relevance funnel”

2.1 Information Retrieval and Extraction

Information Retrieval (IR) is the task of retrieving documents to help a user
find the right answer. The simplest form of modern IR is the use of Uniform
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Resource Locator (URL) in the World Wide Web. The user inputs a URL to
a web-browser, and then gets the corresponding web document in return. This
gets a little more advanced with the use of hyperlinks between documents, since
the user then can retrieve more relevant information by following the links from
one document to other similar or complementary documents. More advanced
systems, like Google, ask the user to provide a query with some words that are
expected to occur in the relevant documents, and then the system tries to create
a prioritized list where ten of the most relevant suggestions are on the first page.
This is in the borderline between IR and Information Extraction (IE). This can be
seen in the funnel in Figure 2.1, where useless information is (hopefully) filtered
away towards the bottom of the funnel. At the bottom of this funnel, there are no
longer entire documents from the original literature, instead there are extracted
facts that are assumed to be of interest to the user.

2.2 Natural Language Processing & Understanding

There are many definitions of NLP available. The one presented here is used
at the University of Birmingham1, and clarifies what is meant by Natural Lan-
guage in this context.

Definition 1 A ’natural language’ (NL) is any of the languages naturally used by
humans, i.e. not an artificial or man-made language such as a programming language.
‘Natural Language Processing’ (NLP) is a convenient description for all attempts to
use computers to process natural language. NLP is often used in a way which excludes
speech, and then SNLP is used as the term to include both speech and other aspects of
natural language processing.

NLP includes Speech synthesis, Speech recognition, Natural Language Under-
standing (NLU), Natural language generation and Machine Translation (MT).

The GeneTUC Question Answering system is not concerned with Speech, since
the input is expected to come from literature databases, or from a keyboard,
and the output is not spoken, but written to a computer screen. There is also
no MT involved since the working language is expected to be English for all
researchers.

There are both NLU and simple Natural Language Generation (NLG) in Gene-
TUC. NLU is needed to move from isolated words in the text to ‘meaning’, and
involves the ontological model systems and the grammar. Some simple NLG
is used to generate appropriate NL responses to the unpredictable input from a
user, but the main focus of this thesis work is on NLU on the input side.

1http://www.cs.bham.ac.uk/˜pxc/nlpa/2002/AI-HO-IntroNLP.html
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NLU is a part of the more general fields of Information Extraction (IE) and Nat-
ural Language Processing (NLP), which were described in the previous sections
and can be seen in Figure 2.1. The history of NLU can be traced back to the
logic-based paradigm that was begun by the work of Colmerauer and his col-
leagues on Q-systems and metamorphosis grammars in 1970. They were the
forerunners of Prolog, and Definite Clause Grammars, which is what the Gene-
TUC system is built on top of. Other research from the same time period also
inspired TUC, including functional grammar, and Lexical Functional Grammar
(LFG).

The NLP researchers Jurafsky and Martin describes the birth of NLU like this in
their widely used text book on Speech and Language Processing [12]: “The natural
language understanding field took off during the 1970s, beginning with Terry
Winograd’s SHRDLU system, which simulated a robot embedded in a world of
toy blocks. The program was able to accept natural language text commands
(Move the red block on top of the smaller green one) of a hitherto unseen com-
plexity and sophistication. His system was also the first to attempt to build
an extensive (for the time) grammar of English, based on Halliday’s systemic
grammar. Winograd’s model made it clear that the problem of parsing was
well-enough understood to begin to focus on semantics and discourse models.
Roger Schank and his colleagues and students (in what was often referred to as
the Yale School built a series of language understanding programs that focused
on human conceptual knowledge such as scripts, plans and goals, and human
memory organization. This work often used network-based semantics and be-
gan to incorporate Fillmore’s notion of case roles into their representations.”

The logic-based and natural-language understanding paradigms were unified
on systems that used predicate logic as a semantic representation, such as the
LUNAR question-answering system. Question Answering (QA) is an impor-
tant part of NLU, and has been researched since the 1960s. Examples of modern
QA systems are AskJeeves2 which has been around since the dawn of the World
Wide Web, but never became very popular, and AnswerBus which was first
presented at the Human Language Technology conference in 2002, and scored
a 70% precision score on the TREC-8’s 200 test set [20]. Having common chal-
lenge tasks like the Text REtrieval Conference (TREC3) and the Message Un-
derstanding Conference (MUC4) is very important when it comes to choosing
the best approach to building useful systems. These challenges and conferences
highlight the strengths and weaknesses of the different systems, and guide the
researchers in choosing which approaches to build further on.

GeneTUC is a QA system based on predicate logic as its semantic representa-
tion, just as the LUNAR system was. The biggest challenge that GeneTUC faces

2askjeeves.com
3http://trec.nist.gov/
4http://www.itl.nist.gov/iaui/894.02/related_projects/muc/
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is because of the chosen domain of BioNLU. While LUNAR worked in a closed
domain, just answering questions about lunar geology and chemistry, with a
fixed set of English words [18], GeneTUC is working in the much broader do-
main of molecular biology. The challenges include use of complex names, in-
vention of new names every day, and use of generally complex research language
in the abstracts and articles that should be parsed.

2.3 NLP in Medical Text

The Entrez PubMed5 approach to searching the MEDLINE database falls under
the definition of Information Retrieval (IR). The simplest form of IR is to enter
words or protein names into the search engine, and then a list of all articles or
abstracts containing the keywords are returned. Entrez also offers slightly more
advanced IR, where the input can be an amino acid sequence for example, and
the results are records of well-known proteins that contain this sequence.

GeneTUC uses more advanced techniques from NLU and IE research, adding
some AI extensions to the simple IR task. In this case, it means that a full parser
parses all the input sentences and transforms each sentence into some logical
formula that represents the meaning of the original sentence. This transforma-
tion is called text mining. Then the researchers can state their questions using
natural language sentences, and the system should be able to find the right an-
swer to the question, or at least give a list of only the abstracts/articles that are
semantically relevant to the question.

In this book the term “BioNLU” will be used as a short form for “Natural Lan-
guage Understanding research in Molecular Biology Literature”. Papers I and
VI describe the BioNLU methods that were used and the main results that were
obtained in the GeneTUC project.

In order to work with GeneTUC, knowledge of the field of molecular biology
is crucial in addition to traditional linguistic knowledge. This is to avoid being
blinded by the sometimes seemingly incomprehensible sentences written in this
kind of molecular biology research literature. The book Biology by Raven et al.
[14] provides an excellent and thorough introduction to many of the necessary
topics in the field.

Judging from the participation in the MUC and TREC conferences, there are
more than 40 groups in the world trying to extract protein-to-protein interac-
tions from abstracts using NLP. Two approaches that have many similarities to
GeneTUC are “Event extraction from biomedical papers using a full parser”
[19], and “BioIE: Retargetable Information Extraction and Ontological Annota-

5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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tion of Biological Interactions from the Literature” [11]. In these systems, full
parsing and many hand-made rules are used, and this leads to very good preci-
sion scores. In the first paper, 31 events were uniquely extracted, and 32 events
had two or more ambiguous argument structures. This gives a precision score
around 33%. 63 of 133 events were extracted, giving a recall score around 50%.
The combined F-measure was around 40, but it was expected to rise towards
74, using post-processing of ambiguous and partial results. An improved ver-
sion of this grammar was used when all the MEDLINE abstracts were parsed by
the Tsujii-lab in November 2005. In the second paper, recall and precision were
55%∼57% and 88%∼92% respectively, giving an F-measure of 68∼70. In this ex-
periment, 600 sentences were used, and the test corpus is now available online.
Both of these papers discuss the balance between precision and recall scores,
and point out that in certain precision sensitive applications it is necessary to
increase the precision at the cost of a lower recall level.

The semantic network in TUC needs to be upgraded with more molecular bi-
ology terms, and there are several places to look for these new words. One
possible source is WordNet6, which defines word contexts and semantically con-
nected clusters of lexical words (meanings). A more scientifically relevant source
to GeneTUC is Gene Ontology, which defines molecular functions, biological
processes and cellular compartments that can be coupled with specific proteins
through an annotation process [8]. Part of the GeneTUC project is to incorpo-
rate words from these sources into TUC. Earlier, all adverbs and adjectives have
been imported into TUC from WordNet. All verbs were not directly imported
from WordNet in the same manner, since it is believed that the group of relevant
verbs is small enough to allow for manual insertion, which gives better preci-
sion than automatic definitions. Some of the new words may be defined only in
the abstract currently being parsed. These words must then be added on the fly
to the GeneTUC system.

The most obvious way to add new terms to the system is by manual labor,
preferably by biologists, but this usually takes too much time. The second best
option is to use already established dictionaries, but most of the time the cover-
age of the dictionary is not good enough. Papers I, II and III focuses on different
ways to do automatic recognition of unknown terms, using online web resources.

2.3.1 PubMed MEDLINE

The best available source of molecular biology paper abstracts is the MEDLINE
Databases, which is maintained by the American association National Center for
Biotechnology Information (NCBI). NCBI was established in 1988 as a national
(American) resource for molecular biology information, but their resources are

6http://www.cogsci.princeton.edu/cgi-bin/webwn1.7.1
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now widely used throughout the world. NCBI creates public databases, con-
ducts research in computational biology, develops software tools for analyzing
genome data, and disseminates biomedical information - all for the better un-
derstanding of molecular processes affecting human health and disease.

The growth in PubMed is the primary motivation for building systems like
GeneTUC. Figure2.2 shows that, on average, nearly two thousand new abstracts
are published and indexed in PubMed every day now, so computers are needed
to help the researchers deal with this information overload.

PubMed Journal abstracts per day, by publication year
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Figure 2.2: MEDLINE Growth
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Chapter 3

Research Summary

“The characteristic of scientific progress is our knowing that we did
not know.” — Gaston Bachelard (French philosopher and poet, 1884-
1962)

“If it works, it’s not AI” — Computer science joke from the 1980s

This chapter will give a summary of the research documented in this thesis.
Firstly, Section 3.1 describes the research process behind the contributions with
a focus on motivational elements and major choices that were made. The pa-
per abstracts are given in Section 3.2, and a specification of the author’s con-
tributions to each of the papers are given in Section 3.3. Finally, the author’s
publications are listed in Section 3.4.

3.1 Research Process

This section will give a chronological description of the research process behind
the research contributions. The emphasis here is on the motivation behind the
different contributions and the major choices that had to be made in the pro-
cess. More specific information and technical details of the contributions can be
found in Part II where the contributions are presented as self-contained research
papers.

A conceptual illustration of the research process with references to the relevant
contributions is shown in Figure 3.1. This section and its subsections follows the
flow depicted in the figure.
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Figure 3.1: A conceptual illustration of the research process and relevant contributions

3.1.1 Initialization

The GeneTUC research project was initiated in the year 2000, which is also the
year that the first complete sequence of human genome was put together. One
year later, the PhD research school at NTNU was started, giving master stu-
dents a chance to combine their Masters thesis and PhD thesis into one coherent
work. The author of this thesis was one of the three first candidates to start
in this program in August 2001, and is now finishing after five years of com-
bined Masters and PhD work on GeneTUC. GeneTUC was originally started by
Anders Andenæs [3, 4] and taken over by the author of this thesis in 2001. A
detailed description and the previous history of the system is presented in early
project reports [15, 16].
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3.1.2 Local Grammars

The first research contribution in this thesis is an overview of the BioNLU field,
and an experiment that uses Local Grammars to extract protein names and in-
teractions from molecular biology texts. Paper I includes the review and a plan
for how the GeneTUC system should be improved. Since it was written while
the author was visiting the Center for Information and Language sciences (CIS)
at Ludwig-Maximillian University in Munich, it also includes an example of
how local grammars can be used in the information extraction process. The lo-
cal grammars were part of the inspiration behind the idea of using very simple
queries in the Bioogle systems mentioned below.

3.1.3 Machine Learning

The second paper attacks the problem of identifying protein names in a more
automatic manner than Paper I, namely by using Machine Learning. After Pa-
per I, it was obvious that the amount of manual labor needed in the GeneTUC
and other similar knowledge intensive systems is huge, and more automatic ap-
proaches have to be sought for. The first attempt is presented in Paper II. It uses
the search engine GSearch to create the features needed by the machine learn-
ing algorithms. GSearch has an Application Programming Interface (API) to the
local NTNU copy of the most famous protein databases in the world.

3.1.4 Google

During the writing of Paper II, it became obvious that APIs to public search
engines have great potential in helping identify named entities. At the same
time, Google released a similar API to their search engine, and that could also
be used to discover interactions between the entities from online literature. Pa-
pers III and IV describe experiments with the Google API as the main source for
this kind of knowledge. Together with Paper V, this constitutes the core contri-
bution of the PhD Thesis, all based on the same main idea of using few, simple
queries.

Paper III was a milestone in that it showed that Google can be used to simplify
the information discovery process in a more human understandable way than
what was presented in Paper II. Paper IV, carried the work into a more complex
relationship extraction research, and in Paper V, the findings from Papers III
and IV were put into an online system, making the workflow between biologists
and computer scientists easier. Also, more experiments were done to verify that
the results would hold across more protein names.
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3.1.5 GeneTUC and Future Technologies

The last paper, Paper VI, presents a summary of the entire GeneTUC project so
far, and explains how all the new pieces from the other papers can be put into
the main system. Also, performance of the system is measured and compared to
other systems. This final research contribution shows that the GeneTUC system
performs 40% better than before, mainly because all the unknown entities from
the benchmark text have been added.

A lot of changes were made in the grammar during this project. The general
TUC grammar is much better now than it was before the GeneTUC project
started, but much work can still be done to improve the recall of the system
further. This must be done in such a way that the constructs that have already
been added are not destroyed in the process. Therefore it is important to have
the kind of standards for measuring the performance that were introduced in
Paper VI.

As seen in Figure 3.1, the last paper (VI) completes the research circle. It started
out from a prototype Question Answering (QA) system in 2001, went through
stages of more and more detailed, and smaller domain, problem solving, be-
fore moving back towards the high-level goal of building a complete system in
the last papers. Even though the circle is now completed, one or two rounds
are still needed, before the GeneTUC application can be truly useful for the in-
tended end users. In the next loop through the circle, the focus should be on
events, which are usually represented by verbs, in the text. Throughout the the-
sis work, the parsing performance of the system has increased from 10% to 50%.
It is believed that another 40 percent points can be achieved by improving the
(semantic) coverage of verbs in GeneTUC, together with continuous improve-
ments in the general grammar.
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3.2 Paper Abstracts

3.2.1 Paper I

GeneTUC: Natural Language Understanding.
Automatic Information Extraction from Biomedical Texts.

The article is about Natural Language Understanding (NLU) in general and
more concretely about its application to molecular biology texts on the topic
"gene- and protein-activations". The first part is a short review of different cur-
rent research approaches in the field of NLU and "bio-linguistics". The second
part look into the bottom-up grammar building approach that is sketched in the
article "The Construction of Local Grammars" by Maurice Gross. The visualiza-
tion system "Unitex", made by Sébastien Paumier, is used to construct the local
grammars. The results will be compared to the full-parsing approach used in
GeneTUC. The goal is to integrate Unitex with GeneTUC in a way that will get
the best from both worlds of shallow and deep parsing. The preliminary results
suggest that the medical language is constrained enough for the Local Gram-
mar approach to work. 38 graphs were constructed to capture the essence of 59
"activate-sentences", and 18 graphs where created to capture all the different en-
tity names that were used in the sentences. When the graphs were applied to a
new text for testing, many of the constructed "activation-patterns" also matched
in the new text.

3.2.2 Paper II

ProtChew: Automatic Extraction of Protein Names from Biomedical Litera-
ture.

With the increasing amount of biomedical literature, there is a need for au-
tomatic extraction of information to support biomedical researchers. Due to
incomplete biomedical information databases, the extraction is not straightfor-
ward using dictionaries, and several approaches using contextual rules and ma-
chine learning have previously been proposed. Our work is inspired by the pre-
vious approaches, but is novel in the sense that it is fully automatic and does not
rely on expert tagged corpora. The main ideas are 1) unigram tagging of corpora
using known protein names for training examples for the protein name extrac-
tion classifier and 2) tight positive and negative examples by having protein-
related words as negative examples and protein names/synonyms as positive
examples. We present preliminary results on MEDLINE abstracts about gastrin,
further work will be on testing the approach on BioCreative benchmark data
sets.
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3.2.3 Paper III

Semantic Annotation of Biomedical Literature Using Google.

With the increasing amount of biomedical literature, there is a need for au-
tomatic extraction of information to support biomedical researchers. Due to
incomplete biomedical information databases, the extraction is not straightfor-
ward using dictionaries, and several approaches using contextual rules and ma-
chine learning have previously been proposed. Our work is inspired by the
previous approaches, but is novel in the sense that it is using Google for seman-
tic annotation of the biomedical words. The semantic annotation accuracy ob-
tained - 52% on words not found in the Brown Corpus, Swiss-Prot or LocusLink
(accessed using Gsearch.org) - is justifying further work in this direction.

3.2.4 Paper IV

gProt: Annotating Protein Interactions Using Google and Gene Ontology.
With the increasing amount of biomedical literature, there is a need for au-
tomatic extraction of information to support biomedical researchers. Due to
incomplete biomedical information databases, the extraction cannot be done
straightforward using dictionaries, so several approaches using contextual rules
and machine learning have previously been proposed. Our work is inspired by
the previous approaches, but is novel in the sense that it combines Google and
Gene Ontology (GO) for annotating protein interactions. We got promising em-
pirical results - 57.5terms as valid GO annotations, and 16.9provided by our
system gProt. The total error-rate was 25.6mainly of overly general answers
and syntactic errors, but also including semantic errors, other biological entities
(than proteins and GO-terms) and false information sources.

3.2.5 Paper V

WebProt:
Online Mining and Annotation of Biomedical Literature using Google.

Motivation: WebProt is an open source software tool for text mining in molecu-
lar biology texts. It is used to collect background information about genes and
proteins from online literature sources. This is useful for molecular biologists
working with many unfamiliar genes, like for example in a big microarray ex-
periment.
Results: A study using 42 different proteins and their official synonyms/aliases
showed that 69,5% of all the results from Google were useful, i.e. containing
either related protein names or biological functions, locations and processes related to
the query protein. This is 10% lower than in a previous experiment, so we made
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a filter requiring each web page to yield at least 6 results, before being taken into
consideration. This increased the precision to 91,5%, but the recall dropped to
2
3 , thereby lowering the F-measure of the system from 82% to 78%.
Availability: WebProt is available as a web service system running on
http://www.idi.ntnu.no/˜satre/webprot/.
It can also be freely downloaded for academic purposes by sending a request
to the first author of this chapter. The advantage of using the web based sys-
tem is that you get access to all the results submitted and searched for by other
biologists, and this will speed up some of your searches tremendously.

3.2.6 Paper VI

GeneTUC, GENIA and Google:
Natural Language Understanding in Molecular Biology Literature.

With the increasing amount of biomedical literature, there is a need for auto-
matic extraction of information to support biomedical researchers. GeneTUC
has been developed to be able to read biological texts and answer questions
about them afterwards. The knowledge base of the system is constructed by
parsing MEDLINE abstracts or other online text strings retrieved by the Google
API. When the system encounters a word that is not in the dictionary, the Google
API can be used to automatically determine the semantic class of the word and
add it to the dictionary. The performance of the GeneTUC parser was tested
and compared to the manually tagged GENIA corpus with EvalB, giving brack-
eting precision and recall scores of 70,6% and 53,9% respectively. GeneTUC was
able to parse 60,2% of the sentences, and the POS-tagging accuracy was 86.0%.
This is not as high as the best taggers and parsers available, but GeneTUC is
also capable of doing deep reasoning, like anaphora resolution and question
answering, and this is not a part of the other parsers.

3.3 Authors’ Contributions

Here is a list of the authors’ contributions to each of the papers. The main author
with his contributions is listed on the first line, and then the others with their
contributions, in descending order, on the following lines. See Table 3.1 for a list
of each author’s acronym.

3.3.1 Paper I

RS Literature review, experiments and writing the paper.
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AT Amund Tveit Bio Biologists
HS Harald Søvik AL Astrid Lægreid

MTR Martin Thorsen Ranang KS Kamilla Stunes
RS Rune Sætre KM Kristine Misund
TA Tore Amble LT Liv Thommesen
YT Yoshimasa Tsuruoka TSS Tonje Strømmen Steigedal

Table 3.1: A list of contributing authors and their acronyms, sorted alphabetically and
split in groups of computer scientists and biologists.

3.3.2 Paper II

AT The machine learning idea, step 7 and 8 (see Figure 1 in the paper), made
the figures, wrote Sections 1 and 4, supervised the research and edited the
paper.

RS Steps 1,2,3,4,5,6 and 10 (see Figure 1 in the paper), implemented the NLP
parts, made the interface to GSearch, selected the features for machine
learning, coordinated the expert evaluation, and wrote Sections 2, 3, 5, 6
and 7 of the paper.

Bio AL and TSS:
Evaluated the biological results, under the supervision of AL.

3.3.3 Paper III

RS The idea about using Google API for entity extraction, implemented the
system and wrote sections 2, 3, 4, 6 and 7 of the paper.

AT Wrote the Abstract and sections 1 and 5, made the figures, and supervised
the research.

Bio TSS and AL:
Evaluated the biological results, under supervision of AL.

3.3.4 Paper IV

RS The idea of using Google API to find protein interactions and GO evidence
text from the Web, implemented steps 1, 2 and 3 (see Fig. 1 in the paper),
and wrote sections 2, 3, 4 and 6, and edited the paper.

AT Wrote sections 1, 5, 7 and Future Work, made the figures and supervised
the research.
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MTR Implemented step 4 (see Fig. 1 in the paper): a quick index matcher for
Gene Ontology terms.

Bio TSS, LT, KS and AL:
Evaluated the biological results, under the supervision of AL.

3.3.5 Paper V

RS Implemented the system and wrote the paper (except Subsection 5.3.5).

MTR Implemented and wrote Subsection 5.3.5

Bio TSS, KS, KM, LT and AL:
Tested the system and evaluated the biological results, under the supervi-
sion of LT.

3.3.6 Paper VI

RS Implemented the system, made figures and wrote the paper (except Sub-
section 4.5), in addition to coordinating the research.

HS Implemented the EvalB comparison part and wrote Subsection 4.5.

TA Provided input to the TUC-grammar part of the paper.

YT Provided easy access to the GENIA resources, and valuable input to the
Related Work section.

3.4 Publication List

Journal Publication

Rune Sætre, Harald Søvik, Tore Amble and Yoshimasa Tsuruoka. GeneTUC,
GENIA and Google: Natural Language Understanding in Molecular Biology
Literature. In Special Issue on "Data Mining and Bioinformatics" of Transactions on
Computational Systems Biology, Lecture Notes in BIology (LNBI), Volume 4070,
part V, pages 68–82. Editor-in-Chief: Dr. Corrado Priami, University of Trento,
Italy. Springer-Verlag Berlin Heidelberg, Germany, 2006. ISSN: 0302-9743.
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Book Chapter

Rune Sætre, Martin T. Ranang, Tonje S. Steigedal, Kamilla Stunes, Kristine Mis-
und, Liv Thommesen and Astrid Lægreid. WebProt: Online Mining and An-
notation of Biomedical Literature Using Google. Submitted to Advanced Compu-
tational Methods for Biocomputing and Bioimaging. Editors: Tuan D. Pham, Hong
Yan, Denis I. Crane. Nova Science Publishers. Hauppauge, New York 11788-
3619. 2006.

International Reviewed Conferences

Rune Sætre, Amund Tveit, Martin T. Ranang, Tonje S. Steigedal, Liv Thomme-
sen, Kamilla Stunes and Astrid Lægreid. gProt: Annotating Protein Interactions
Using Google and Gene Ontology. In Proc. Knowledge-Based Intelligent Informa-
tion and Engineering Systems (KES) 2005. Melbourne, Australia, September 14-16,
2005. Lecture Notes in Artificial Intelligence (LNAI) 2005. Volume 3683, Part III,
pages 1195–1203. Springer-Verlag GmbH. ISSN: 0302-9743. ISBN: 3-540-28896-1.

International Reviewed Workshops

Amund Tveit, Rune Sætre, Astrid Lægreid and Tonje S. Steigedal. ProtChew:
Automatic Extraction of Protein Names from Biomedical Literature. In ICDE
Proc. 21st International Conference on Data Engineering (ICDE’05). Tokyo, Japan,
April 3-4, 2005. IEEE Electronic Proceedings, pages 1161–1161.
DOI: http://doi.ieeecomputersociety.org/10.1109/ICDE.2005.268

Rune Sætre, Amund Tveit, Tonje Strømmen Steigedal and Astrid Lægreid. Se-
mantic Annotation of Biomedical Literature Using Google. In Proc. Data Mining
and Bioinformatics (DMBIO) 2005. Singapore, May 9-12, 2005. Lecture Notes in
Computer Science (LNCS) 2005. Volume 3482, Part III, pages 327–337. Springer-
Verlag GmbH. ISSN: 0302-9743. ISBN: 3-540-25862-0.

Locally Reviewed Conference

Rune Sætre. GeneTUC: Natural Language Understanding. Automatic Infor-
mation Extraction from Biomedical Texts. In Proc. Computer Science Graduate
Students Conference 2004 (CSGSC-2004). Norwegian University of Science and
Technology (NTNU). Trondheim, Norway, April 29th, 2004. Electronic Proceed-
ings. URL: http://csgsc.idi.ntnu.no/
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Abstract 

The article is about Natural Language Understanding 
(NLU) in general and more concretely about its 
application to microbiological texts on the topic "gene- 
and protein-activations". The first part is a short review of 
different current research approaches in the field of NLU 
and "bio-linguistics". The second part look into the 
bottom-up grammar building approach that is sketched in 
the article "The Construction of Local Grammars" by 
Maurice Gross. The visualization system "Unitex", made 
by Sébastien Paumier, is used to construct the local 
grammars. The results will be compared to the full-parsing 
approach used in GeneTUC. The goal is to integrate 
Unitex with GeneTUC in a way that will get the best from 
both worlds of shallow and deep parsing. The preliminary 
results suggest that the medical language is constrained 
enough for the Local Grammar approach to work. 38 
graphs were constructed to capture the essence of 59 
"activate-sentences", and 18 graphs where created to 
capture all the different entity names that were used in the 
sentences. When the graphs were applied to a new text for 
testing, many of the constructed "activation-patterns" also 
matched in the new text. 

1. Introduction 
The article contains two main parts. Part 1 is a literature 
review with the goal of determining where the current 
research barriers in Natural Language Understanding 
(NLU) and in computational linguistics applied to micro-
biological texts are. Part 2 describes the Unitex & 
GeneTUC project part of the work. 
 
GeneTUC and Unitex use two different approaches to 
solve the parsing problem, and GeneTUC could benefit 
greatly from using parts of the Unitex system for pre-
parsing. Especially, the use of graphs when constructing 
grammars is very promising, and makes it easy also for 
people with little computer knowledge to produce 
grammars to fit their needs. How the two systems should 
best be integrated is still an open question. 

2. Previous Work 

Following is an overview of existing literature and 
methods used in the field of Natural Language Processing 
(NLP) with a special focus on NLU and Information 
Extraction (IE). The domain for GeneTUC’s IE will be 
biomedical texts describing gene and protein interactions. 
15 NLP articles have been reviewed, and together they 
cover most of the recent advances in biomedical IE. The 
idea in GeneTUC is that the text is to be fully parsed. Only 
one other article has been found that describes full parsing 
of biomedical texts [15], and that article therefore received 
extra attention The other articles in the collection use 
various methods of shallow (partial) parsing, or stochastic 
(statistical) calculations to analyze the language. One of 
the 15 articles is an interesting article on Local Grammars 
[9]. It describes the use of Finite State Transducers (Pattern 
Matching) to extract exact knowledge from texts. This 
represents a bottom-up approach that will be compared to 
the top-down approach used in GeneTUC. 

2.1 Terminology 

There are two current main approaches to information 
extraction from biomedical texts. NLU is the rule-based, 
symbolic and grammatical approach, and the other more 
statistical or pattern matching approach is usually called 
Natural Language Processing (NLP). Symbolic approaches 
means using symbols that have a defined meaning both for 
humans and machines. 
 
This use of terms tells us that NLU seeks to do something 
more than just process the text from one format to another. 
The end goal is to transform the text into something that 
computers can "understand". That means that the computer 
should be able to answer natural language (e.g. English) 
questions about the text, and also be able to reason about 
facts from different texts. The field of NLU is strongly 
connected to the field of Artificial Intelligence (AI). 
 
Regardless of whether a symbolic or sub-symbolic 
approach is being used, there is a distinction between full 
and partial parsing. Full parsing means that every sentence 
must be completely analyzed from the beginning to the 
end. The output from full parsing is usually a parse tree 
saying what Part-Of-Speech (POS) each word has, how 
words are connected to one another in phrases, and how 
the phrases together make up the entire sentence. Quite 
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often there will be more than one possible legal parse tree, 
and then the sentence must be disambiguated (possibly in a 
larger context) to find the one intended parse tree (with the 
right semantics). Another possibility is to simply list all 
legal parse trees without considering semantics. Partial 
parsing, on the other hand, means that the output is not a 
complete parse tree for the entire sentence. Instead it can 
be smaller parse trees for specific phrases that are 
recognized in the sentence, or simply a POS-tag for each 
word, saying nothing about how they connect to each 
other. 
 
The difference between local and global grammars is 
somewhat similar to the difference between partial and full 
parsing. With a global grammar, the dependencies between 
words far away from each other are modelled explicitly 
with complex high-level grammatical rules. In the local 
grammar approach [9], pattern-recognizing automata are 
built to deal with neighbouring word dependencies. Later 
these automata can be group into larger units and thereby 
implicitly solve the long range constraints. 
 
Another criterion under which a parser is evaluated is 
whether it is robust or not. Robust in this sense means if 
the parser is able to deal with all reasonable inputs. All 
parsers are constructed with specific sentence 
constructions and words in mind, or they are trained 
(statistically) on a corpus of relevant and already correctly 
parsed/annotated sentences. However, the human language 
is so flexible that new and previously unseen constructs or 
names are bound to appear all the time. When a parser is 
able to deal in some intelligent manner also with all the 
examples that it was not specifically constructed or trained 
for, it is called a robust parser. Most full parsers are not 
robust, since they are built on the premises that all possible 
sentence constructs must be known in advance. 
 
In both NLP and NLU many researchers are now trying 
different corpus-based approaches. That means that they 
take some collection of actual texts from the domain (e.g. 
Medline) as a starting point. Then, this text must be 
manually analyzed by experts in the domain (e.g. 
Biologists), and tagged by linguistic experts. This pre-
processed text can then act as source for learning rules etc., 
or it can be used as a golden standard when testing parsers, 
saying exactly what the desired results are for this specific 
collection of texts. 
 
Future systems are likely to be hybrid systems, including 
techniques from both of these approaches, since NLU and 
NLP often offer complementary solutions to the same 
problem. Sometimes NLU is thought of as a subset of 
NLP, since "understanding" is also really just some kind of 
processing. The way GeneTUC understands a text is by 
translating it into an event-logic form called TUC Query 
Language (TQL). 
 
One of the goals in the GeneTUC project [14] is to do full 
parsing of microbiological texts, which is closer to 

Information Extraction (IE) than to Information Retrieval 
(IR). While IR and IE are both dealing with some form of 
text searching, they are quite different in terms of what 
output or results they produce. IR is the simple classical 
approach to text searching, as it is done e.g. in Google [18] 
and other search engines on the Internet. In IR the user 
enters some words of interest, and then all the documents 
containing these words are listed. The document list can be 
ordered accordingly to how many times each search word 
occurs, how close the different search words are clustered 
in the document and so on. In this approach, the user has to 
run many different searches to cover all the possible 
different search words to describe the fact that she is 
actually looking for. Also, for every search she might have 
to read all the articles returned by the search engine, just to 
see if they really are of interest or not. 
 
IE seeks to reduce the user's workload by adding reasoning 
to the IR process. With IE the computer will have some 
knowledge about synonyms and different sentence forms 
that actually express the same basic facts. That means that 
the user only has to specify the question that she has, and 
then the computer will do the tedious work of running 
several different IR searches, and skimming every single 
retrieved article to see whether or not it is of interest. The 
end result from IE can be simple yes/no answers to 
different questions or it can be specific facts that are 
extracted from various articles and then used to build 
databases for quick and easy lookup later. 

2.2 Full Parsing 

Searching Medline [25], Cite-seer [16] and Google [18], 
only one article that describes full-parsing of 
microbiological texts was found. This article is discussed 
here. Yakushiji et al. [15] is an early report on an 
experiment that the authors carried out to see if this 
approach can be used, even when the texts are more 
complex than e.g. newspaper texts. Their long term goal is 
to build an information extraction system that can extract 
specific facts from Medline abstracts. Their short-term 
experimental goal was to automatically extract 133 
(already known) facts from 97 manually annotated test 
sentences. 
 
The reason for trying full parsing is that current 
information retrieval and IE methods are not scalable 
enough. Today, extraction of a fact is done by syntactic 
(surface form) pattern matching against all possible ways 
of expressing that fact. That means that for every type of 
fact (relation) many handmade patterns are needed, and 
this technique is too expensive when the number of 
different relations gets bigger. 
 
The Yakushiji et al. system is based on a general purpose 
(domain independent) parser. The parser transforms each 
sentence into an argument structure (AS). Each AS 
contains a verb as the title, the semantic subject and 
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object(s) of the verb, and possibly adjective modifiers. The 
AS is a canonical structure, and that means that the parser 
has already taken care of all the variations that can occur in 
the text because of for example passivization and 
nominalization in the verbal phrases. The AS is 
comparable to the TUC Query Language (TQL) that is 
used in GeneTUC. 
 
Next comes the domain specific part of the system. For 
each type of AS, a transformation rule (pattern matching) 
must be written, that converts the AS into a corresponding 
frame representation (FR). The FR is a possible end result 
of IE, and contains the semantics of the original verbal 
phrase. This technique scales better with large number of 
different relations, since the parser deals with the different 
syntactic ways of writing a verbal phrase, and only a few 
IE transformation rules must be written for each type of 
relation. 
 
The article deals with three well-known problems of full 
parsing: Inefficiency, ambiguity and low coverage. These 
problems are partially solved with the use of pre- and post-
processors. One pre-processor is the shallow parser. It 
introduces local constraints (a little stronger than Part-Of-
Speech tagging) whenever possible in the text, and this 
increases the efficiency of the parser since obviously 
illegal (and computationally expensive) parse attempts can 
then be avoided. The other pre-processor is a term 
recognizer. It is not yet implemented, but it was simulated 
by hand-annotating the complex names in the sentences as 
units belonging to a given class. This gave a 10-fold 
increase in parsing speed, and also reduced the coverage 
problem since failure to recognize a complex term is often 
the reason that the parse fails. 
 
The results of the experiment are not extremely good (23% 
success rate), but they give hope that this method can work 
(67% success rate) when more pre-/post-processing 
techniques are applied. 23% of the facts were uniquely 
(correctly) extracted. 24% of the facts were extracted with 
more than 1 possible FR (ambiguity) and 20% of the facts 
were extractable (without modifiers) from the partial 
results of the failed parses. 

2.3 Goals 

The goal of Information Extraction (IE) in the medical 
domain is as follows: We need to automate the task of IE 
from biomedical papers, because there are simply too 
many new papers every day for the researchers to keep up 
with. On the way to solving this goal many sub-problems 
must first be solved. Most of these sub-problems have 
already been identified by others, and are slowly being 
"solved" in terms of steadily increasing coverage and 
precision for the different methods. 
 
Among the sub-problems that are slowly being solved are 
tagging (see the Brill tagger [2]) and "Term recognition". 

Term Recognition is important because clustering of long 
names/Noun Phrases in advance gives great improvement 
in speed and coverage/robustness of the full-parsers (see 
[15]). Specific systems are made by Bennett et al. [1], 
Cohen et al. [3], Fukuda et al. [7] and Proux et al. [12]. 
These systems report test results around 99% recall and 
95% precision. They have already identified some major 
sources of precision problems and they also have specific 
plans to get rid of these problems as future work. 
 
Before the mentioned sub problems are solved, the task of 
relation extraction has no hope of getting good precision or 
recall scores, but some researcher (like us) still try, 
believing that the basics will be solved soon enough. 
Current scores are comparable to what Pustejovsky et al. 
[13] reported at the Pacific Symposium on Biocomputing 
2002 (PSB02) [24]. Their parser is a robust, shallow, 
corpus-based parser. Relational parsing means that they 
extract information on the form X relates to Y. In this case 
the specific relations are all inhibiting relations, and the X 
and Y can be entities (genes and proteins) or processes 
(e.g. binding). Their results are much better than 
previously published results, with 90% precision and 57% 
recall plus 22% partial recall. Partial recall means that just 
X or Y, but not both, was extracted. The way they get these 
good results is by their use of cascades of Finite States 
Automata (FSA), more or less in the same way that is done 
with local grammars [9] in Unitex [26]. One important step 
in getting good results was to realize that nominal-based 
relations (Predicative Nouns) had to be dealt with 
separately from normal verbal-based relations. All this 
work is a part of the Medstract project [23], building on the 
old Acromed system. 
 
Another interesting approach to doing relation extraction is 
presented by Park [11]. They use a parser with 
combinatory categorial grammar to parse the relatively 
complex biomedical sentences, and they combine this with 
the corpus-based approach. In the end they do a gold 
standard test, with 48% recall and 80% precision, and these 
numbers are better than any other previously published 
comparable attempts. The conclusion of the article more or 
less agrees with Yakushiji et al. [15], in that full-parsing 
can be made to work, and it is worth the effort, because 
then we can extract more specific and meaningful facts 
from the abstracts. One example where full-parser usually 
performs better is anaphoric resolution, meaning the ability 
to recognize what is pointed to by terms such as "it". 

2.4 Visualization 

Visualization is another important area, because the 
biologists (end users) need to understand the information 
that is extracted from the biological texts. In the article "A 
literature network of human genes for high-throughput 
analysis of gene expression" [10], Jenssen et al. introduce a 
program called PubGene. It creates and visualizes an 
overview network of possibly related genes. The network 
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is built on the assumption that gene names co-occurring in 
Medline abstracts also have a related function or another 
relevant connection. The network is especially useful in 
Microarray experiments, because then many genes must be 
explored simultaneously. The methodology includes a 
database of gene names, a gene-to-article index, a gene-to-
gene network, a gene network browser, and a gene 
expression and literature score. To handle the gene name 
problems the authors collected gene name variations from 
LocusLink [22], Human Gene Nomenclature Committee 
[21], the Genome Database [20] and GENATLAS [19]. 
The resulting gene identifier database contained 13712 
different genes, and each became a node in the gene-to-
gene network. Using the accumulated identifiers, the 
authors searched Medline and found 7512 co-occurring 
genes. Each co-occurrence linked two network nodes or 
added one to the weight of an existing link. The finished 
network allowed searches for individual nodes, resulting in 
a sub-network of the gene's closest neighbours, or an 
expression set from e.g. a Microarray experiment. The sub-
networks of the searches indicate functional relations that 
the biologist should consider in her further work. Jenssen 
et al. proved their concept with a subset of well-known 
expressions. According to error analysis, most false 
positive errors stem from gene identifier problems, e.g. the 
gene names are too general. 
 
The visualization of gene-interaction networks, e.g. as in 
[10], is very important for the biologists who are trying to 
understand what the role of a single gene is. Another field 
where visualization is very important is in the construction 

of local grammars (as in Unitex). The idea behind local 
grammars is that you cannot write general rules about how 
nouns and verbs combine into phrases and sentences, 
because there are simply too many irregularities or 
exceptions. In the end, you really need an exhaustive list of 
specific rules for every single possible use of a given verb: 
Normally accepted complements (e.g. nouns), all legal 
adverbial phrases for the verb, idiomatic uses with their 
allowed complement structures, and so on. This is an 
enormous work, since there is more than 1050 ways to build 
a sentence with at most twenty words [9], and therefore it 
is very important with a good visualization tool so that all 
these rules can be built fast with a minimum of extra work. 
The kind of local grammars described here are 
implemented in the visualization system Unitex [26]. 
 
Other examples of systems that include some sort of 
visualization are described in [4], [8], [11], and [15]. These 
articles describe complete approaches, with all the 
necessary steps from plain texts via knowledge bases to 
actually useful systems for the end users. They are written 
in the early stages of IE from biomedical papers, and they 
are giving general pointers and plans about what has to be 
done. It is also interesting that Internet is pointed out as a 
new kind of "Corpus" for IE systems to take advantage of, 
especially as databases such as Medline [25] become more 
accessible and structured.  

3. Unitex 

Figure 1, variables in Unitex 
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3.1 Variables 

In Unitex graphs, variables can be used to produce just the 
output that is wanted. In Figure 1 two variables ($activator 
and $activated) is being used to transform the extracted 
facts from natural language into a very general predicate 
logic form. 
 
The middle window in Figure 1 shows a graph were the 
sub-graph “GeneNameNP” is called two times. The text 
that matches the sub-graph the first time is stored in the 
$activator variable, and the “Gene Noun-Phrase” that 
matches the sub-graph the second time is store in the 
variable $activated. At the end is just an empty box that 
produces the desired output in the form of a logic predicate 
(activate) with two arguments, and the entire output is 
placed in angle brackets, in order to make it easier to 
separate it from the remaining text later. 
 
The top window in Figure 1 shows a concordance structure 
with the results of applying this simple graph in replace 
mode, and the bottom window show a concordance 
structure for all occurrences of the word “activates” found 
in the 59 sentences. 
 

3.2 Creating a context for “unknown words” 

A simple way to speed up the process of classifying 
unknown words is by making a graph that contains one 
box with all the unknown words in it (See Figure 2, left 
side). When this graph is stored, it can later be applied for 
locating patterns in the text, and for building concordance 
structures, as it was done in Figure 2, bottom right side. 
This is very useful, since the unknown words are then 
highlighted and display together with their context 
(approximately the 12 nearest words) in the text. This can 
save a lot of time since unknown words are often declared 
(explicit or implicit) in the text where they are first used, 
and by using these definitions one can save valuable time 
that would otherwise have to be spent searching the 
Internet or other dictionary sources. 
 
When searching for the 52 unknown words in the text, it 
was discovered that they constitute almost 4% of the total 
text. That means that every 26th (running) word is an 
unknown word. 
 
“Stop words” are another challenge when using Unitex. 
Some very common words, like “a”, is in some cases used 
as for example a name. If something is accidentally named 

Figure 2, creating a context for unknown words 
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“a” it will cause a lot of confusion since a is normally used 
as a determiner in front of nouns, and not as a name. 
Luckily, there is a function in Unitex called Filter 
Dictionaries. They can be applied to the text before the 
standard dictionaries, and allows the removal of such 
“legal, but unwanted” interpretation of the words. All that 
is needed is a list of the words, and such lists exist already. 

4. GeneTUC 
In order to appreciate the results made with Unitex and 
local grammars, it is important to think about how they can 
be used later. In our case, Unitex’s local grammars could 
be used to do effective pre-processing on the biomedical 
texts, before they are parsed by GeneTUC. This is a good 
idea because the strengths of Unitex (Fast processing, and 
a graphical interface) matches the weaknesses of 
GeneTUC (slow parsing, and no graphical interface). The 
reason for not doing all the work in Unitex is that 
GeneTUC already implements the entire framework for a 
tell-and-ask system, and the grammar is much more 
expressive than the regular automata in Unitex. 
 
The end goal of GeneTUC is to build a question answering 
system that can be used by biologists to search out 
important bimolecular facts. Biomedical text, more often 
than not, contains Greek letters, punctuation in the middle 
of words, chemical formulae and so on. This constitutes a 
problem for GeneTUC, because it was made to deal only 
with standard ASCII-letters. The challenges of recognizing 
terms with strange characters and mapping them to their 
unique identifiers can be solved for example using Unitex. 
And once the compound nouns have been group 
intelligently in this manner, GeneTUC has a really good 
chance of parsing the entire sentence, just using its general 
domain-independent grammar. 
 
After a sentence is parsed by GeneTUC, it is possible for 
the biologists to formulate questions about the sentences. 
Such questions will quite often be assigned a parse that is 
similar to the sentence where the answer to the question is 
given. In these cases the question form is stated in the 
grammar just as a transformation of a statement form, 
including movement of the subject/object categories, and 
addition of a wh-word. The question will also usually be 
more general or abstract than the statement containing the 
answer. For example, one might ask what substance 
activates a specific gene, and then finding out that the 
answer is a specific protein, which is indeed a subclass of 
the more abstract term substance. 
 
In the cases where the question has a completely different 
form than the sentence containing the answer, certain rules 
are needed for GeneTUC to make the inferences that most 
humans do so easily. These rules can be formulated in a 
simplified form of plain English called Natural Readable 
Logic (NRL). This means that the biologists can write 
down exactly what they are thinking, e.g. when they infer 

that “phosphorylation of X” means “activation of X” 
(Figure 3). When enough such rules are made, GeneTUC 
will be a valuable tool for the scientists, since they can 
then get help finding the answers to important questions, 
without having to know most of the answer already, like 
you have to in current search engines. 

5. Methods and Material 
The current end goal for a working biomedical parsing 
system, whether it is GeneTUC, Unitex-based, or using 
any other parser, is to do automatic information extraction 
from the medical abstracts or full texts. In this project we 
are particularly interested in gene activation, and we want 
to extract information such as what gene/protein is the 
activator, what gene/protein is being activated, how 
reliable are the extracted facts, and what extra conditions 
must be satisfied. In order to start somewhere, a micro-
biologist was asked to find around 50 sentences that 
contain facts about activation. Most of these sentences also 
contain the actual word “activate” in some form, but there 
are also a few sentences that use other words (e.g. X confer 
transcription of Y). 
 
After local grammars were built for the given “activate-
sentences”, a test was run on a biological reference corpus, 
to see how general and applicable the graphs are. 
 
Ser-133 phosphorylation of CREB by PKA 

Figure 3, X Activation of Y by Z 

5.1 Text Sources 

This subsection describes the different sources that were 
used to acquire the text to parse. Most of the text is from 
the Medline abstracts database [25]. The first source 
contains an entire abstract that was previously used to train 
GeneTUC. The second source contains “random” single 
sentences selected by a biologist with the criterion that 
they should all contain facts about activation of a gene, 
protein or hormone. The third source is a 19.000 sentences 
large biological reference corpus that will be used for 
testing the finished local grammars in the end. This is the 
same text that has been used to test GeneTUC previously. 
 
A Medline abstract about gastrin and CCK was used for 
preliminary testing, to see what the number of unknown 
words would be, and how ambiguous the sentences can be. 
The same abstract was also used to test GeneTUC in 2002, 
so it is possible to compare the results, and the amount of 
work that is needed to successfully “understand” a text 
using either of the two different systems. 
 
Astrid Lægreid found more than 50 sentences describing 
the activation of different genes. Actually, the sentences 
are not only about gene activation. They also contain facts 
about protein and hormone activations. For the sake of 

36 GeneTUC: NLU. Automatic Information Extraction from Biomedical Texts



testing the Unitex methodology, it is not so important 
whether they are genes, proteins or hormones. Genes and 
proteins quite often have the same names anyway, since a 
protein is usually made from one or more corresponding 
genes. Hormones actually have slightly different names, 
but the sentences about hormone activation have the same 
form and context as the gene/protein activation sentences. 
That means that we can merge the gene, protein and 
hormone dictionaries, and just treat all these names as 
subjects or objects of the activation relation. 
 
For the final tests we used the micro-biological reference 
corpus that was also used to test GeneTUC earlier 
(abs2.txt). It contains around 18.000 sentences, which is a 
little more than 5MB when it is stored in the Unicode 
format. Later a reference corpus with about 25.000 tagged 
tokens was acquired from “Centrum for Informations und 
Sprachverarbeitung” (CIS) at LMU in Munich. This 
reference corpus was also originally extracted from 
Medline, and it was used as a cross reference and aid 
during the classification of different medical words 
(primarily names) in this project. A program could be built 
that automatically classifies or suggest classification of 
words based on what tags they are given in such an already 
tagged reference corpus. This would save a lot of work, 
since every entity name would then only have to be 
manually processed one time. Right now, every researcher 
always has to start from scratch, and often ends up solving 
problems that have already been solved by others. 
 
After all the graphs for the 59 activate sentences were 
finished, a test was run on “abs2.txt” to see how applicable 
the graphs were. 

6. Results and Discussion 
The Unitex graphs that were built had to be general enough 
to also accept sentences that are not explicitly programmed. 
That means that if we have training examples such as “X 
activates A”, “X activates B” and “X activates D”, then the 
very similar sentence “X activates C” should also be 
recognized by the system. This means that we have to 
introduce abstract graphs such as “X activates <Noun>”, 
but if too many such abstractions are introduced, the 
system will end up also recognizing incorrect or “false” 
sentences. The results from the tests and the lessons 
learned during the graph building working phase will be 
summarized here. 

6.1 Different Stages 

The building of the graphs went through three more or less 
well defined iterations. The first iteration felt like putting 
different sentences together almost at random, but it was 
soon discovered that many sentences were too long for all 
the words to fit beside each other in one graph page, so the 
second iteration consisted of constructing sub graphs to 
cluster groups of words together and represent them as just 

one box (sub graph). These graphs were made so that 
words that often stood together in different sentences were 
put into the same sub graph. That allowed entire sentences 
to be represented in the main (top node) graph while still 
maintaining the desired left-to-right reading property. As 
the number of sub graphs grew, it became obvious that a 
good naming scheme was needed. It took some time to 
work this out, and that means that some graphs had to be 
completely rearranged later, and a few of the graph names 
had to be changed. It is a good idea to avoid this, because it 
will definitely introduce some new errors into the system, 
e.g. sentences that were recognized by the old graph might 
not be recognized by the new graph, and it will often take a 
lot of debugging to figure out exactly why. This 
phenomenon also happens for example when a function 
name is being changed in the code of a big program: When 
the name of a function is changed, all the places that call 
this function must also be updated. There is no support for 
such name changes in Unitex, so a lot of time will be spent 
doing this manually, and it is very easy to miss something, 
and get strange errors. 
The third iteration was caused by the fact that too many 
different semantic meanings often ended up in a single 
graph, making it hard to extract meaningful facts from 
these specific graphs later. So another rearrangement 
consisting of splitting the graphs with ambiguous meanings 
into separate disambiguate graphs had to be done. This 
caused the “height” of the graphs (number “of lines” or 
“parallelism” in the graph) to increase, since different 
paths leading into one “ambiguous” box, now had to go to 
new separate disambiguated boxes. That also means that 
some boxes had to be duplicated, which is generally not a 
good thing, because then all subsequent work on the 
specific boxes must also be duplicated. Still, this is 
necessary, since the semantic output from the different 
boxes in the end must be different. For example 
“activation of X” can mean that X is being activated in one 
sentence, but that X is the activator in another sentence. 

6.2 Naming Scheme 

Different abstractions were tried in order to find good 
names for the sub graphs during the construction work. 
This consisted of splitting the sentences into well defined 
semantic and/or POS-based units. This turned out to be 
harder than expected, because quite often there would be 
an overlap between the units, and this would often be 
discovered long after the choice was made and the graph 
already constructed. The most successful abstractions were 
those including Gene Name Noun Phrases (POS), and the 
Activator/Activated (Semantic) sub-graphs. Since 
Protein/Gene name discovery in biomedical texts is 
considered a more or less solved problem [5], it is not 
necessary to be too careful about the explicit content of 
these graphs. In this work, these graphs were simply 
manually filled with the explicit coding of the names as 
they appeared in the text. For the sake of building a 
complete system later, it is very important to find one of 
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these systems that does protein/gene name discoveries in 
medical texts, because the current solutions are either too 
slow (manually coding every entry) or not accurate enough 
(importing probable entity names from nomenclature 
resources on internet). 
 
Another very successful abstraction/naming scheme for the 
graph-building work was to make separate sub graphs for 
every prepositional phrase (PP), based on what leading 
preposition they contained. This was very practical when 
new sentences were added into the graph system, because 
one only had to identify the prepositions of the sentence, 
and then it was already obvious how the sentence should 
be split into sub graphs. The problem with this approach 
was that it sometimes led to “collisions” with the “gene 
name, activator and activated” naming scheme. Many 
sentences are on the form shown in Figure 3, and then a 
choice must be made whether “of Y by Z” should be coded 
by the “of” and “by” PP-graphs, or by the “activated” and 
“activator” sub-graphs. Regardless of what choice is being 
made, these different forms should be located close to each 
other in the parent graph, to ease the work later of 
debugging and add-ons to the system. 
 
Another problem with the PP-graphs naming abstraction 
became evident later, as semantics were incorporated into 
the graphs. For example, one PP-graph called "inPP”, 
contains prepositional phrases with very different semantic 
meanings, and the only thing they have in common is the 
fact that all this phrases start with the word “in”. Because 
the semantics of these phrases are so different from each 
other, it would be better to spread them across different 
graphs. This is already partly done for example with the 
“InResponseToPP” graph. 
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Abstract

With the increasing amount of biomedical literature,
there is a need for automatic extraction of informa-
tion to support biomedical researchers. Due to incom-
plete biomedical information databases, the extraction is
not straightforward using dictionaries, and several ap-
proaches using contextual rules and machine learning
have previously been proposed. Our work is inspired by
the previous approaches, but is novel in the sense that it
is fully automatic and does not rely on expert tagged cor-
pora. The main ideas are 1) unigram tagging of corpora
using known protein names for training examples for the
protein name extraction classifier and 2) tight positive
and negative examples by having protein-related words as
negative examples and protein names/synonyms as pos-
itive examples. We present preliminary results on Med-
line abstracts about gastrin, further work will be on test-
ing the approach on BioCreative benchmark data sets.

1. Introduction

With the increasing importance of accurate and up-
to-date protein/gene information databases and on-
tologies for biomedical research, there is a need to ex-
tract protein information from biomedical research lit-
erature, e.g. those indexed in Medline [20].

Methodologically these approaches belong to the
information extraction field [5], and in the biomedi-
cal domain they range from learning relationships be-
tween proteins/genes based on co-occurrences in Med-
line abstracts [9] to manually developed protein infor-

Examples of protein names in a textual
context

1. “duodenum, a peptone meal in the”

2. “subtilisin plus leucine amino-
peptidase plus prolidase followed”

3. “predictable hydrolysis of [3H]digoxin-
12alpha occurred in vitro”

mation extraction rules [21] and protein name classi-
fiers trained on manually annotated training corpora
[2].

1.1. Research Questions

Two of the main issues in information extraction in
general are: 1) how to automate the generation of an-
notated training data needed to create extraction rules
and classifiers and 2) how to select appropriate neg-
ative examples that are closely related but disjoined
from the positive examples in order to ensure high ac-
curacy for the information extraction of protein names.
This leads to the following hypotheses:

1. Can existing protein information databases be used
for fully automatic generation of tagged training
data for protein name extraction classifiers?

2. Can existing protein information databases be used
to create appropriate negative examples for infor-
mation extraction of protein names?
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The rest of this paper is organized as follows. Sec-
tion 2 describes the materials used, section 3 presents
our method, section 4 describes related work, section 5
presents empirical results, section 6 discusses our ap-
proach, and finally section 7 contains the conclusion
and future work.

2. Materials

The materials used included biomedical (sample of
Medline abstract) and general English (Brown) textual
corpora, as well as protein databases, see below for a
detailed overview.

As subject for the expert validation experiments we
used the collection of 12.238 gastrin-related Medline
abstracts that were available in September 2004. Gas-
trin was selected to fit the field of expertise of the re-
searchers who evaluated our findings.

As a source for finding known protein names we use
a web search system called Gsearch, developed at De-
partment of Cancer Research and Molecular Medicine
at NTNU. It integrates three common online pro-
tein databases, namely Swiss-Prot, LocusLink and Uni-
Gene.

The Brown repository (corpus) is an excellent re-
source for training a Part Of Speech (POS) tagger. It
consists of 1,014,312 words of running text of edited
English.

3. Our Approach

We have taken a modular approach where every sub-
module can easily be replaced by other similar modules
in order to improve the general performance of the sys-
tem. The main modules correlate with the main tasks
that have to be solved in an information extraction
setting. There are four modules connected to the data
gathering phase, namely data selection, tokenization,
POS-tagging and Stemming. Then three modules deal
with classification, namely Gsearch, feature extraction
and Classification. The last three modules are evalua-
tion modules that handle cross-validation, expert eval-
uation and dataset statistics. See figure 2.

1. Data Selection The data selection module uses
PubMed Entrez online system to return a set of
PubMed IDs (PMIDs) and abstracts for a given
protein, in our case ”gastrin” (symbol GAS).

2. Tokenization The text is tokenized to split
it into meaningful tokens, or ”words”. We use
the WhiteSpaceTokenizer from NLTK. Words in
parentheses were clustered together and tagged
as a single token with the special tag Paren.

Porter Stemming

Feature Selection

Classification

Protein?

Automatic Evaluation

Expert Evaluation

Post Mortem Analysis

Gsearch Tagging

TOKEN

POS-Tagging

(Text) Tokenization

Data Selection

Figure 1. Overview of Our Approach

3. POS tagging using a Brill tagger trained on the
Brown Corpus. This module acts as an advanced
stop-word-list, excluding all the everyday common
American words from our protein search. Later,
the actual POS tags are also used as context fea-
tures for their neighboring words.

4. Porter-Stemming If the stem of a word can be
tagged by the Brill tagger, then the word itself is
given the special tag ”STEM”, and thereby trans-
ferred to the common word list.

5. Gsearch.org tagging is our way of automatically
creating positive and negative examples for the
protein name extraction stage. Classifiers in gen-
eral follow the rule “garbage in equals garbage
out”. One way to improve this is to do careful fea-
ture selection (out of the scope of this paper). An-
other is in the selection of positive and negative
training data - which is what we are focusing on.
The idea is that if an information extraction clas-
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sifier should be able to discern between protein
names and other entities, it in particular needs to
handle entities that are as close to protein names
as possible, i.e. protein-related entities. We select
negative examples (i.e. protein-related entities) by
using words (not filtered out by past modules) de-
scribing proteins, and positive examples by using
protein names and synonyms. The proteins, syn-
onyms and corresponding descriptions are found
using the Gsearch.org search engine. It enables si-
multaneous searches in the Swiss-Prot, UniGene
and LocusLink protein databases.

The remaining words are the untagged words
that need to be classified (with the classi-
fier trained on the positive and negative data
generated in this step).

Figure 2. ”Sharp edge” between positive and
negative examples might improve classification
accuracy

6. Feature Selection The features we use are the
word itself (TEXT), the given tag (POS) from
Brill or Gsearch (or None if the word is un-
tagged), and other True/False features like
HASBRACKET, HASFIRSTUPPER, HASNON-
ALPHANUMPREFIX, ISLOWERCASE, ISNU-
MERIC, ISUPPERCASE. The features are col-
lected for the word in question, and for the n
nearest neighbors (we use n = 3 in our experi-
ments).

7. Classifier Performance The positive and neg-
ative examples connected with the features de-
scribed above are then used as training data for
classification of untagged tokens as part of a pro-
tein name or not. Our selection of classifiers is
quite pragmatic due to the no free lunch theorem
[7], i.e. “there is no best classifier for all problems”.
We used the following classifiers: Support Vector
Machines (with lin., pol., sig. and rbf kernels) in

the SVM-Light tool [11], Naive Bayes in the Or-
ange tool [6] and a Proximal Support Vector Ma-
chine (PSVM) in the Incridge tool [19] (PSVM is
also known as Regularized Least Squares Classifi-
cation)

8. Automatic Evaluation In order to efficiently
test our extraction approach we first try to clas-
sify known data. If this gives extremely poor re-
sults there is no reason to pursue in classifying
untagged tokens. The methods applied were ”train
and test” sets of 2500 examples each with various
feature set combinations, as well as 10-fold cross-
validation in order to test whether the ”train and
test”-set approach was ok.

9. Expert Evaluation The whole purpose of the
extraction approach is to find proteins among un-
tagged tokens. In order to do this we gave a sam-
ple of untagged tokens and their surrounding tex-
tual context to molecular biologists1 so they could
say if each token was a part of a protein name
or not. We then used this as the golden standard
to test our classifier performance and to measure
true/false positives/negatives and to calculate F-
Score and classification accuracy.

10. Post Mortem Analysis In order to character-
ize the size of the untagged protein names prob-
lem, we used the expert tagging from the molecu-
lar biologists in order to estimate a confidence in-
terval for i) the probability of an untagged token
being part of a protein name, and ii) the probabil-
ity of a token being untagged, given our tagging
sources.

4. Related Work

Our specific approach was on using existing
databases to automatically annotate information ex-
traction classifiers in biomedical corpora, and at the
same time using these databases to create both posi-
tive and negative examples. We have not been able to
find other work that does this, but there are quite a few
approaches on extracting protein names from biomed-
ical literature. Below, a brief overview is given. See
[17] for a more comprehensive overview.

Bunescu et al. present a method similar to ours, ex-
cept that they train their classifiers on manually cre-
ated corpora [2, 3, 4]. Ginter et al. describe a method
weighting words by positions for resolving gene/protein
name disambiguation, but they use a manually devel-
oped corpus for training [8]. Bickel et al. describe an

1 co-authors
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Acronym Description

F1 3 neighbors w/all
F2 3 neighbors w/text
F3 3 neighbors w/text & POS
F4 3 neighbors w/POS & word-has-bracket

Table 1. Feature approaches

approach using Support Vector Machine classifiers for
gene name recognition, but it is also trained using a
manually generated biomedical corpus [1].

Mukherjea et al. describe a method that com-
bines manually generated rules with rules learned
using UMLS to do biomedical information extrac-
tion [12]. Torii and Vijay-Shanker use an unsupervised
bootstrapping technique from Word Sense Disam-
biguation [18]. This resembles our approach in the
sense that it is fully automatic, but differs in the sense
that they use an unsupervised bootstrapping tech-
nique on names found using the manually developed
rules presented in [13]. Jiampojamarn et al. de-
scribe a supervised method using comprehensive
domain knowledge and dictionaries together with clas-
sifiers for biological term extraction [10].

5. Empirical results

Since our motivation is to test the feasibility of 1)
automatic creation of training data for protein name
classifiers and 2) selection of appropriate negative ex-
amples in the training data, we did not put much em-
phasis on the optimal selection of features for the in-
formation extraction classifiers. That is a natural next
step, but outside the scope of this paper. The differ-
ent feature sets we used are described in table 1, and
more details about the features are given in our ap-
proach.

5.1. Automatic Evaluation

In order to get an overview of which classifier per-
formance to expect, we first tested them on already
tagged data, using protein names and symbols found
in Gsearch as positive examples and other words from
Gsearch (assumed to be protein-related) as negative ex-
amples (results in table 2). The data was first divided
into a training and test set with 2500 examples each,
and later we did a 10-fold cross-validation (XV) on all
5000 examples (train+test set) to verify the train and
test approach.

Classifier F1 F2 F3 F4

Majority 75.9 75.9 75.9 75.9
SVM Lin. t 75.9 75.9 75.9 75.9
SVM Pol. 76.4 75.9 75.9 75.9
SVM RBF 76.1 75.9 75.9 75.9
SVM Sig. 75.7 75.9 75.9 75.9
PSVM(ν = 100) 68.0 N/A N/A N/A
PSVM(ν = 1) XV 74.2 N/A N/A N/A

Table 2. Automatic Evaluation Results

Classifier TP/TN FP/FN Prec/Rec/F CA

N.Bayes 6/120 67/7 8/46/27 63
Majority 0/187 0/13 NA/0/NA 94
SVM Lin 0/187 0/13 NA/0/NA 94
SVM Pol 6/159 28/7 18/46/32 83
SVM rbf 3/174 13/10 19/23/21 89
SVM Sig 0/186 1/13 0/0/NA 93

Table 3. Protein classification - untagged words

5.2. Expert Evaluation

The main purpose of our extraction approach is to
detect which untagged words that are part of protein
names. In order to do (and test) this, we first tagged
using the Brown Corpus (regular English words) and
Gsearch (protein names and protein related words) and
then we selected a sample of 200 words that had not
been tagged. These words and their corresponding tex-
tual contexts were classified using the classifier, and
compared to manual annotations done by biologists
(table 3).

5.3. ”Post Mortem” Analysis

In order to say something more general about the
number of protein names that cannot be tagged with
LocusLink, Swiss-Prot and UniGene, we used the re-
sults after stage 5 (Gsearch tagging) and the expert’s
classifications of untagged words. We created confi-
dence intervals for the probability of a word being un-
tagged after stage 5, and for the probability that an
untagged word is a part of a protein name.

The total number of unique tokens in the 12000 ab-
stracts covering gastrin is N = 76359, and 26885 of
them were untagged. This gives an estimated probabil-
ity of an untagged token pu = 26885/76359 = 35.21%
and σu =

√
(pu(1−pu)

N ) ≈ 0.0017. The 95% confi-
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dence interval is [0.3521−1.96×0.0017, 0.3521+1.96×
0.0017] ≈ [34.88%, 35.54%]

The expert found 13 protein names among a ran-
dom sample of n = 200 untagged tokens (random sam-
ple from 26885 unique untagged tokens in total), this
gives an estimated probability that an untagged word
is a part of protein name pp = 13/200 = 6.5% and σp =√

(pp(1−pp)

n ) ≈ 0.0173. The 95% confidence interval of
[6.5− 1.96× 1.73, 6.5 + 1.96× 1.73] = [3.11%, 9.89%]

6. Discussion

In the following section we discuss our approach on
a step-by-step level (steps as presented in figure 2).

1. Data selection Since the results were inspected
by cancer researchers the focus was naturally on
proteins with a role in cancer development, and
more specifically cancer in the stomach. One such
protein is gastrin, and even though a search in the
online PubMed Database returned more than eigh-
teen thousand abstract IDs, only twelve thousand
of these were found in our local academic copy of
Medline. Another important question is if the gas-
trin collection is representative for Medline in gen-
eral or for the ”molecular biology” part of Medline
in particular?

2. Tokenization into ”words” The tokenization
algorithm is important in the sense that it dictates
which ”words” you have to deal with later in the
pipeline. How to deal with parentheses is another
question. Sometimes they are important parts of a
protein name (often part of the formula describing
the protein), and other times they are just used to
state that the words within them are not that im-
portant. We decided to keep the contents of paren-
theses as a single token, but this kind of parenthe-
sis clustering is a hard problem, especially if the
parentheses are not well balanced (e.g. smiley and
”1), 2), 3)” style paragraph numbering). Parenthe-
ses in Medline are usually well balanced, though,
so only very few tokens were missed because of er-
roneous clustering. Other tokens that require spe-
cial attention are the multi-word-tokens. They can
sometimes be composed using dash, bracket etc.
as glue, and are at other times just normal sin-
gle words separated with space, even though they
should really be (grouped as) a single token. An
example is protein names, such as ”g-protein cou-
pled receptor (GPCR)”.

3. a) Brown Corpus and tagging We used the
Brown Corpus, an American English corpus. It is

rather old (1961) and maybe not completely repre-
sentative of ”Medline English”. There is also the
challenge of how quote symbol and apostrophes
are used for protein names in Medline abstracts,
e.g. as a marker for the five-prime or three-prime
end of a DNA formula. Also, there are only one
million words in the corpus, so not all lowercase
and capital letter combinations of every word are
present.

b) POS tagging with Brill algorithm and
the Brown Corpus The Brill tagger does not tag
perfectly, so maybe classifier-based taggers such
as SVM could perform better. The performance of
the Brill tagger could be better if we used a higher-
ordered tagger than the unigram tagger as input
to Brill, but the memory need for n-gram taggers
are O(mn), where m is the number of words in
the dictionary. So with million word training- and
test sets, even the use of just a bi-gram tagger gets
quite expensive in terms of memory and time-use.
Tagging itself may also introduce ambiguous tags
(e.g. superman is a protein, but it may be tagged
as a noun/name earlier in the pipeline, because
that is the most common sense mentioned in the
Brown Corpus).

4. Porter-stemming turns out to work poorly on
protein and biological names, since they are often
rooted in Latin or have acronyms as their name
or symbol. E.g. the symbol for gastrin is GAS,
and the porter stem of GAS becomes GA, which
is wrong, and too ambiguous.

5. Gsearch The indexing algorithm of Gsearch also
contains some stemming of search terms, leading
to some ”strange” results when creating the pos-
itive and negative training examples. The protein
names found also cover ”regular words” leading
to other ambiguity problems, for example when
”legal” protein names are removed earlier in the
pipeline by the Brill tagger. Another weakness
of Gsearch is that it is not ”complete enough”
(yet). It should be extended with a larger selec-
tion of databases and dictionaries covering biolog-
ical terms, so that protein names like ”pentagas-
trin” could also be found in the database.

6. Feature Selection Features in Information Ex-
traction are usually ad-hoc and fosters creativity.
It seems that all the ones we created made some
sense, and that all the features took part in op-
timizing the classification of ”untagged” test pro-
tein names.

7. Classifier performance Our selection and tun-
ing of classifiers was quite limited due to our pri-

Paper II 45



mary focus on automatic generation of training
data as well as ensuring high quality of the nega-
tive examples. An opportunity for further improve-
ment is to try other classifiers, e.g. C5.0, the Maxi-
mum Entropy classifier or the Instance-Based clas-
sifier.

8. Automatic Evaluation The automatic evalua-
tion used two approaches: train+test set (SVM,
Majority and PSVM) and 10-fold cross validation
(PSVM). They gave ok, though not incredibly ac-
curate, results. Natural improvements are to in-
corporate more (available) domain knowledge and
additional features. An interesting observation is
that the Majority and SVM classifiers always gave
the same accuracy when syntactic clues (e.g. HAS-
FIRSTUPPER) were left out. This is probably be-
cause our naive features do not catch the essence
of protein names and their context.

9. Expert evaluation of untagged data Even
though our (part- of-) protein name classification
accuracy is relatively high (≈ 80 − 90%), the re-
sults for most of the classifiers provide low pre-
cision and recall. The most promising classifier,
from a precision and recall (F-Score) perspective,
is Support Vector Machines with a Polynomial
Kernel. It gives relatively many true positives, that
can later be used as input for more advances nat-
ural language parsing techniques, like the ones
used in [15]. Precision and recall results also suffer
from being very unbalanced (i.e. relatively few pro-
tein names compared to the number of untagged
words). In order to improve precision and recall re-
sults (as well as accuracy) we probably also need to
improve filtering of untagged words before they be-
come candidates for being part of protein names.

We also know for a fact that our selection of
positive and negative examples using protein in-
formation databases leads to slightly biased train-
ing data, since many common biological words are
part of protein names (not found in our English
corpus). This may lead to ambiguities when pro-
cessing the corpus since most of the occurrences
of these biological words are not part of protein
names. In further work we could potentially gain
from adding the bootstrapping methods for han-
dling disambiguation presented in [18]. Testing
our approach on benchmark datasets, like GENIA,
would be a natural next step.

10. Post mortem Dataset characterization Why
finding protein names at all? are not they all in the
major protein information databases? No, we found
that approximately between 1 and 3 % of all words

found in our gastrin abstract selection were pro-
tein names (by multiplying the two confidence in-
terval boundaries presented). If these estimates are
representative for other biomedical texts in Med-
line this means that this problem is rather large.
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7. Conclusion and Future Work

This paper presents a novel method for automati-
cally creating both positive and negative training data
for protein name extraction classifiers. Since we focused
on the automatization of creating training data and rel-
evant negative examples, we only used relatively sim-
ple domain modeling and feature extraction/selection
approaches. This leads to promising, though not yet
highly accurate, empirical results. So in the next round
we need additional work on i) feature extraction and se-
lection, and ii) incorporating domain knowledge. The
approaches presented in [10, 12] seems to be comple-
mentary to ours and might increase accuracy in future
versions of ProtChew.

To sum up the contributions:

1. fully automatic extraction of protein names

2. ”tight” negative examples using existing
protein information databases (served by
Gsearch.org) in order to get a ”sharp clas-
sifier”

Opportunities for future work are:

• improved tokenization (splitting on space and
punctuation characters is not good enough.)

• stemming (the Porter algorithm for English lan-
guage gives mediocre results on biological terms.)

• improved detection of sentence boundaries might
be used to get more accurate context boundaries
for classification of terms (splitting on punctua-
tion characters gives slightly erroneous results).
One possibly approach could be to train classi-
fiers for sentence boundary detection on the Brown
Corpus, or better on the GENIA biomedical cor-
pus.

• combine the presented approach with traditional
search engines such as Google as an additional in-
formation source about protein names e.g. as a fea-
ture for the input classifier, [16].
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• part-of-speech tagging of Protein names (the com-
plete protein names, frequently combined of many
words) and then use inductive algorithms in order
to find common grammars of protein names can
potentially increase accuracy on detecting com-
plete protein names, and not only part of protein
names as we have focused on this work. (We have
found that protein names often look like small sen-
tences themselves, [14]).

• strongly improve the evaluation of our ap-
proach by applying it on the BioCreative datasets
(http://www.mitre.org/public/biocreative/).
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Abstract. With the increasing amount of biomedical literature, there
is a need for automatic extraction of information to support biomedical
researchers. Due to incomplete biomedical information databases, the ex-
traction is not straightforward using dictionaries, and several approaches
using contextual rules and machine learning have previously been pro-
posed. Our work is inspired by the previous approaches, but is novel in
the sense that it is using Google for semantic annotation of the biomed-
ical words. The semantic annotation accuracy obtained - 52% on words
not found in the Brown Corpus, Swiss-Prot or LocusLink (accessed using
Gsearch.org) - is justifying further work in this direction.

Keywords: Biomedical Literature Data Mining, Semantic Annotation.

1 Introduction

With the increasing importance of accurate and up-to-date databases for biomed-
ical research, there is a need to extract information from biomedical research
literature, e.g. those indexed in MEDLINE [34, 33, 15]. Examples of information
databases are LocusLink, UniGene and Swiss-Prot [24, 23, 3].

Due to the rapidly growing amounts of biomedical literature, the information
extraction process needs to be (mainly) automated. So far, the extraction ap-
proaches have provided promising results, but they are not sufficiently accurate
and scalable.

Methodologically all the suggested approaches belong to the information ex-
traction field [8], and in the biomedical domain they range from simple auto-
matic methods to more sophisticated, but manual, methods. Good examples
are: Learning relationships between proteins/genes based on co-occurrences in
MEDLINE abstracts (e.g. [16]), manually developed information extraction rules
(e.g. [35]), information extraction (e.g. protein names) classifiers trained on man-
ually annotated training corpora (e.g. [4]), and our previous work on classifiers
trained on automatically annotated training corpora [32]).

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3482, pp. 327–337, 2005.
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Examples of biological name entities in a textual context

1. “duodenum, a peptone meal in the”
2. “subtilisin plus leucine amino-peptidase plus prolidase followed”
3. “predictable hydrolysis of [3H]digoxin-12alpha occured in vitro”

Semantic Annotation

An important part of information extraction is to know what the information
is, e.g. knowing that the term “gastrin” is a protein or that “Tylenol” is a
medication. Obtaining and adding this knowledge to given terms and phrases is
called semantic tagging or semantic annotation.

1.1 Research Hypothesis

Our hypothesis is based on ideas from our preliminary experiments using Google
to generate features for protein name extraction classifiers in [?], i.e. using the
number of search hits for a word as a feature.

Fig. 1. Google is among the biggest known “information haystacks”

– Google is probably the world’s largest available source of heterogeneous elec-
tronically represented information. Can it be used for semantic tagging of
textual entities in biomedical literature? And if so, how?

The rest of this paper is organized as follows. Section 2 describes the mate-
rials used, section 3 presents our method, section 4 presents empirical results,
section 5 describes related work, section 6 discusses our approach, and finally
the conclusion and future work.

2 Materials

The materials used included biomedical (sample of MEDLINE abstract) and
general English (Brown) textual corpora, as well as protein databases. See below
for a detailed overview.
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MEDLINE Abstracts - Gastrin-Selection

The US National Institutes of Health (NIH) grants a free academic licence for
PubMed/MEDLINE. It includes a local copy of 6.7 million abstracts, out of the
12.6 million entries that are available on their web interface. As subject for the
expert validation experiments we used the collection of 12.238 gastrin-related
MEDLINE abstracts that were available in September 2004.

Biomedical Information Databases

As a source for finding already known protein names we used a web search system
called Gsearch, developed at Department of Cancer Research and Molecular
Medicine at NTNU. It integrates common online protein databases, e.g. Swiss-
Prot, LocusLink and UniGene, [24, 23, 3].

The Brown Corpus

The Brown repository (corpus) is an excellent resource for training a Part Of
Speech (POS) tagger. It consists of 1,014,312 words of running text of edited
English prose printed in the United States during the calendar year 1961. All the
tokens are manually tagged using an extended Brown Corpus Tagset, containing
135 tags (Lancester-OsloBergen-tagset). The Brown corpus is included in the
Python NLTK data-package, found at Sourceforge.

3 Our Approach

We have taken a modular approach where every submodule can easily be replaced
by other similar modules in order to improve the general performance of the
system. There are five modules connected to the data gathering phase, namely
data selection, tokenization, POS-tagging, Stemming and Gsearch. Then the
sixth and last module does a Google search for each extracted term. See figure 2.

1. Data Selection. The data selection module uses PubMed Entrez online
system to return a set of PubMed IDs (PMIDs) for a given protein, in our
case ”gastrin” (symbol GAS). The PMIDs are matched against our local
copy of MEDLINE, to extract the specific abstracts.

2. Tokenization. The text is tokenized to split it into meaningful tokens, or
”words”. We use the WhiteSpaceTokenizer from NLTK with some extra
processing to adapt to the Brown Corpus, where every special character
(like ( ) ” ’ - , and .) is treated as a seperate token. Words in parentheses are
clustered together and tagged as a single token with the special tag Paren.

3. POS tagging. Next, the text is tagged with Part-of-Speech (POS) tags
using a Brill tagger trained on the Brown Corpus. This module acts as
an advanced stop-word-list, excluding all the everyday common American
English words from our protein search. Later, the actually given POS tags
are used also as context features for the neighboring words.
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Porter Stemming

Google search

Gsearch Tagging

TOKEN

POS-Tagging

(Text) Tokenization

Data Selection

Fig. 2. Overview of Our Approach (named Alchymoogle)

4. Porter-Stemming. We use the Porter Stemming Algorithm (also from
NLTK) to remove even more everyday words from the ”possibly biologi-
cal term” candidate list. If the stem of a word can be tagged by the Brill
tagger, then the word itself is given the special tag ”STEM”, and thereby
transferred to the common word list.

5. Gsearch. Identifies and removes already known entities from the search,
but after the lookup in Gsearch, there are still some unknown words that
are not yet stored in our dictionaries or databases, so in order to do any
reasoning about these words it is important to know which class they belong
to. Therefore, in the next phase they are subjected to some advanced Google-
searching, in order to determine this.

6. Google Class Selection. We have a network of 275 nouns, arranged in a
semantic network on the form ”X is a kind of Y”. These nouns represent the
classes that we want to annotate each word with. The input to this phase is
a list of hitherto unknown words. From each Word a query on the form in
the example below is formed (query syntax: Word is (an|a)”).

Then these queries are fed to the PyGoogle module which allows 1000
queries to be run against the Google search engine every day with a personal

54 Semantic Annotation of Biomedical Literature Using Google



Semantic Annotation of Biomedical Literature Using Google 331

password key. In order to maximize the use of this quota, the results of every
query are cached locally, so that each given query will be executed only once.
If a solution to the classification problem is not present among the first 10
results returned, the resultset can be expanded by 10 at a time, at the cost
of one of the thousand quota-queries every time.

Each returned hit from Google contains a ”snippet” with the given query
phrase and approximately 10 words on each side of it. We use some simple
regular grammars to match the phrase and the words following it. If the next
word is a noun it is returned. Otherwise, adjectives are skipped until a noun
is encountered, or a ”miss” is returned.

4 Empirical Results

The table below shows the calculated classification scores for the expert eval-
uation phase. The first column shows correct predictions (True Positives and
Negatives), the second column shows incorrect predictions (False Positives and
Negatives), the third column gives Precision and Recall, the fourth gives the
standard (balanced) F-Score number, and the last column presents the overall
classification accuracy (correct classifications vs. incorrect ones).

Table 1. Semantic classification of untagged words

Classifier TP/TN FP/FN Prec/Rec F-score CA

Alchymoogle 24/80 31/65 43.6/27.0 33.3 52.0

5 Related Work

Our specific approach was on using Google for direct semantic annotation (search-
ing for is-a relations) of tokens (words) in biomedical corpora. We haven’t been
able to find other work that does this, but Dingare et al. is on using the num-
ber of Google hits as input features for a maximum entropy classifier used to
detect protein and gene names [10, 11]. Our work differs since we use Google
to directly determine the semantic class of a word (searching for is-a relation-
ships and parsing text (filtering adjectives) after (a/an) in “Word is (a|an), as
opposed to Dingare et al.’s indirect use of Google search as a feature for the infor-
mation extraction classifier. A second difference between the approaches is that
we search for explicit semantic annotation (e.g. “word is a protein”) as opposed
to their search for hints (e.g. “word protein”). The third important difference is
that our approach does automatic annotation of corpuses, whereas they require
pre-tagged (manually created) corpuses in their approach.

Other related works include extracting protein names from biomedical liter-
ature and some on semantic tagging using the web. Under, a brief overview of
related work is given.
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Work describing approaches for semantic annotation using the Web can be
found in [27, 12, 18, 19, 9, 22].

Semantic Annotation of Biomedical Literature

Other approaches for (semantic) annotation (mainly for protein and gene names)
of biomedical literature include:

– Rule-based discovery of names (e.g. of proteins and genes), [13, 29, 36, 35]
– Methods for discovering relationships of proteins and genes, [2, 16].
– Classifier approaches (machine learning) with textual context as features,

[4, 5, 6, 14, 1, 20, 30, 21, 17]
– Other approaches include generating probabilistic rules for detecting variants

of biomedical terms, [31]

A comprehensive overview of such methods is provided in [28].
The paper by Cimiano and Staab [7] shows that a system (PANKOW) similar

to ours works, and can be taken as a proof that automatic extraction using
Google is a useful approach. Our systems differ in that we have 275 different
semantic tags, while they only use 59 concepts in their ontology. They also have
a table explaining how the number of concepts in a system influences the recall
and precision in several other semantic annotation systems.

6 Discussion

In the following section we discuss our approach step-by-step. (The steps as
presented in fig. 2.)

1. Data selection. Since the results were inspected by cancer researchers the
focus was naturally on proteins with a role in cancer development, and more
specifically cancer in the stomach. One such protein is gastrin, and even
though a search in the online PubMed Database returned more than eighteen
thousand abstract IDs, only twelve thousand of these were found in our local
academic copy of MEDLINE. Therefore only 12.238 abstracts were used as
input to the tokenizer. Another important question is if the gastrin collection
is representative for MEDLINE in general or for the ”molecular biology” part
of MEDLINE in particular.

2. Tokenization into ”words”. The tokenization algorithm is important in
the sense that it dictates which ”words” you have to deal with later in the
pipeline. Our choice of using the Brown Corpus for training the Unigram and
Brill taggers also influences our choice of tokenizing algorithm. For example,
in the Brown Corpus all punctuation characters like comma, full stop, hyphen
and so on are written with whitespace both before and after them. This turns
them into separate tokens, disconnected from each other and from the other
tokens. How to deal with parentheses is another question. Sometimes they
are important parts of a protein name (often part of ”formulae” describing
the protein), and other times they are just used to state that the words within
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them aren’t that important. We decided to keep the contents of parentheses
as a single token, but this kind of parentheses clustering is a hard problem,
especially if the parentheses aren’t well balanced (like smiley and ”1), 2),
3)” style paragraph numbering). Parentheses in MEDLINE are usually well
balanced, but still some mistokenization was introduced at this point. Other
tokens that require special attention are the multi-word-tokens. They can
sometimes be composed using dash, bracket etc. as glue, but are at other
times single words separated with whitespaces, even though they should
really be one single token. One example is protein names, such as g-protein
coupled receptor (GPCR).

3. a) Brown Corpus and tagging. To train the Unigram and Brill taggers,
an already tagged text is needed as a training set. We used the Brown Corpus,
an American English corpus made from texts from 1961. They are rather
old, and might not be as representative of ”MEDLINE English” as we want.
There is also the challenge of how quote symbols and apostrophes are used
for protein names in MEDLINE abstracts, e.g. as a marker for the five-prime
or three-prime end of a DNA formula. Also, there are only one million words
in the corpus, so not all lowercase and capital letter combinations of every
word are present.
b) POS tagging with Brill algorithm and the Brown Corpus. The
Brill tagger doesn’t tag perfectly, so maybe classifier-based taggers such as
SVM could perform better. The performance of the Brill tagger could be
better if we used a higher-ordered tagger than the unigram tagger as input
to Brill, but the memory need for n-gram taggers are O(mn), where m is
the number of words in the dictionary. So with million word training- and
test sets, even the use of just a bi-gram tagger gets quite expensive in terms
of memory and time-use. Tagging itself may also introduce ambiguous tags
(e.g. superman is a protein, but it may be tagged as a noun/name earlier in
the pipeline, because that’s the most common sense mentioned in the Brown
Corpus).

4. Porter-stemming. turns out to work poorly on protein and biological
names, since they are often rooted in Latin or have acronyms as their name
or symbol. E.g. the symbol for gastrin is GAS, and the porter stem of GAS
becomes GA, which is wrong, and too ambiguous.

5. Gsearch. The indexing algorithm of Gsearch also contains some stemming
of the search terms, leading to some ”strange” results when removing well-
known proteins from the unknown words list. It should be extended with a
larger selection of databases and dictionaries covering biological terms, so
that protein names like ”peptone” could also be found in the database. In
other words there are ”precision and recall” issues also at this stage, but our
program should be able to solve ”half of this problem” automatically. The
worst problem is actually how to handle names with ”strange characters”
like ([]) in them, since these characters are usually not taken into account
during the index-building in systems like Gsearch (or Google).

6. Google Search. The precision of (positive) classification and the total clas-
sification accuracy is close to 50%, which is really good considering that no
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context information has been used in the classification process. By using
context information in the way that is done in [?] it should be possible to
increase the classification accuracy further. We had a lower recall than ex-
pected (24/89 = 27.0%), mainly because a lot of our unknown words are
parts of a multi-word-tokens, and can only be sensibly classified using the
context which contains the rest of the multi-word-unit. Also, many of the
words are not nouns, so they are not suitable class names in the first place,
but still expert biologists often think of them in a concrete way. One example
of this is ”extracardiac”, which were tagged as a place (outside the heart),
even though nobody would actually write ”extracardiac is a place outside
the heart”. (Except, I just did! And that really illustrates the problem of
freedom, when dealing with Natural Language Understanding.)

We did another test using 1500 semantic classes, instead of the 275 strictly
molecular biology related classes. Then we got more hits among the 200
words, so this may be a method to increase the coverage of our system. It is
of course much harder to manually evaluate these results, and there is also
the danger of lowering the precision this way.

7 Conclusion and Future Work

This paper presents a novel approach - Alchymoogle - using Google for semantic
annotation of entities (words) in biomedical literature.

We got empirically promising results - 52% semantic annotation accuracy
((TP+TN)/N, TP=24,TN=80,N=200) in the answers provided by Alchymoogle
compared to expert classification performed by a molecular biologist. This en-
courages further work possibly in combination with other approaches (e.g. rule-
and classification based information extraction methods), in order to improve
the overall accuracy (both with respect to precision and recall). Disambiguation
is another issue that needs to be further investigated. Other opportunities for
future work include:

– Improve tokenization. Just splitting on whitespace and punctuation charac-
ters is not good enough. In biomedical texts non-alphabetic characters such
as brackets and dashes need to be handled better.

– Improve stemming. The Porter algorithm for English language gives mediocre
results on biomedical terms (e.g. protein names).

– Do spell-checking before a query is sent to Google, e.g. allowing minor vari-
ations of words (using the Levenshtein Distance).

– Search for other semantic tags using Google, e.g. “is a kind of” and “resem-
bles”, as well as negations (“is not a”).

– Investigate whether the Google ranking is correlated with the accuracy of the
proposed semantic tag. Are highly ranked pages better sources than lower
ranked ones?

– Test our approach on larger datasets, e.g. all available MEDLINE abstracts.
– Combine this approach with more advanced natural language parsing tech-

niques in order to improve the accuracy, [25, 26].
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– In order to find multiword tokens, one could extend the search query (” X
is (an|a) ”) to also include neighboring words of X, and then see how this
affects the number of hits returned by Google. If there is no reduction in
the number of hits, this means that the words are ”always” printed together
and are likely constituents in a multiword token. If you have only one actual
hit to begin with, the certainty of the previous statement is of course very
weak, but with increasing number of hits, the confidence is also growing.

Acknowledgements

We would like to thank Waclaw Kusnierczyk for proposing additional biomedical
information databases for inclusion in future work, and Tore Amble for continu-
ous support. We would also like to thank Martin Thorsen Ranang for proposing
improvements for future work. And finally a thanks to the Gsearch developers
Jo Kristian Bergum, Hallgeir Bergum and Frode Jünge.

References

1. Steffen Bickel, Ulf Brefeld, Lukas Faulstich, Jrg Hakenberg, Ulf Leser, Condrad
Plake, , and Tobias Scheffer. A Support Vector Machine classifier for gene name
recognition. In Proceedings of the EMBO Workshop: A Critical Assessment of Text
Mining Methods in Molecular Biology, March 2004.

2. C. Blaschke, MA. Andrade, C. Ouzounis, and A. Valencia. Automatic Extraction
of biological information from scientific text: Protein-protein interactions. In Pro-
ceedings of International Conference on Intelligent Systems for Molecular Biology,
pages 60–67. AAAI, 1999.

3. B. Boeckmann, A. Bairoch, R. Apweiler, MC. Blatter, A. Estreicher, E. Gasteiger,
MJ Martin, K Michoud, C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider.
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.
Nucleic Acids Research, 31(1):365–370, January 2003.

4. Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte, Raymond J.
Mooney, Arun Kumar Ramani, and Yuk Wah Wong. Comparative Experiments on
Learning Information Extractors for Proteins and their Interactions. Journal Ar-
tificial Intelligence in Medicine: Special Issue on Summarization and Information
Extraction from Medical Documents (Forthcoming), 2004.

5. Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Raymond J. Mooney, Yuk Wah Wong,
Edward M. Marcotte, and Arun Kumar Ramani. Learning to Extract Proteins
and their Interactions from Medline Abstracts. In Proceedings of the ICML-2003
Workshop on Machine Learning in Bioinformatics, pages 46–53, August 2003.

6. Razvan Bunescu, Ruifang Ge, Raymond J. Mooney, Edward Marcotte, and
Arun Kumar Ramani. Extracting Gene and Protein Names from Biomedical Ab-
stracts. Unpublished Technical Note, Machine Learning Research Group, Univer-
sity of Texas at Austin, USA, March 2002.

7. Philipp Cimiano and Steffen Staab. Learning by Googling. SIGKDD Explorations
Newsletter, 6(2):24–34, December 2004.

8. J. Cowie and W. Lehnert. Information Extraction. Communications of the ACM,
39(1):80–91, January 1996.

Paper III 59



336 R. Sætre et al.

9. Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran,
Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, and
Jason Y. Zien. SemTag and seeker: bootstrapping the semantic web via automated
semantic annotation. In Proceedings of the Twelfth International World Wide Web
Conference, WWW2003, pages 178–186. ACM, 2003.

10. Shipra Dingare, Jenny Finkel, Christopher Manning, Malvina Nissim, and Beatrice
Alex. Exploring the Boundaries: Gene and Protein Identification in Biomedical
Text. In Proceedings of the BioCreative Workshop, March 2004.

11. Shipra Dingare, Jenny Finkel, Christopher Manning, Malvina Nissim, Beatrice
Alex, and Claire Grover. Exploring the Boundaries: Gene and Protein Identification
in Biomedical Text. Submitted to BMC Bioinformatics, 2004.

12. Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised Named-
Entity Extraction from the Web: An Experimental Study. Submitted to Artificial
Intelligence, 2004.

13. K. Fukuda, A. Tamura, T. Tsunoda, and T. Takagi. Toward information extrac-
tion: identifying protein names from biological papers. In Proceedings of Pacific
Symposium on Biocomputing, pages 707–718, 1998.

14. Filip Ginter, Jorma Boberg, Jouni Jarvinen, and Tapio Salakoski. New Techniques
for Disambiguation in Natural Language and Their Application to Biological Texts.
Journal of Machine Learning Research, 5:605–621, June 2004.

15. Jun ichi Tsuji and Limsoon Wong. Natural Language Processing and Information
Extraction in Biology. In Proceedings of the Pacific Symposium on Biocomputing
2001, pages 372–373, 2001.

16. Tor-Kristian Jenssen, Astrid Lægreid, Jan Komorowski, and Eivind Hovig. A
literature network of human genes for high-throughput analysis of gene expression.
Nature Genetics, 28(1):21–28, May 2001.

17. Sittichai Jiampojamarn. Biological term extraction using classification methods.
Presentation at Dalhousie Natural Language Processing Meeting, June 2004.

18. Vinay Kakade and Madhura Sharangpani. Improving the Precision of Web Search
for Medical Domain using Automatic Query Expansion. Online, 2004.

19. Udo Kruschwitz. Automatically Acquired Domain Knowledge for ad hoc Search:
Evaluation Results. In Proceedings of the 2003 Intl. Conf. on Natural Language
Processing and Knowledge Engineering (NLP-KE’03). IEEE, 2003.

20. Sougata Mukherjea, L. Venkata Subramaniam, Gaurav Chanda, Sriram Sankarara-
man, Ravi Kothari, Vishal Batra, Deo Bhardwaj, and Biplav Srivastava. Enhanc-
ing a biomedical information extraction system with dictionary mining and con-
text disambiguation. IBM Journal of Research and Development, 48(5/6):693–701,
September/November 2004.

21. M. Narayanaswamy, KE Ravikumar, and K Vijay-Shanker. A biological named
entity recognizer. In Proceedings of the Pacific Symposium on Biocomputing 2003,
pages 427–438, 2003.

22. David Parry. A fuzzy ontology for medical document retrieval. In Proceedings of
the second workshop on Australasian information security, Data Mining and Web
Intelligence, and Software Internationalisation - Volume 32, pages 121–126. ACM
Press, 2004.

23. JU. Pontius, L. Wagner, and GD. Schuler. The NCBI Handbook, chapter UniGene:
a unified view of the transcriptome. National Center for Biotechnology Information,
2003.

24. KD Pruitt and DR Maglott. RefSeq and LocusLink: NCBI gene-centered resources.
Nucleic Acids Research, 29(1):137–140, January 2001.

60 Semantic Annotation of Biomedical Literature Using Google



Semantic Annotation of Biomedical Literature Using Google 337

25. Rune Sætre. GeneTUC, A Biolinguistic Project. (Master Project) Norwegian
University of Science and Technology, Norway, June 2002.

26. Rune Sætre. Natural Language Processing of Gene Information. Master’s thesis,
Norwegian University of Science and Technology, Norway and CIS/LMU Munchen,
Germany, April 2003.

27. Urvi Shah, Tim Finin, and Anupam Joshi. Information Retrieval on the Semantic
Web. In Proceedings of CIKM 2002, pages 461–468. ACM Press, 2002.

28. Hagit Shatkay and Ronen Feldman. Mining the Biomedical Literature in the Ge-
nomic Era: An Overview. Journal of Computational Biology, 10(6):821–855, 2003.

29. Lorraine Tanabe and W. John Wilbur. Tagging gene and protein names in biomed-
ical text. Bioinformatics, 18(8):1124–1132, 2002.

30. Manabu Torii and K. Vijay-Shanker. Using Unlabeled MEDLINE Abstracts for
Biological Named Entity Classification. In Proceedings of the 13th Conference on
Genome Informatics, pages 567–568, 2002.

31. Yoshimasa Tsuruoka and Jun’ichi Tsuji. Probabilistic Term Variant Generator for
Biomedical Terms. In Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 167–173.
ACM, July/August 2003.

32. Amund Tveit, Rune Sætre, Tonje S. Steigedal, and Astrid Lægreid. ProtChew:
Automatic Extraction of Protein Names from . In Proceedings of the Interna-
tional Workshop on Biomedical Data Engineering (BMDE 2005, in conjunction
with ICDE 2005), Tokyo, Japan, April 2005. IEEE Press (Forthcoming).

33. Limsoon Wong. A Protein Interaction Extraction System. In Proceedings of the
Pacific Symposium on Biocomputing 2001, pages 520–530, 2001.

34. Limsoon Wong. Gaps in Text-based Knowledge Discovery for Biology. Drug Dis-
covery Today, 7(17):897–898, September 2002.

35. Hong Yu, Vasileios Hatzivassiloglou, Carol Friedman, Andrey Rzhetsky, and
W. John Wilbur. Automatic Extraction of Gene and Protein Synonyms from
MEDLINE and Journal Articles. In Proceedings of the AMIA Symposium 2002,
pages 919–923, 2002.

36. Hong Yu, Vasileios Hatzivassiloglou, Andrey Rzhetsky, and W. John Wilbur. Au-
tomatically identifying gene/protein terms in MEDLINE abstracts. Journal of
Biomedical Informatics, 35(5/6):322–330, October 2002.

Paper III 61



62 Semantic Annotation of Biomedical Literature Using Google



Paper IV

gProt: Annotating Protein Interactions Using Google and Gene
Ontology.
Rune Sætre, Amund Tveit, Martin Thorsen Ranang, Tonje S.
Steigedal, Liv Thommesen, Kamilla Stunes and Astrid Lægreid.
In Proc. Knowledge-Based Intelligent Information and Engineering
Systems (KES) 2005. International Conference, Melbourne,
Australia, September 14-16, 2005.
Lecture Notes in Artificial Intelligence (LNAI) 2005.
Volume 3683, Part III, pages 1195–1203.
Springer-Verlag GmbH.
ISSN: 0302-9743.
ISBN: 3-540-28896-1.





gProt: Annotating Protein Interactions
Using Google and Gene Ontology

Rune Sætre1, Amund Tveit1,3, Martin Thorsen Ranang1, Tonje S. Steigedal2,
Liv Thommesen2, Kamilla Stunes2, and Astrid Lægreid2

1 Department of Computer and Information Science,
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
{rune.saetre,amund.tveit,martin.ranang}@idi.ntnu.no
2 Department of Cancer Research and Molecular Medicine,

Norwegian University of Science and Technology,
N-7491 Trondheim, Norway

{tonje.strommen,liv.thommesen,kamilla.stunes,astrid.laegreid}@ntnu.no
3 Norwegian Centre for Patient Record Research
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway

Abstract. With the increasing amount of biomedical literature, there
is a need for automatic extraction of information to support biomedical
researchers. Due to incomplete biomedical information databases, the
extraction cannot be done straightforward using dictionaries, so several
approaches using contextual rules and machine learning have previously
been proposed. Our work is inspired by the previous approaches, but is
novel in the sense that it combines Google and Gene Ontology for anno-
tating protein interactions. We got promising empirical results - 57.5%
terms as valid GO annotations, and 16.9% protein names in the answers
provided by our system gProt. The total error-rate was 25.6% consisting
mainly of overly general answers and syntactic errors, but also including
semantic errors, other biological entities (than proteins and GO-terms)
and false information sources.

Keywords: Biomedical Literature Data Mining, Gene Ontology, Google
API

1 Introduction

With the increasing importance of accurate and up-to-date databases about
proteins and genes for research, there is a need for efficient ways of updating
these databases by extracting information from biomedical research literature
[8, 20, 21], e.g. those indexed in MEDLINE. Examples of information resources
containing such information are LocusLink, UniGene and Swiss-Prot for protein
info and the Gene Ontology for semantic labels.

Due to the large and rapidly growing amounts of biomedical literature, the
extraction process needs to be more automatic than previously. Current extrac-
tion approaches have provided promising results, but they are not sufficiently
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accurate and scalable. Methodologically all the suggested approaches belong to
the information extraction field [3], and in the biomedical domain they range
from simple automatic methods to more sophisticated, but slightly more man-
ual, methods. Good examples are: Learning relationships between proteins/genes
based on co-occurrences in MEDLINE abstracts (e.g. [9]), manually developed in-
formation extraction rules (e.g. [22]), information extraction (e.g. protein names)
classifiers trained on manually annotated training corpora (e.g. [1]), and classi-
fiers trained on automatically annotated training corpora [19]).

1.1 Research Hypothesis
Internet Search Engines such as Google, Yahoo and MSN Search are the world’s
largest readily available information sources, also in the biomedical domain.
Based on promising results from recent work on using Google for semantic an-
notation of biomedical literature [16], we are encouraged to investigate if Google
can be used to find protein interactions that match the Gene Ontology (GO).
This leads to the hypothesis:

Can Internet Search engines such as Google be used to annotate protein in-
teractions in the Gene Ontology framework?

The rest of this paper is organized as follows. Section 2 describes the materials
used, section 3 presents our method, section 4 presents empirical results, section
5 describes related work, section 6 discusses our approach, and last the conclusion
and future work.

2 Materials

See fig. 1 for an overview of the system. As input for our experiments we used
the following:

– 10 proteins that are already well-known to our biology experts.
– 37 verb-templates suggested by Martin et. al (LexiQuest) [12].

Proteins
The following proteins were used as input to the system.

Proteins used
‘EGF’, ‘TNF’, ‘CCK’, ‘gastrin’, ‘CCKAR’, ‘CCKBR’, ‘p53’, ‘ATF1’, ‘CREB’, ‘CREM’.

In addition, each protein is also described by several other names or synonyms
in the literature. E.g. gastrin is also known as ‘g14’, ‘g17’, ‘g34’, ‘GAS’, ‘gast’,
‘gastrin precursor’, ‘gastrin 14’, etc. So our biologists compiled a list of roughly
10 synonyms for each protein, giving us about 100 terms total to annotate.

Interaction Verbs
We selected our interaction verb templates from table 1 in [12]. They had a list
of 44 verbs, but we chose to use only 37 of these verbs. The reason for this is
that we are focusing on simple statements like “gastrin activates ...”, with the
object of the verb following directly after the verb template. The following table
shows the original list of verbs, with the removed ones in parenthesis.
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Verb templates used
acetylates, activates, (antagonizes), associates with, (attenuates),
(binding to), binds, blocks, (bonds), (complex), deactivates, decreases,
degrades, dephosphorylates, dimerizes, dissociates from, downregulates,
forms complex with, hydrolyses, inactivates, increases, induces, in-
hibits, interacts with, links, mediates, (oligomerizes), overexpresses,
phosphorylates, potentiates, precipitates with, reacts with, recruits, (re-
duces), regulates, releases, represses, stimulates, transactivates, trans-
duces, transforms, triggers, ubiquitinates, upregulates,

3 Our Approach

We have taken a modular approach where every submodule can easily be replaced
by other similar modules in order to improve the general performance of the
system. There are five modules in the system. The first one sets up the search
queries, the second runs the queries against Google, the third one tokenizes
the results, the fourth parses the tokenized text, and the fifth and last module
extracts all the results and presents them to the human evaluators. See figure 1.

1. Data Selection. N (=100) protein names are combined with M (=37) verb
templates, giving a total of N x M (3700) queries to run against Google.

2. Google. The queries are fed to the PyGoogle module which allows 1000
queries to be run against the Google search engine every day with a personal
password key. In order to maximize the use of this quota, the results of every
query are cached locally, so that each given query will be executed only once.
If a search returns more than ten results, the resultset can be expanded by
ten at a time, at the cost of one of the 1000 quota-queries every time. We
decided to use up to 30 results for each query in this experiment.

3. Tokenization. The text is tokenized to split it into meaningful tokens, or
“words”. We use a simple WhiteSpaceTokenizer from NLTK, where every
special character (like ( ) ” ’ - , and .) is treated as a separate token.

4. Parsing. Each returned hit from Google contains a “snippet” with the given
query phrase and approximately ten words on each side of it. We use some
simple regular grammars to match the phrase and the words following it.
If the next word is a noun it is returned. Otherwise, adjectives are skipped
until a noun is encountered, or a “miss” is returned.

5. Expert Evaluation. The results were merged so that all synonyms were
treated as if the main protein name had been used in the original query. Then
the results were put into groups (one group for each protein-verb pair) and
sorted alphabetically within that group. These results were then presented
to the biologists, who evaluated the usefulness of our results from Google.

4 Empirical Results

Fig. 2 and 3 show the results. The first one shows that more than half of the
extracted terms were terms that could be used to annotate the given protein
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Verb Templates

Expert Evaluation

Protein Names

Google search

Tokenization

Parsing

Fig. 1. Overview of Our Approach (named gProt)

according to the Gene Ontology (GO). Around one fifth of the results contained
an identifiable protein name that could be stored as a protein-protein interaction.
Only one quarter of the terms were deemed not useful. The different kinds of
“not useful”-errors can be read out of fig. 3.

5 Related Work

Our specific approach was on using Google and Gene Ontology for annotating
protein interactions. We haven’t been able to find other work that does this, but
the closest are Dingare et al., that uses results from Google search as a feature for
a maximum entropy classifier used to detect protein and gene names [5, 6], and
our previous work on semantic annotation of proteins (i.e. tagging of individual
proteins, not their GO relation) [16]. Google has also been used for semantic
tagging outside of the biomedical field, e.g. in Cimiano and Staab’s PANKOW
system [2] and in [4, 7, 10, 11, 13, 17].

A comprehensive overview of past methods for protein-related information
extraction is provided in [18].
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Fig. 2. Main Results
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6 Discussion

In the following section we discuss our approach step-by-step. (The steps as
presented in fig. 1.)

1. Data Selection. The results were inspected by cancer researchers, so the
focus was naturally on proteins with a role in cancer development, and more
specifically cancer in the stomach. One such protein is gastrin, used as a
running example in this article. In the experiment we used ten such protein
names with around ten synonyms for each. The large number of synonyms
used for each original protein name gave us a valuable increase in the recall
of expected facts from Google.
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2. Google. Since we decided to download up to 3 (times 10) results for each
query, we had to do around 11.000 queries. This took almost two weeks,
because of Google’s restraint to only run 1000 queries per day. If we want to
scale up this method in the future, we would probably have to pay Google
to let us do more queries per day, or consider using the recently announced
Yahoo API that allows 5.000 queries per day. The number of returned GO-
processes was over 50%, which is very promising for automatic annotation,
considering that no information has been used in the process to match GO-
terms more often than e.g. protein names.

3. Tokenization. Most of the “errors” are syntactic errors, and many of the
syntactic errors occur because of bad tokenization, mainly because a lot of
the returned words are just parts of multi-word-tokens. Also, many of the
words are not nouns at all, so they are not suitable class names in the first
place. In the future more work should be done in the tokenization phase. The
WhiteSpaceTokenizer was used because it is easy and fast, but with some
sort of NP-clustering and parentheses handling, almost half of the errors
could be removed. One example of NP clustering is protein names, such as
“g-protein coupled receptor (GPCR)”.
How to deal with parentheses? Sometimes they are important parts of a
protein name (often part of “formulae” describing the protein), and other
times they are just used to state that the words within them aren’t that
important. And the worst problem is that they are quite often “unbalanced”,
either because of typing errors, “1) 2) 3)”-style numbering, or smileys.

4. Parsing. We used a really simple grammar to extract the interacting terms
from what Google returned. It can be summed up as: After the template,
keep reading words until a “stop-word” is encountered. As “stop-words” we
used some common prepositions, in addition to full-stop punctuation (.,;?!).
There is obviously room for a lot of improvements here, e.g. using more
advanced Natural Language Understanding techniques.

5. Expert Evaluation. The evaluation was quite simple, just focusing on
deciding whether this way of using Google to do information extraction is
worth pursuing or not. Since the tokenization and grammar modules aren’t
perfect yet, the biologist also had access to the complete snippets (and the
corresponding homepage) in their evaluation work. It is now obvious to us
that we should keep developing this system, since almost three out of four
results were relevant, and many of them also novel, information.

7 Conclusion and Future Work

This paper presents a novel approach - gProt - using Google to find semantic
(GO-) annotations for specific proteins.

We got empirically promising results - 57.5% semantic annotation classes, and
16.9% protein names in the answers provided by gProt. This means that 74.4%
of the results are useful. This encourages further work, possibly in combination
with other approaches (e.g. rule based information extraction methods), in order
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to improve the overall accuracy. In the similar task of protein name identifica-
tion, recently presented precision scores ranges from 70 to 75% [1]. Hopefully,
more advanced methods will greatly reduce the number of errors (useless infor-
mation), which is currently at 25.6%. Disambiguation is another issue that needs
to be further investigated, because sometimes different search-results are really
just one single identity, because of synonyms and acronyms for example. Other
opportunities for future work include:

– Improve tokenization. Just splitting on whitespace and punctuation charac-
ters is not good enough. In biomedical texts non-alphabetic characters such
as brackets and dashes need to be handled better.

– Search for other verb templates using Google. E.g. Which templates give the
best results, and what about negations (“does not activate ...”)?

– Investigate whether the Google ranking is correlated with the accuracy of the
proposed semantic tag. Are highly ranked pages better sources than lower
ranked ones?

– Test our approach on larger datasets, e.g. using all the returned results from
Google.

– Combine this approach with more advanced natural language parsing tech-
niques in order to improve the accuracy, [14, 15].

– In order to find multiword tokens, one could extend the search query (“X
activates”) to also include neighboring words of X, and then see how this
affects the number of hits returned by Google. If there is no reduction in
the number of hits, this means that the words are “always” printed together
and are likely constituents in a multiword token. If you have only one actual
hit to begin with, the certainty of the previous statement is of course very
weak, but with increasing number of hits, the confidence is also growing.

– In this experiment very crude Part Of Speech (POS) tagging is done, so our
results can be seen as a baseline for this kind of experiment. In the future
we want to improve the results, for example by utilizing better grammars,
and more advanced natural language understanding techniques.
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Abstract

Motivation: WebProt is an open source software tool for text mining
in molecular biology texts. It is used to collect background information
about genes and proteins from online literature sources. This is useful
for molecular biologists working with many unfamiliar genes, like for
example in a big microarray experiment.
Results: A study using 42 different proteins and their official syn-
onyms/aliases showed that 69,5% of all the results from Google were
useful, i.e. containing either related protein names or biological func-
tions, locations and processes related to the query protein. This is 10%
lower than in a previous experiment, so we made a filter requiring each
web page to yield at least 6 results, before being taken into considera-
tion. This increased the precision to 91,5%, but the recall dropped to
2
3
, thereby lowering the F-measure of the system from 82% to 78%.

Availability: WebProt is available as a web service system running
on http://www.idi.ntnu.no/∼satre/webprot/. It can also be freely
downloaded for academic purposes by sending a request to the first
author of this chapter. The advantage of using the web based system
is that you get access to all the results submitted and searched for
by other biologists, and this will speed up some of your searches
tremendously.

Keywords: Biomedical Literature Data Mining, Gene Ontology,
Google API

1.1 Introduction

In recent years, the interest in developing effective tools for Natural Language
Processing (NLP) tasks in biomedical literature has been increasing. There is
a practical need to effectively curate, organize and retrieve information auto-
matically from textual sources, and most of these sources have already been in-
dexed by the worlds largest search engines, like Google2 and Yahoo3. With the
recent release of Application Programming Interfaces (APIs) to these search
engines, a world of new possibilities for practical applications has opened.

This paper describes such a new application, called WebProt. It is an
online version of the GProt system that was built with the Google API [15].
It provides a way of automatically updating protein and gene databases by

2http://www.google.com/
3http://www.yahoo.com/
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extracting information from biomedical research literature [22, 21, 19]. This
literature is indexed in MEDLINE4 online, and therefore also by Google and
other major search engines. Examples of databases that can be enriched with
this kind of automatically extracted information are LocusLink, UniGene and
Swiss-Prot for proteins and the Gene Ontology for semantic labels.

The large and rapidly growing amount of biomedical literature demands
that the extraction process has to be more automatic than previously. Current
extraction approaches have provided promising results, but they are not suffi-
ciently accurate and scalable. Methodologically all the suggested approaches
belong to the information extraction field [3], and in the biomedical domain
they range from simple automatic methods to more sophisticated, but then also
slightly more manual, methods. Good examples are: Learning relationships
between proteins/genes based on co-occurrences in MEDLINE abstracts [9],
manually developed information extraction rules [23], information extraction
classifiers for protein names trained on manually annotated training corpora
[1], and classifiers trained on automatically annotated training corpora [20].

1.1.1 Research Hypothesis

Internet Search Engines such as Google, Yahoo and MSN Search are the largest
readily available information sources in the world today, also in the biomedical
domain. Based on promising results from recent work on using Google for
semantic annotation of biomedical literature [16, 15], we are encouraged to
further investigate how Google can be used to find protein interactions that
match the Gene Ontology (GO) terms. The hypothesis we are working with
is:

Internet Search engines such as Google can be used to automatically anno-
tate protein interactions using the Gene Ontology framework.

1.1.2 Chapter Structure

The rest of this chapter is organized as follows. Section 1.2 describes the
materials used, Section 1.3 presents our methods, Section 1.4 presents some
empirical results, Section 1.5 describes related work, Section 1.6 discusses our
approach and the results we got, Section 1.7 contains some concluding remarks,
and finally some ideas for future work are presented in Section 1.8.

4http://www.ncbi.nlm.nih.gov/entrez/
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1.2 Material

Figure 1.1 shows an overview of the entire system. This section will explain
what input we got from the biologists (protein names), and what information
we got from public databases and research papers (protein synonyms and verb
templates). We will also explain how the data from Google was obtained, and
what programming tools and software we used to process the data.

1.2.1 System Input

Table 1.1 contains a list of all the proteins that were used in this experiment.
The protein list from the biologists has to be in one of the four standard unique
identifier formats made by Entrez Gene, SwissProt, UniGene or GeneBank. In
this case, Entrez Gene Identifiers (IDs) were used. The IDs are automatically
expanded into a list of all known synonyms by searching through a local copy
of the four databases just mentioned.

All the results from Google regarding the proteins in Table 1.1 have now
been stored locally in the WebProt system, so if anyone wants to recreate
the experiment, the search time will be minimal. Also, since the results are
now manually controlled by experts, they can be used as a corpus for future
experiments in this kind of Information Extraction domain. All the results are
therefore made publicly available at the system web page5.

Figure 1.2 shows a snapshot of the User Interface (UI) for the WebProt
system. It shows protein names and their synonyms on the left hand side, and
verbs describing the different interactions on the right hand side. In addition,
file upload or manual addition of proteins and synonyms can be done by using
the appropriate text boxes and buttons in the protein list. After selecting
which proteins, synonyms and verbs to search for, the user pushes the ”Search
Google” button, and then monitors the search, or just waits until the results
are ready. This procedure is explained in more detail in the WebProt Manual,
Subsection 1.3.1.

1.2.2 Programming Software

The program is written in the Python programming language6, using the
Google API7. The Internet web interface was built using Irmen de Jong’s

5http://www.idi.ntnu.no/∼satre/webprot/
6http://www.python.org/
7http://www.google.com/apis/
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Figure 1.1: Data flow in the WebProt System.
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Misund facts: 1118, bad:54% Thommesen facts: 492, bad:17%
SYMBOL ( ID) Facts Bad SYMBOL ( ID) Facts Bad

BMP2 ( 650) 69 0% CREBBP ( 1387) 81 74%
BMP3 ( 651) 1 0% FHL2 ( 2274) 44 2%

CCNA2 ( 890) 81 9% KCNA2 ( 3737) 56 11%
CHGB ( 1114) 1 0% PLA2G2A( 5320) 59 3%
CREM ( 1390) 85 6% PRKD1 ( 5587) 71 15%
ELK1 ( 2002) 10 0% RPS6KA1( 6195) 74 0%

MAP3K4 ( 4216) 8 0% RPS6KA2( 6196) 49 0%
PAX6 ( 5080) 662 89% AKAP1 ( 8165) 9 0%
SRF ( 6722) 116 5% BTAF1 ( 9044) 13 0%

RPS6KA5 ( 9252) 27 0% RPS6KA5( 9252) 27 0%
ICER (378903) 58 5% TORC2 (200186) 9 44%

Stunes facts: 2582, bad:20% Steigedal facts: 472, bad:44%
SYMBOL ( ID) Facts Bad SYMBOL ( ID) Facts Bad

BMP1 ( 649) 210 18% CCND1 ( 595) 15 0%
RUNX2 ( 860) 69 0% CHGA ( 1113) 51 22%

COL1A1 ( 1277) 2 0% EGR3 ( 1960) 7 0%
IL6 ( 3569) 927 1% FGF1 ( 2246) 53 2%

OPG ( 4982) 132 5% FOS ( 2353) 126 37%
SLC6A4 ( 6532) 40 3% GATA6 ( 2627) 9 0%

SST ( 6750) 428 28% HDC ( 3067) 24 88%
TPH1 ( 7166) 8 100% NP ( 4860) 180 71%

TNFSF11 ( 8600) 241 29% CCNI (10983) 3 0%
TNFRSF11A ( 8792) 269 78%

RPS6KA5 ( 9252) 27 0%
GHRL (51738) 66 85%
SP7 (121340) 163 0%

Table 1.1: Proteins and corresponding Entrez Gene ID numbers for the exper-
iment. Number of facts found by Google, and error-rate is also shown.
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Figure 1.2: WebProt User Interface

Snakelets8.

1.3 Methods

The goal of our experiment was to show that Google is a good source to use for
extracting information about gene and protein interactions. To show this, we
built a real online web service, allowing biologists to search for their favourite
proteins, and then giving us their opinion about how useful the results were,
and how many errors they found. The content of this section is:

• A short WebProt User Manual (1.3.1)

• Overview of the experimental setup and result classification (1.3.2)

• More details on the Google Interface (1.3.3)

• A description of the Natural Language Processing (NLP) part of the
system (1.3.4)

• Information about the automatic Gene Ontology Annotation algorithm
(1.3.5)

8http://snakelets.sourceforge.net/
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1.3.1 Short WebProt User Manual

This subsection explains how to use the WebProt system, and also what you
need to do to make a local copy of the system.

Since the WebProt system is based on the Google API, you need a Google
Key9 to run your queries. In order to get a Google Key, you first need a
Google user account, which you will be prompted to create during your first
login to the WebProt system. The Google Key will be stored permanently in
the system, and it will automatically be used to perform all your following
queries.

After logging in, you will see the main WebProt page, as shown in Fig-
ure 1.2. When using the system for the first time, your personal protein list
will be empty, so you have two choices:

1. You can upload a file with Protein Identifiers in one of the four allowed
formats (UniGene, SwissProt, Entrez Gene or GeneBank)

2. You can manually add one identifier at the time, using one of the four
different ID types for each entry. You can also ”invent” your own protein
identifiers, but then the automatic synonym expansion will not work for
those identifiers.

When you have registered the proteins that you want to study, you can use
the program to automatically find all official synonyms and symbols for the
identifiers that you have entered. This is done by indicating what ID format
you have used, and clicking the ”Get all official synonyms” button. Finally,
when all protein and synonyms are present, you can choose from a standard
set of interaction verbs [12] and push the ”Search Google” button to start your
search. Google only allows 1000 queries per day per user, so if your search
contains more than 1000 queries, you have to restart it the next day. All the
results will be stored in the WebProt system, so the search will automatically
continue from where it stopped the last day. Since our local copy of the results
from Google is a shared resource for all the users of the system, you will never
have to use your quota to do a query that has been done by you or any other
user previously. To make sure that the copies of the results do not get to old,
we mark every result with a date stamp, saying when the search was done. In
this way, we can delete or omit results that are older than a certain threshold.

After the search phase, the evaluation phase follows. All the results are
listed, sorted by protein and interaction verb, and there are clickable links

9http://www.google.com/apis/
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Result Label Explanation

Correct
Prot Proper gene or protein term
GO Proper Gene Ontology (GO) term

Bad NLP
SnipProt Unextracted protein/gene in snippet
SnipGO Unextracted GO term in snippet

Bad results Bad No (correct) facts in snippet

Table 1.2: Result Classes

into the web pages containing the results, and into the Amigo GeneOntology
Browser for GO terms.

If you want to install the WebProt system on your own web server, you
first have to download and install Python and Snakelets. Then you can copy
the latest version of the WebProt files10 into the Snakelets webapps directory
and change the init .py file to include the WebProt system as one of your
web applications. If you do this, you will not have the benefit of accessing
results from other biologists, but it will give you more freedom in changing
the program to do exactly what you want.

1.3.2 Experiment Configurations

After the user has submitted the protein list, the synonyms are automati-
cally extracted from biological databases, and the Google search is done as
described in the last subsection. Then we have enough information to answer
the following two questions:

1. How much relevant information (e.g. protein names and GeneOntology
codes) do the snippets from Google contain?

2. How easy is it to automatically extract the exact protein names or GO
codes from the snippet, using just very simple Natural Language Pro-
cessing techniques?

We used four positive and one negative label to classify the results (Ta-
ble 1.2). The SnipProt and SnipGO tags means that a correct humanly read-
able fact is present in the snippet text from Google, but the fact was not
successfully extracted by the system because of erroneous NLP processing.

10satre@idi.ntnu.no
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1.3.3 Google Searching

Since each user can only do 1000 queries per day, queries are the scarcest re-
source in the system now. Also, a query returning no results have the same
”cost” as a query returning a full Google result set with useful results. Cur-
rently, each of the 1000 result sets can only contain a maximum of 10 single
results, so if we want to see the first 30 hits for a query, we have to do three
separate searches for this query. This also means that if you can find a clever
way to avoid the empty queries, you can download almost 10.000 useful results
per day, instead of just 1000 empty ones.

Our queries to Google are quite specific, including quotes (” query ”) to
indicate that only exact matches should be accepted, and this leads to many
empty answers from Google. Even without the quotes, many synonym and
verb combination show up as empty searches, simply because many of the
official synonyms are hardly ever used in written articles or abstracts. So, to
avoid wasting one query for every verb on a single unused synonym, the search
algorithm was implemented in the following way:

1. First, search for the individual synonym alone, without any accompany-
ing verbs.

2. If Google estimated the size of the entire result set to be lower than 500
hits (50 queries), then download all the results, and skip the next step.

3. If there are more than 500 estimated hits for a query, make a single
query for every synonym and verb combination, leading to a maximum
of (40verbs x 3queries =) 120 queries.

The advantage of this method is that it avoids wasting queries in the case of
rare synonyms. At the same time, it guarantees that all the results for a given
” synonym verb ” query contains interesting sentence patterns, and it will only
use as many queries for that query as there are actually matching sentences
on the Web.

A similar problem of wasting queries occurs when a protein synonym is
a very common word, like ”AN”, ”AND” or ”GAS”. See PAX6 and TPH1
in Table 1.1 for a real example. In this case, Google will find many results
to download, but there is a good chance that none of them will be related to
molecular biology, so we will have wasted our quota again. This also introduces
a lot of extra errors into the extracted data, as long as more powerful NLP
techniques are not used. The only way to avoid this problem currently, is for
the user to remove some of the bad automatically generated synonyms, before
starting the search.
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Stopword Explanation
... End of snippet, indicating that something is missing...
. End of the sentence (usually), ok
; Semicolon, ok
and Conjunction, indicating that one more fact following
as Adverb/Conjunction, indicating new clause
but Conjunction, indicating doubt or negative fact following
is Verb, indicating passive sentence structure
or Conjunction, indicating doubt or more facts following
while Conjunction, ok

Table 1.3: Stopwords, marking the end of potential protein names.

1.3.4 The Natural Language Processing (NLP) part

The results returned from Google include a field called snippet, containing the
query and its context. Each snippet usually consists of one or two sentences,
including the exact phrase that we searched for (approximately ten words on
each side of the query). The snippet is extracted from the corresponding web
page, which can be in a lot of different formats, e.g. HTML, Word Document,
PowerPoint Presentation slides, PDF file and so on. In the snippets, (almost)
all original formatting codes like HTML or bullet list characters have been
removed by Google. This leaves just plain text, which would be an ideal
target for NLP, but during the search, Google automatically adds some HTML
code to the snippet again, to highlight the actual query terms. This makes
it very easy to read the results when viewing them online, but in the case of
automatic text processing, HTML codes are just noise that has to be removed
before applying the text matching algorithm.

After removing the HTML codes we try to retrieve our query from the
snippet, but sometimes the snippet does not contain the exact phrase that
we searched for. This can happen for two reasons: First, when Google build
their search index they ignore several punctuation characters that are actually
often important parts of protein or gene sequence names. Second, if a large
number of people create links to a web page using for example a protein name
as the link term, Google will take this into account, and return the linked
page, even if it does not actually contain the given search query. If our query
is not present in the snippet, we skip to the next result, assuming that the
current one is garbage.

If the snippet contains the exact search phrase, we remove the phrase and
everything before it. Then we store all the following words until we encounter
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Stopword Prepositions
against, between, by, despite, for, from, in, into,
#of, on, than, #that, through, to, towards, upstream,
until, using, versus, via, which, whose, with, within, without

Table 1.4: Prepositions, marking the end of potential protein names.

one of the special stopwords in Table 1.3, or one of the prepositions in Ta-
ble 1.4. We removed ”of” and ”that” from this list, since they are often part of
interesting general protein descriptions like ”a gene that activates this protein”.

After the candidate protein and GO names have been extracted like this,
we remove all occurrences of words like ”the” to reduce the number of double
hits, i.e. we do not want to distinguish between ”ACL protein” and ”the ACL
protein”. There is obviously room for a lot of improvements here, e.g. using
more advanced Natural Language Understanding techniques, but at least this
simple method ensures good coverage.

Before the resulting terms from this algorithm are sent back to the user
for manual evaluation of the quality, a fast algorithm extracts all possible GO
candidates from the (full) snippet text. This makes it easier for the users who
can not call to mind all of the approximately 20.000 terms (plus synonyms)
in the Gene Ontology. The GO matching algorithm is described in the next
subsection.

1.3.5 Automatic Gene Ontology Annotation

To help the human experts evaluate the results, every snippet was automat-
ically annotated with a set of all the Gene Ontology (GO) identifiers and
terms (or term synonyms) that appeared in the snippet. See Algorithm 1 for
a pseudocode description of the GO matching algorithm.

The algorithm takes three arguments as its input. The first argument is
a list, denoted TGO, which represents the information extracted from the file
gene ontology.obo11. Each element of TGO is a tuple, (iGO, tGO), where iGO

denotes the GO identifier, and tGO denotes the corresponding tokenized GO
term (or synonym). By tokenized, we mean that the string representing the
term (or synonym) was split into several shorter strings, each representing a
token (a single word or a punctuation symbol), and stored as a list.

The second argument is a hash index, denoted IGO. For each element

11All Gene Ontology Terms and Synonyms, available at
http://www.geneontology.org/ontology/gene ontology.obo.
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Algorithm 1 Identify any GO term (or synonym) occurring in the sequence
of tokens T , given a list of tokenized GO terms TGO and a corresponding hash
index IGO.

1: function FindTerms(TGO, IGO, T )
2: result ← {}
3: i← 0
4: while i < |T | do
5: j ← 0 . Number of matching tokens since i.
6: span ← 0 . The length of the current match(es) in T .
7: parts ← {}
8: trailing garbage ← 0
9: done ← False

10: while ¬done ∧ (i < |T |) do
11: t← T [i + span]
12: if t ∈ ignorable then
13: if span = 0 then
14: break . No path starts with an ignorable token.
15: else
16: span ← span + 1
17: trailing garbage ← trailing garbage + 1
18: continue
19: key ← (j, t)
20: if key ∈ IGO then
21: if span = 0 then
22: parts ← IGO[key ] . Note that parts is a set.
23: else
24: parts ← IGO[key ] ∩ parts

25: j ← j + 1
26: span ← span + 1
27: trailing garbage ← 0 . No trailing garbage.
28: else
29: done ← True
30: for all k ∈ {n|(n ∈ parts) ∧ (|TGO[n][1]| = j)} do
31: result ← result ∪ {(i, (i + span − trailing garbage), k)}
32: i← i + 1

33: return result
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(iGO, tGO) ∈ TGO, several tuples (i, ti) are generated (ti is the ith token in
tGO). These tuples are used as the keys in IGO, while the value associated
with each key is a set. Each such set contains the indices of the elements in
TGO that were used to generate the key identifying it.

The third argument of the algorithm is a tokenized snippet. Every snippet
is tokenized just like the GO terms.

The returned value from the algorithm is a set of tuples {(nk, mk, ik), . . . },
where nk and mk are the start and stop indices of the kth match, while ik is
the index of the matching GO term in TGO.

The algorithm is designed to allow certain tokens from a set called ignorable
to occur within a matching region. Also, note that no distinction is made
between upper and lower case characters in the tokens.

1.4 Results

This section summarizes the results from the experiments, together with an
estimate of the success rate of the system, calculated as precision, recall and
F-measure values. A table showing the top ten contributing web domains
giving this kind of protein interaction facts is also given.

1.4.1 Precision, Recall and F-measure

After the experiments, the performance of the system was computed according
to (1.1), (1.2) and (1.3)

(P )recision = |correct facts|
|all extracted facts|

=
3243

4606
= 70% (1.1)

(R)ecall/Coverage = |correct facts|
|all relevant facts|

=
3243

3243?
≤ 100% (1.2)

F-measure = 2∗P∗R
P+R

=
2 ∗ 0.7 ∗ 1

0.7 + 1
= 82.4% (1.3)

The question mark in formula 1.2 shows that we do not have the exact
number of possible facts, since nobody knows how much relevant data is ac-
tually stored on the internet. One way to get around this problem, would be
to let a biologist create a set of certain facts for a limited number of proteins,
and then see how many of these facts are actually found by the system. This
will at least give us an estimate of the coverage of the system, but there is
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still a chance that the system can find new data, previously unknown even to
the biologist. Also, creating a good gold standard like this is too expensive,
so in this experiment we use the system to help us build the gold standard
file, by measuring the precision manually after running the experiments, and
calculating the F-measure by assuming that all the positive facts were found
by the system during the search. This is a farfetched assumption, but at least
we did not see any counter examples (yet). Table 1.5 shows how precision,
recall and F-measure values change, when different values for the hit-count
filter are used. A hit-count filter with value three, means that only web do-
mains contributing three or more different facts to the search are listed at valid
results.

Table 1.6 gives a list of the web domains that contributed most facts in
response to the queries. As you can see, almost all the major contributors
are electronic (online) journals. One exception to this is uam.es12, which is
hosting a system called iHOP [8]. This system has extracted half a million
sentences from MEDLINE and is using HTML markup to allow the user to
navigate between research articles just by clicking on protein names in the text.
The biggest contributor of facts is, not surprisingly, the National Library of
Medicine13, since they have the MEDLINE collection of 12 million abstracts
online, in addition to several journal and book articles.

1.4.2 Time Consumption

To determine how fast the system could operate if Google removed the limit of
1000 queries per, the average time it took to do one single query was measured.
If you want to do 5000 queries with the Google API right now, it takes five
days for a single user to complete the search, because the experiment must be
restarted every day after reaching 1000 queries. If we need the results faster,
maybe we could buy a bigger quota from Google?

The actual time used to do just one such Google Search query varies be-
tween two and four seconds, depending on network load etc. This was mea-
sured by running 1000 queries, which usually took between 40 and 60 minutes
to complete. Three seconds per query is rather slow, and the main reason for
this is probably that Google tries to limit the bandwidth given to one single
user at any time. If you run the same query on the Google web page, the
search time (without network latency) is reported to be around 0.2 to 0.4
seconds, which is ten times faster than what the program achieves. Another

12http://www.pdg.cnb.uam.es/UniPub/iHOP/
13http://www.ncbi.nlm.nih.gov/
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Hit limit Precision Recall F-measure Facts Correct
1 69,5 100,0 % 82,0 % 4651 3243
2 82,7 84,4 % 83,5 % 3310 2737
3 86,2 77,7 % 81,7 % 2922 2519
4 87,9 73,5 % 80,0 % 2709 2382
5 89,4 70,4 % 78,7 % 2553 2282
6 91,5 67,5 % 77,7 % 2393 2189
7 92,3 64,4 % 75,8 % 2261 2087
8 92,4 63,0 % 74,9 % 2212 2043
9 93,9 61,0 % 74,0 % 2108 1979

10 94,1 60,4 % 73,6 % 2081 1959
11 94,6 59,8 % 73,3 % 2051 1940
12 94,5 58,5 % 72,3 % 2007 1897
20 94,3 54,5 % 69,1 % 1874 1767
30 94,8 46,5 % 62,4 % 1592 1509

Table 1.5: Different values for web domain hit-count limit, leading to different
P, R and F-measures.

problem with automatic querying is that Google sometimes does not answer
the query at all, and then the Simple Object Application Programming inter-
face (SOAP14) returns an error message. Then WebProt has to deal with the
problem, for example by running the erroneous query again. This leads to at
least a doubling of the search time for the erroneous query, and in the worst
case it can lead to inconsistencies in the local database of WebProt, for exam-
ple if a new type of error occurs, and the system has not been programmed to
properly handle it.

1.5 Related Work

Our specific approach was on using Google and Gene Ontology for annotating
protein interactions. We have not been able to find any other work that does
this, but the closest is Dingare et al., that uses results from Google search as
a feature for a maximum entropy classifier used to detect protein and gene
names [5, 6].

The results presented in this paper are extensions of our previous work on
semantic annotation of proteins [15]. Google has also been used for semantic

14http://www.w3.org/TR/soap12-part1/
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tagging outside of the biomedical field, e.g. in Cimiano and Staab’s PANKOW
system [2] and in other systems [17, 7, 10, 11, 4, 13].

A comprehensive overview of past methods for protein-related information
extraction is provided in [18].

1.6 Discussion

This section will present some afterthoughts concerning the quality of the
method and the results. Specifically, it will explain what kind of problems the
Natural Language Processing (NLP) part of the system encountered, and how
the built-in Page Rank feature of Google can be used to evaluate the general
quality of the retrieved data.

1.6.1 Error Classification

There are many reasons why the NLP part of the system can give bad results,
e.g.:

• Bad conversion from PowerPoint files to HTML text in Google.

• ”Invisible” formatting codes from Portable Document Format (PDF) or
PostScript (PS) files sometimes find their way into the snippets that are
returned from Google.

• Periods and hyphen symbols used for example in bulleted lists in Mi-
crosoft Word or PowerPoint files are not treated properly.

• ”Merged” characters like ”fi” and ”fj” because of a typography technique
known as ligatures.

The last problem could be solved by our parser by doing a dictionary lookup
for example, but it is probably a better approach to ask Google to deal with
this on their server side. Then all the possible client applications that will be
made around the world can avoid lots of identical error processing.

Another source of bad results from Google is the fact that the snippets are
very short, so quite often the long ”research language” sentences will be cut in
the middle of the interesting fact that we want to extract. This can probably
be solved in one of two ways. Since we have the URL to the original docu-
ment, we could download all the text, and do parsing of the entire document.
Unfortunately, this is very time consuming, and it also makes it necessary to

94 WebProt: Online Mining and Annotation of Biomedical Literature Using Google



Mining and Annotation of Biomedical Literature Using Google 19

deal with formatted PowerPoint, PDF or other complex file formats. The sec-
ond way to deal with snippet cut-offs could be to use an extra Google search
specifying only the last words just before the cut-off (...) and thereby tricking
Google into revealing more of the resulting snippet. This second approach has
not been tried in practice yet.

1.6.2 Page Rank

When WebProt uses Google to extract information for a given synonym and
verb pair, it only downloads 30 results, even if several hundred results exists.
This means that we are relying on the Google Page Rank formula to do much
of the filtering for us. Considering how the Page Rank is calculated, this is
probably a good thing, since the Page Rank takes into account the popularity
of the page, what kind of terms people use to link to it and what terms they
use when they search for and then view the page from the Google web site.

1.7 Conclusion

We studied how Google can be used to find biological relevant information
on protein interactions from the internet. This was done using a self-made
Python program, and the results are very promising. To help you use this in
your own research, the program is available both online 15, and as source code
by request to the first author of this chapter 16.

There are some weaknesses (or room for improvement), especially in the
automatic determination of the correctness of retrieved results, which is why
the biologists still need to be in the loop. Also, a study should be done to de-
termine how complete the results are, but this requires a gold standard corpus
for this kind of information retrieval. Building such a corpus is extremely time
consuming, so more manpower is needed, but it should be possible to extend
the current results into such a corpus for others to use. See the Future Work
Section for more detail on this.

1.8 Future Work

• How can this system be improved further?

15http://www.idi.ntnu.no/∼satre/webprot/
16satre@idi.ntnu.no
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System Step Data Example

WebProt
1 Input: CCK
2 → Google: ” CCK activates ”
3 Snippet: CCK activates CREB and ICER.

Bioogle

4 Tagged object: CREB
5 → Google: ” CREB is (an|a) ”
6 Snippet: CREB is a protein.
7 Extracted class: protein.

Figure 1.3: How WebProt and Bioogle can be combined.

• How can we make it more automatic and reduce the workload of the
biologists even more?

• How can we automate the process of telling if extracted facts are really
biological entities or not?

The next natural extension to the WebProt program is to do more advanced
parsing of the snippets from Google. Then it will be easier to find the object of
the verbs, and once the object phrase is known, it is possible to use Google to
determine the class that the object belongs to (see Figure 1.3). If the returned
class of the object does not match any of the biological classes in our hierarchy,
we can assume that the extracted fact was not a relevant one. This is based
on the approach taken in the Bioogle system[16]. We are currently developing
a molecular biology domain language parser and question-answering system,
called GeneTUC [14], which can help us do this kind of subject and object
tagging.

In order to ensure that the extracted facts are really biological relevant, it
is possible to do more advanced filtering of the web pages that we let Google
search. For example, the search could be constricted only to NCBIs MED-
LINE pages, but that would probably remove too many very recent facts from
being discovery. A better solution is probably to allow all pages in the search,
and then gradually build a positive filter listing all the pages like MEDLINE,
journals and university websites, that give useful results. When this filter is
rich enough, we can finally stop showing pages that are not among these good
sources.

Appendix A
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Abstract. With the increasing amount of biomedical literature, there
is a need for automatic extraction of information to support biomedical
researchers. GeneTUC has been developed to be able to read biological
texts and answer questions about them afterwards. The knowledge base
of the system is constructed by parsing MEDLINE abstracts or other
online text strings retrieved by the Google API. When the system en-
counters words that are not in the dictionary, the Google API can be
used to automatically determine the semantic class of the word and add
it to the dictionary. The performance of the GeneTUC parser was tested
and compared to the manually tagged GENIA corpus with EvalB, giving
bracketing precision and recall scores of 70,6% and 53,9% respectively.
GeneTUC was able to parse 60,2% of the sentences, and the POS-tagging
accuracy was 86.0%. This is not as high as the best taggers and parsers
available, but GeneTUC is also capable of doing deep reasoning, like
anaphora resolution and question answering, which is not a part of the
state-of-the-art parsers.

Keywords: Biomedical Literature Data Mining, Google API, GENIA.

1 Introduction

Modern research is presenting more new and exciting results than ever before,
and it is gradually becoming impossible for the human reader to stay up-to-date
in the sea of information. This is especially true in the Medical and Molecular
Biology domains, where the MEDLINE database of publications is increasing
with almost 2000 new entries every day. To help researchers find the information
they are searching for in an efficient manner, automatic Information Extraction
(IE) is needed. This paper describes a system that is using Natural Language
Processing (NLP) in order to automatically read the abstracts of research papers,
and later answer questions posed in English about the abstracts.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. V, LNBI 4070, pp. 68–82, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.1 Information Extraction (IE) in Biology

The large and rapidly growing amounts of biomedical literature demands a more
automatic extraction process than previously. Current extraction approaches
have provided promising results, but they are not sufficiently accurate and scal-
able. A survey describing different approaches within the information extraction
field is presented in [6], and a more recent “IE in Biology” survey is given in [15].
In the biomedical domain, IE approaches range from simple automatic methods
to more sophisticated but also more manual methods. Some good examples are:
Learning relationships between proteins/genes based on co-occurrences in MED-
LINE abstracts [9], manually developed IE rules [24], protein name classifiers
trained on manually annotated training corpora [1], and classifiers trained on
automatically annotated training corpora [20].

A new emerging approach to medical IE is the heavy use of corpora. The
workload can then be shifted from the extremely time consuming manual gram-
mar construction to the somewhat easier and more teamwork oriented cor-
pus/treebank building [12]. This means that the information acquisition
bottleneck can be overcome, while still reaching state-of-the-art coverage scores
(around 70-80 percent). In this chapter a corpus is used, namely the GENIA
Tree Bank (GTB) corpus [19], first to train and then later to test how well the
GeneTUC parser performs compared to other available parsers in this domain.

1.2 GeneTUC

The application that we want to improve and test, by incorporating alternative
sources of information, is called GeneTUC. TUC is short for “The Understand-
ing Computer”, and is a system that is under continuous development at the
Norwegian University of Science and Technology. Section 3 will explain in more
detail how TUC, and especially GeneTUC, works.

1.3 Chapter Structure

The rest of this chapter is organized as follows. Section 2 describes the materials
and programs that were used, section 3 explains in detail how GeneTUC works,
section 4 presents our approach, section 5 presents the empirical results, section
6 describes other related work, section 7 contains a discussion of the results, and
finally the conclusion and future work are presented in section 8.

2 Materials

One of the main goals was to test how good the current state of the GeneTUC
parser is. To do this, some manually inspected parsed text is needed, and that is
exactly what the new syntactically enhanced GENIA corpus is [19]. It consists of
text from MEDLINE (see subsection 2.1), and provides a gold standard that can
be used both for training and testing the GeneTUC application. See Subsection
2.2 for more details.

106 GeneTUC, GENIA and Google: NLU in Molecular Biology Literature



70 R. Sætre et al.

2.1 MEDLINE

Medline1 is an online collection of more than 14 million abstracts by now (Novem-
ber 2005). The abstracts are collected from a set of different medical journals by
the US National Institutes of Health (NIH). NIH grants academic licenses for
PubMed/MEDLINE for free to anyone interested. When it was downloaded in
September 2004, the academic package included a local copy of 6.7 million ab-
stracts, out of the 12.6 million entries that were available on their web interface
at that time.

2.2 GENIA Tree Bank (GTB)

It was decided to use the GENIA Tree-Bank (GTB) corpus2 for training and
testing of GeneTUC. GTB consists of 500 abstracts from the GENIA corpus
which consists of 2000 abstracts from MEDLINE. These 500 abstracts have
been parsed, manually inspected and corrected to ensure that they contain the
expected parse result for every single sentence. The format of the annotation is a
slightly modified Penn Tree Bank-II format. The GTB is split into GTB200 with
200 abstracts and GTB300 with 300 abstracts. We used GTB300 as a training
set, and GTB200 as test set to calculate the precision and recall scores for parsing
of unseen text. It should be pointed out that GTB is still in a beta-release state,
which means that it still contains some errors, and some manual inspection of
the results are needed to determine if this has a great influence on the measured
numbers.

A list of all composite terms in the GTB was also used as input to the system.
This was done to ensure that the parsing performance was measured without be-
ing influenced by bad tokenization, which is handled by another module, namely
the lexical analysis module, in GeneTUC.

3 GeneTUC

GeneTUC is on the way to be a full-fledged Question Answering system, but the
coverage is still low. Figure 1 shows the general information flow in the TUC
systems. The input sentence can be either a fact for example from a Medline
abstract or a question from the user. The analysis is the same in both cases, but
the answer will have two different forms. In the case of a factual input sentence,
the facts are coded in a first order event logic form called TUC Query Language
(TQL) and then stored in the Knowledge Base (KB) of the system. This is
shown in Example 1, above the line. Later, when someone inputs a question, the
question will also first be coded using TQL, but either the subject or one of the
objects in the sentence may then be wildcards that should be matched against
facts in the existing KB.

1 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
2 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/topics/Corpus/GTB.html
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Input string

Lexical analysis

Parsing
Anaphora
resolution

Optimizing

Reasoning

Answer

Fig. 1. Data flow in the TUC System

Example 1.

Statement : “CCK activates Gastrin.”
Update to KB : activate(cck,gastrin).

Question : “What activates Gastrin?”
Answer : “CCK”

In this case it is very obvious that “What” is the placeholder for the answer,
and also that it must be substituted with “CCK” to match the existing fact. So
even if this is a very simple example, the method works in the same way also for
more complex sentences. The only requirement is that the question is stated in
a similar grammatical form as the factual statement.

3.1 GeneTUC Lexical Analysis

The lexical analysis in GeneTUC changes the input sentences from a long list
of characters into tokens (words) and sentence delimiters. The current set of
sentence delimiters includes the following:

Period Colon Semi Colon Question Mark Exclamation Mark
. : ; ? !

In the process of making the tokens, no distinction is made between upper
and lower case characters, so the input to the syntactical analysis is a set of all
lower case tokens.

3.2 GeneTUC Grammar and Syntactical Analysis

The GeneTUC grammar is what we call ConSensiCAL. That means it is a Con-
text Sensitive Categorial Attribute Logic grammar formalism. It is based on the
Prolog Definite Clause Grammar (DCG) with a few extensions to handle catego-
rial movement and gaps etc. See [5] for more details on the Prolog programming
language for Natural Language Processing (NLP).
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Categorial Grammar. TUC is inspired by Categorial Grammar which allows
gaps in the sentence. This mechanism is very easy to use when parsing sentences
like in the following examples:

Example 2.

Input: What activates Gastrin?
Grammar for Question, using Statement:
Statement → NounPhrase VerbPhrase
Question → what Statement\NounPhrase

VerbPhrase → Verb NounPhrase
. . .

Example 3.

Input:
Results of preliminary studies, which we have conducted,
suggest that use of this agent is useful.
Grammar (Forward Application):

NounPhrase → Det Nominal RelativeClause
RelativeClause → RelativePron Statement/NounPhrase

RelativePronoun → that|which|who
. . .

Example 4.

Input: A gene signal that results in production of proteins occurs.
Grammar (Backward Application):

Statement → NounPhrase RelativeClause
RelativeClause → RelativePronoun Statement\NounPhrase

. . .

Example 5.

Input: A gene signal resulting in protein production occurs.
Grammar for Gerund:
RelativeClause → Verb-ing RelativeClause\thatVerb-s

. . .

Example 2 shows how the What-Question from Example 1 can be parsed us-
ing the existing grammar rules for Statement. It states that a “what-question”
consists of the word “what” followed by a Statement, which is missing the lead-
ing Noun Phrase (NP). This kind of Categorial movement makes it possible to
connect the missing NP in the question (“what”) with the actual NP in a corre-
sponding fact statement (“CCK”), and then give a correct answer to the natural
language query. This use of Backward (\) and Forward (/) application also re-
duces the number of grammar rules needed, since every new rule for statements
implicitly creates corresponding new rules for questions.

In Example 3 the use of Forward application is shown. In GeneTUC, Forward
application also includes Inward application, so “S/NP” also means that the NP
can be missing anywhere in the Statement.

In Example 4, Backward application is used to define a Relative Clause. The
missing NP in the Relative Clause can be found by going back to the NP that
is preceding the Relative Clause.

Example 5 shows a different form of the sentence from Example 4. With the
help of Backward application only one rule is needed to change this gerund
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sentence into a RelativeClause that can then be parsed by the grammar given in
Example 3. This rule is context sensitive, meaning that ing-verbs like “resulting”
can only be substituted by “that verb-s” phrases, like “that results”, when the
parser is already expecting to see a RelativeClause.

3.3 Reducing the Parsing Time

In GeneTUC parsing time is reduced by the use of cuts in the Prolog code.
This means that once a specific rule, for example Noun Phrase (NP), has been
successfully applied to a part of the input sentence, this part of the sentence is
committed and can not be parsed again even if the following rules causes the
parser to fail. Usually, failing on one possible parsing attempt would cause the
parser to back-track and use the rule on a different span of words to produce a
different and successful NP. This kind of backtracking can be very computation-
ally expensive, especially with highly ambiguous input, so cuts greatly reduces
the parse time. The cuts are placed manually in strategic places in the code,
based on experience from previous parsing of run-away sentences. Usually, the
cuts do not affect the final result from the parser, but some phenomena can
cause the parser to fail because the assumed partial parsing result before the cut
is incompatible with the rest of the sentence. One such phenomenon, which is
hard to parse even for humans, is garden path sentences [13].

4 Methods

The main goal of this research was to evaluate the GeneTUC parser on the
GENIA corpus. Since GeneTUC and GENIA were not made using any com-
mon grammar standard, a lot of modifications in GeneTUC were needed. These
adaptations can be thought of as a (manual, not statistical) training process
for GeneTUC, but in order to measure how the GeneTUC parser will perform
on unseen data, different parts of the GENIA Tree Bank (GTB) was used for
training and testing, i.e. we used 300 abstracts (GTB300) for training and the
remaining 200 abstracts (GTB200) for testing.

The training phase of the project is described in the following subsections,
and includes the following tasks:

– Dictionary building. Adding all terms from GENIA to the GeneTUC dictio-
nary.

– Ontology building. Mapping from GENIA to GeneTUC dictionary classes.
– Adding other missing words manually, with the help of Bioogle.
– Input new verb templates, based on predicate argument structures seen in

GENIA.

4.1 Updating GeneTUC Lexicon from GENIA

Since the goal is to test the parser, errors connected to the Tokenizer, POS tagger
or other parts of the system should be removed. The ideal approach would be
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to use the tokenized and POS-tagged version of GENIA as input to GeneTUC,
but this was not feasible since GeneTUC is based on plain ASCII-text input.
Also, it would take more manpower/time than available in this project to split
the tight connection between tokenizing, tagging and parsing in TUC, just to
test if it would be useful to do so later. Instead, the GENIA multi-word-terms
were added to the GeneTUC dictionary, trying to guide it into using the same
tokenization as in the GENIA gold file. This was only successful in around 20%
of the sentences, so we reduced the test set to only include sentence that were
similarly tokenized and tagged by GENIA and GeneTUC.

During the process of importing all the terms from GENIA into the TUC,
several considerations had to be made:

1. Plural Forms. Plural words were changed into their singular (stem) form by
simple rules like: remove the final s from all words. Exceptions to this simple
rule had to be made for words like virus (already singular), viruses (remove
-es) and bodies (change -ies to y).

2. Proper Names or Common Nouns. Another point is that plural forms should
exist only as ako3 relations (class concepts), and not as isa4 relations (proper
names).

3. Duplicate Entries. Changing plural forms into singular forms often leads to
duplicate entries in the dictionary, since the singular form

4. Short Ambiguous Terms. The title sentence “Cloning of ARE-containing
genes by AU-motif-directed display” causes a problem since TUC does not
distinguish “ARE” and “are”. Words like “are”, “is”, “a” and so on are
therefore removed from the dictionary.

4.2 Updating the GeneTUC Semantic Network

As mentioned in the introduction, GeneTUC is a deep parser, requiring that
all the input words are already in the dictionary. In order to compare just the
parsing performance of GeneTUC with other systems, other error sources such
as incomplete lexical tagging was reduced by importing all named entities from
GENIA to GeneTUC. When new words are added to GeneTUC, it is also nec-
essary to specify which semantic class they belong to, so a mapping between
GENIA ontology and the ontology of GeneTUC was needed (Figure 2). One
alternative way was to simply add all the ontology terms of GENIA (37) to
GeneTUC, but many of the terms were already present in both systems, with
slightly different classifications. We could also have changed the GeneTUC on-
tology terms to match those of GENIA, but that would have made many of the
existing verb templates in GeneTUC useless or wrong, making this approach un-
appealing. The final choice was to create a mapping from GENIA ontology terms
to existing GeneTUC ontology terms, as shown in Figure GENIA ontology. The
GENIA term “other name” and the corresponding GeneTUC term “stuff” are
“bag” definitions, meaning that no effort was made to distinguish the terms that
3 ako = A Kind Of (subclass of a class).
4 isa = Is A (instance of a class).
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Fig. 2. Conversion from GENIA to GeneTUC Ontology
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did not belong to one of the other classes. Many of these terms can easily be
put into other existing GeneTUC classes, just by matching the last noun in the
noun phrases as in the following example:

Example 6.

“nf kappa b activation” ako activation
’0 95 kb id 3 transcript’ ako transcript
’17 amino acid epitope’ ako epitope
asp to asn substitution ako substitution

4.3 Adapting TUC to GTB/PTB Syntax Standard

Since we wanted to use the GENIA Tree Bank (GTB) for evaluating the Gene-
TUC parser, we needed to make sure that the output from the GeneTUC parser
was in the same format as the parse trees from the GTB. This is a somewhat
complicated process, since the TUC parser uses an internal syntax representation
that is tightly connected to the semantics of the sentence, and this representation
is different from the GTB syntax in a few important aspects. For example, the
Categorial movement and gap mechanisms are implemented in TUC by doing
parsing and reparsing. That means that the sentence will be parsed once, and
then gaps will be filled with the syntax from the first parse, before the new result-
ing sentence is parsed again. This means that traces of the moved phrases will
appear both where the phrase was originally, and where the gap was in the result-
ing parse tree. This leads to parse trees that look slightly different from the GTB
parse trees, where each gap is given an Identifier (ID) and then the correspond-
ing syntactical phrase is given the same ID-number. As long as no effort is made
to implement this gap-ID system of the GTB grammar in TUC, these differences
will lead to lower accuracy values in the evaluation, even though the parsing re-
sult is actually correct. To prevent this from happening, the internal workings of
TUC had to be modified to produce output exactly equal to the expected output,
and some pre- and post-processing scripts had to be made in order to smooth out
the remaining systematical differences that could not be changed inside TUC.
Still, some traces of these problems may be left in the final evaluation scores.

The creation of the grammar is currently done 100% manually. It is a slow and
long-lasting job, but it ensures that all the rules are meaningful. The creation
of a new rule is always rooted in the existence of old rules, as was shown in
Examples 2 & 3.

4.4 EvalB and Tokenization

EvalB5 was used for calculation of precision and recall scores for GeneTUC
against the GENIA corpus. It requires that the number of tokens in the output
text has to match the number of tokens in the input/gold text exactly. This is
a challenge to GeneTUC, since it ignores the characters listed in Example 7.

Example 7. Ignored Characters: ” : , & % { } 〈 〉 [ ] (. . . )

5 http://nlp.cs.nyu.edu/evalb/
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Also, single tokens (like IL-2) are sometimes turned into two or three separate
tokens (“il”, “-” and “2”), because of hyphens. This happens when the word is
not specifically defined in the dictionary as being just one word/token. Since the
GTB is already tokenized and stored in XML format, the correct tokenization is
known. The challenge is to ensure that TUC produces the expected output, even
if the internal modules are using different tokens. Other features of GeneTUC
that makes the comparison difficult is that some noisewords are removed from
the text, and long Noun Phrases can sometimes be substituted with Canonical
Identifiers.

There are two obvious solutions to this problem: The first is to use the to-
kenized version of GTB, instead of the plaintext version. The problem then, is
that we have to circumvent the tokenization module (and lexical analysis) in
TUC, and this might introduce problems in the later modules, for example be-
cause of ignored characters that were previously handled by the lexical module.
Another example of problems introduced if the original tokenization is used, is
parentheses with their contents. In the current implementation all level-1 paren-
theses are removed together with everything inside them, since this is usually
ungrammatical constructions.

The second solution to the tokenization problem is to make a new plaintext
version of the text, from the tokenized xml-version. In the new plain text version,
all tokens containing hyphens and other troublesome characters, will be substi-
tuted by a new token using underscore ( ) or some other character instead of
hyphen, so that the lexical module does not split these token into extra tokens.
In the opposite case, where the gold text contains more tokens than what TUC
produces, we have to introduce some dummy tokens. These tokens can then act
as placeholders for tokens that TUC ignores (and removes), like parentheses with
all their content/tokens.

4.5 EvalB Comparing Syntax Trees

Using the tokens in the sentence as basis for scoring, EvalB performs a strict
evaluation. Any case of tokenization different from the “golden” tokenization
renders the parse incomparable; the sentences where the number of golden tokens
and test tokens are unequal lead to an error. The same is true for those where
the golden token and test token are character wise different. If the number of
tokens equals zero (i.e. the sentence did not parse successfully), the sentence is
skipped. Both skip- and error -sentences are ignored when calculating the score.
The program provides a tolerance limit for how many incomparable sentences
that are ignored.

Bracketing is measured from token[m] to token[n], where a match means those
brackets covering the correct tokens, and having a correct label. The matches
enable measurements of:

– Recall (the ratio between matched brackets and all brackets in the gold file)
– Precision (the ratio between matching brackets and all brackets in the test

file)
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– Crossing (the number of test-file-brackets exceeding the span of a matching
bracket in the gold file, divided by the total number of brackets in test file)

– Tagging accuracy (the ratio of correct labeled tokens over the total number
of tokens)

EvalB performs strict evaluation of the parse, as it originally was intended as
a solemn bracketing evaluation program. Bracketing scores of GeneTUC may be
reduced because of a right-orientation implied by the grammar of TUC (always
preferring right-attachment unless it is semantically erroneous).

5 Results

This section shows the results from the training and test phases. Table 1 shows
how much the performance of GeneTUC increased when the dictionary was ex-
tended with all the terms from GENIA. Table 2 shows that there was no signifi-
cant difference in parsing scores between importing all the GENIA terms (36.692)
or just the terms from GTB200 that were reported as unknown by GeneTUC

Table 1. Statistics parsing attempts before and after adding GENIA dictionary

Measurement Dictionary
Description Original +GENIA

Number of sentences: 2591 2591
Successful parses: 318 1531

Success rate: 12.3% 59.1%
Sources of Failure

Dictionary: 1989 68
Grammar: 520 1126
Time out: 32 144

Processing time: 0.5 hrs 4.5 hrs

Table 2. Test results from EvalB

Measurement Dictionary
Description +GENIA +GTB200

Number of sentences 1759 1759
Error sentences 518 565
Skip sentences 1037 843

Valid sentences 204 351
Bracketing Recall 49.8% 53.9%

Bracketing Precision 69.0% 70.6%
Complete match 0.49% 1.14%
Average crossing 1.27 1.47

No crossing 47.1% 44.7%
2 or less crossing 79.9% 79.5%
Tagging accuracy 82.0% 86.0%
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(8.175). In terms of input to EvalB, it was possible to compare almost twice as
many sentences when only the GTB200 dictionary was used. This is mainly be-
cause GeneTUC was given fewer chances to rewrite complex multi-word tokens,
and thereby creating better accordance between the output and the gold file.

6 Related Work

Other recent and related IE techniques for biomedical literature includes sys-
tems using dynamic programming [8] or supervised machine learning [22] to find
protein-protein-relations in molecular biology texts. The machine learning ap-
proach uses both parse trees and dependent tree structures as features, but they
report that simple lexical features contribute more to the promising F-measure
of 90.9. Other systems use predicate-argument structure patterns [23] or new
self made architecture [21] to do more general Information Extraction from this
kind of free text sources.

6.1 GeneTUC, Bioogle and GProt

This paper showed how important a proper dictionary is to this kind of semantic
parsers. A new way to automatically build dictionaries with ontology information
is presented as Bioogle in [18]. Bioogle6 is a simple system that uses Google to
determine the semantic class of a word, for example “CCK is a protein”, so that
it can be added to the semantic hierarchy (or dictionary) in a correct way.

GProt [17], is another application that is built on top of the Google API, like
Bioogle. GProt7 provides a way of automatically extracting information from
the (biomedical research) literature. Most of the literature is already indexed in
MEDLINE, and therefore also by Google and other major search engines. See
[16] for more details and a description of how to access the online versions of
Bioogle and GProt.

7 Discussion

This section points out some of the lessons learned during the parsing project.
This includes remarks about titles as a different sentence type and a discussion
about the results presented in the two previous sections.

7.1 Sentence Types

MEDLINE (GTB) contains two fundamentally different sentence types: Titles
and normal sentences. The titles are special, because they sometimes just state
the object of the experiment, without the subject and verb phrase that should
have started the sentence. Subject and verb-less sentences were already handled
by GeneTUC before, but during this work we added a special “\title”-tag for
6 http://furu.idi.ntnu.no:8080/bioogle/
7 http://furu.idi.ntnu.no:8080/gprot/
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the titles, so that we can implement some special processing of titles later. The
first function we added to the “\title”-tag was resetting the temporary anaphoric
database, so that terms like “the protein”, “this” and “which” do not map to
names or events in any previously parsed abstracts.

7.2 Comparing Different Systems

It turned out that evaluating the GeneTUC parser on a PTB gold standard file
was harder than first expected. The main reason for this is that TUC was never
meant to output PTB style tags in the first place. Also, there is not always a
clear boundary between lexical, syntactical and semantic analysis. Of course,
there are both advantages and disadvantages to this approach.

The problem that we encountered because of the tight connection between
the modules in GeneTUC, is that it is very hard to construct output with the
exact number of tokens as in the input text. TUC is based on receiving plain
text input, and does its own tokenization and optimization of the text before
passing it on to the parser. We could perhaps have used the already tokenized
text as input, but this would introduce the parser to problems it is not meant
to handle in the current configuration of the system. It would be much easier to
cooperate with other researchers if the modules of GeneTUC were truly separate
from each other, but it can also be argued that the good performance by a text
processing system like this is really dependent on tight communication between
the modules.

Tokenization is usually done before, and separate from, parsing, but sometimes
it is necessary to do preliminary parsing in order to determine word and sentence
boundaries. Parsing is usually done before semantic analysis, but sometimes it
is important to know the semantic properties of a word in order to reduce the
ambiguity, and thereby the parsing time. Maybe the time has come to start inte-
grating the different modules more? This will require some effort to ensure that
cooperation between different researchers is still possible, for example through
the use of new standards/protocols for future parsers.

8 Conclusion

There is a great need for systems that can support biologists (and any other
research) in dealing with the ever increasing information overload in their field.
This project has proven that both the Google API and the GeneTUC systems
are important pieces that can play a role in making the dream of real automatic
Information Extraction come true in the not so distant future.

The precision and recall scores achieved by GeneTUC on general parsing are
not very high compared to pure parsers like [4,10,7], but that does not mean
that these systems are better than GeneTUC, because GeneTUC also performs
deeper analysis such as anaphora resolution [2,14]. The other systems consist
of Context-Free Grammar (CFG) parsers that give only phrase structures as
output. There are also some systems that use CCG parsers [3] or HPSG parsers
[11] that can give predicate argument structures in addition to phrase structures,
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but they still do not perform anaphora resolution or question-answering, like
GeneTUC does.
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Chapter 4

Errata

Unfortunately, we are not perfect, so there are some errors in our publications.
The once that have been located so far are listed below. The page numbers refer
to the original page numbering, so page 328 in Paper III means page 328 as
printed in the original version of Paper III, which starts on page 49 in this thesis.

4.1 Paper I

All occurrences of “microbiology” or “microbiological” should be substituted
with the term “molecular biology”.

4.2 Paper II

The calculated scores in table 3 for precision, recall and F-measure were wrong.
A correct version of the table is given here:

Classifier TP/TN FP/FN Prec/Rec/F CA

N.Bayes 6/120 67/7 8/46/14 63
Majority 0/187 0/13 NA/0/NA 94
SVM Lin 0/187 0/13 NA/0/NA 94
SVM Pol 6/159 28/7 18/46/26 83
SVM rbf 3/174 13/10 19/23/21 89
SVM Sig 0/186 1/13 0/0/NA 93
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4.3 Paper III

page 328: Table, example 3: occured→ occurred

page 328: Research Hypothesis, reference [?] → [32].

page 329: seventh last line, seperate→ separate

4.4 Paper IV

page 1202: Reference 16: Strœmmen→ Strømmen

4.5 Paper V

page 93: jcb.org 32, Biological Chemistry→ Cell Biology

4.6 Paper VI

page 71: Example 1 is a constructed example, and there is no biological evidence
that “CCK activates Gastrin” in PubMed.



Chapter 5

Concluding Remarks

The final conclusions are given in Section 5.1 and an outline of some possible
avenues for future work are given in Section 5.2. Section 5.3 gives a personal
view on some important challenges facing the field of BioNLU in the near future.

5.1 Conclusions

Looking back at the main research question:

Can computer programs like GeneTUC understand text about molecular
biology as well as humans can?

The simple answer to the question is, at present, “no”. Still, this thesis has
shown that new search technology (like the Google API) can be used in the
building of a system that understands at least large parts of the molecular biol-
ogy texts, and at greater speed than humans can, too.

An NLP programmer with shallow knowledge in molecular biology needs a
substantial amount of time to truly understand many of the sentences in this
domain. Much time is spent looking at other sources than the text itself, and
on building a conceptual model covering the entities that are described in the
text. When this work is done, the programmer can “teach” the computer to
parse similar sentences, just as fast as he can understand them himself. Still,
even if the computer can understand more than the programmer in this case, the
biologists are already much better than both the program and the programmer
at understanding such sentences. So instead, the focus should be on making
systems that can help the biologists structure the knowledge themselves, and
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turning it into a computer readable form, for example by building ontologies.
The first steps in this approach were explored in paper III and IV, and the im-
plementation described in paper V.

To summarize, the key achievements and discoveries related to the research
questions are:

RQ1 Biological entity names can be automatically extracted with the Bioogle
system, and used in full parsing by GeneTUC.

RQ2 GeneTUC can now understand more than 50% of the sentences in the GE-
NIA corpus, and answer simple questions from the logic code that is gen-
erated.

RQ3a Bioogle is currently the only known application to use Google API to aid
programmers and biologists in the construction of dictionaries and ontolo-
gies for human protein names.

RQ3b GeneTUC is the only known system that uses natural language through
the entire pipeline from parsing to question answering in this domain.

Other systems perform better on single subtasks in the GeneTUC system, like
tagging, parsing and information extraction, but they don’t offer the capabilities
that GeneTUC has in addition, like a natural language interface and anaphora
resolution.

5.2 Future Work

During the work herein, several opportunities for possibly fruitful extensions
have been encountered.

5.2.1 Semantics

In an ideal world, it should be easy to add all the necessary terms to the semantic
part of the system, but this is not the case. The main reason for this is that the bi-
ologists themselves have not done enough standardization work yet, especially
when it comes to gene-ontologies and protein interaction naming. This means
that every time something is added to the semantic network of GeneTUC, there
is a chance that it will have to be changed later, because our view of the world
is still changing. This is the same problem that for example the Gene Ontology
consortium faces. Some early “guesses” turn out to be erroneous, and if they are
not corrected soon, they become a credibility problem.
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When moving from a language that is highly ambiguous, like English, to the
language of logic, with only one acceptable interpretation, there must be some
consensus about what the actual meaning of the given natural language con-
structs are. This consensus is not yet established in the molecular biology do-
main, but international work is in progress. Also for the GeneTUC system, it is
important to follow these widely accepted guidelines, as they emerge.

5.2.2 Syntax

The same thing can be said in many ways. TUC currently requires questions to
be stated in the same basic form or syntax as the corresponding input fact was, in
order to be able to find the answer. This is an argument for using entire articles
instead of just abstracts as input, since the same important facts will usually be
stated many times, in different forms, throughout an entire article. That should
make it easier to answer questions, since there will be more than one accepted
way to formulate the right question.

GeneTUC is currently more or less punctuation-free. It might be worth taking at
least some punctuation into the TUC language. Especially commas would have
the potential to solve a lot of ambiguity problems. A good argument against
dealing with punctuation though, is that it will also be a new source of problems,
not only solutions. The way people use punctuation is as ambiguous as the way
they use the language in general. Still, it would probably be worth the time
looking into what positive improvements punctuation treatment would bring
with it.

In GeneTUC, all input is converted to lower case, to make the system case-
insensitive, and more tolerant to individual authors different ways of using up-
per case in their publications and questions. However, in [5], Cohen shows
that the F-measure improved by 15 points, without hurting recall more than 2
percent-points, when they added case sensitivity to the 300 most common En-
glish words, so this should be considered in future versions of GeneTUC as well.

5.3 Outlook

The field of NLP is almost five decades old now, but the field of BioNLU is
still just starting to “take off”. Much standardization and cooperation is needed
before we will eventually see good and useful applications for the end users,
namely the biologists. And on the way to making a working GeneTUC or simi-
lar systems, the methods from Bioogle will be useful additions to the more gen-
eral NLP techniques.
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