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Abstract

We present a combined terminological resource for text mining over biomedical
literature. The purpose of the resource is to allow the detection of mentions of
specific biological entities in scientific publications, and their grounding to widely
accepted identifiers. This is an essential process, useful in itself, and necessary as an
intermediate step for almost every type of more complex text mining application.

We discuss some of the properties of the terminology for this domain, in partic-
ular the degree of ambiguity, which constitutes a peculiar problem for text mining
applications. Without a correct recognition and disambiguation of the domain en-
tities, no reliable results can be produced.

Finally, we discuss an application that makes use of the resulting terminological
knowledge base. We annotate an existing corpus of sentences about protein inter-
actions. The annotation consists of a normalization step that matches the terms in
our resource with their actual representation in the corpus, and a disambiguation
step that resolves the ambiguity of matched terms. The evaluation shows a preci-
sion of 57% and recall of 72%.
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1 Introduction

The complexity of biological organisms and the recent progress of biological research in de-
scribing them, have resulted in a large body of biological entities (genes, proteins, species,
etc.) to be indexed, named and analyzed. Proteins are among the most important entities.
They are an essential part of an organism and participate in every process within cells. Most
proteins function in collaboration with other proteins, and one of the research goals in molec-
ular biology is to identify which proteins interact.

While the number of different proteins is large, the amount of their possible interactions
and combinations is even larger. In order to record such interactions and represent them in
a structured way, human curators who work for biological databases, e.g. MINT [1] 1 and
IntAct [2] 2 (see [3] for a detailed overview), carefully analyze published biomedical articles.
As the body of articles is growing rapidly, there is a need for effective automatic tools to help
curators in their work. Such tools must be able to detect mentions of biological entities in
the text and tag them with identifiers that have been assigned by existing databases. As the
names that are used to reference the proteins can be very ambiguous, there is a need for an
effective ambiguity resolution.

In this paper, we describe the task of automatically detecting names of various entities of
relevance (e.g. proteins, genes, species, experimental methods, cell lines) in biomedical liter-
ature and grounding them to widely accepted identifiers assigned by standard Knowledge
Bases (KB), such as the UniProt Knowledgebase (UniProtKB) [4], 3 the National Center for
Biotechnology Information (NCBI) Taxonomy, 4 or the Proteomics Standards Initiative (PSI)
Molecular Interactions (MI) Ontology [5]. 5

The term annotation process is based upon a large term list that is compiled using the entity
names extracted from the mentioned knowledge bases and from a list of cell line names.
This resulting list covers the most common expressions for each term. A term normalization
step is used to match the terms with their actual representation in the texts. Finally, a disam-
biguation step resolves the ambiguities (i.e. multiple IDs proposed by the annotator) among
the matched terms.

The work presented here is part of a larger effort undertaken in the OntoGene project 6

aimed at improving biomedical text mining through the usage of advanced natural lan-
guage processing techniques. The results of the entity detection module feed directly into
the process of protein interaction detection. Our approach relies upon information deliv-
ered by a pipeline of NLP tools, including sentence splitting, tokenization, part of speech
tagging, noun and verb phrase chunking, and a dependency-based syntactic analysis of in-
put sentences [6]. The syntactic parser takes into account constituent boundaries defined by
previously identified multi-word entities. Therefore the richness of the entity annotation has

1 <http://mint.bio.uniroma2.it>
2 <http://www.ebi.ac.uk/intact>
3 <http://www.uniprot.org>
4 <http://www.ncbi.nlm.nih.gov/Taxonomy/>
5 <http://psidev.sourceforge.net/mi/psi-mi.obo>
6 <http://www.ontogene.org/>
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Figure 1 Diagram showing the organization of the entities under consideration.

a direct beneficial impact on the performance of the parser, and thus leads to better recogni-
tion of interactions.

Additional input has been provided by the AGRA project, 7 which aims at ... (please com-
plete). Resources such as Enzymes, Medical Terms, etc.. are relevant for/because... (please
complete). These entities are related as described in Figure1.

This paper is structured in the following way. In section Section 2 we describe the termi-
nological resources that we have used, in section Section 3 we describe the process of auto-
matic annotation of biomedical texts using these resources, in section Section 4 we describe
the evaluation method and results, in section Section 5 we review related work, and finally,
in section Section 6 we draw conclusions and describe future work.

2 Term resources

As a result of the rapidly growing amount of available information in the field of biology,
the research community has realized the need for consistently organizing the discovered
knowledge - e.g. assign identifiers to biological entities, enumerate the names by which the
entities are referred to, interlink different resources (e.g. existing knowledge bases and liter-
ature), etc. This has resulted in large and ever-growing knowledge bases (lists, ontologies,
taxonomies) of various biological entities (genes, proteins, species, etc.). Fortunately, many
of these resources are also freely available and machine processable. These resources can
be treated as linguistic resources and used as an input for the creation of large term lists.

7 <http://agra.fzv.uni-mb.si/>
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Such lists can be used to annotate existing biomedical publications in order to identify the
entities mentioned in these publications. In the rest of this section we describe some of these
resources and how they can be used as a source of terminology for text mining purposes.

2.1 Proteins and Genes

There are several public protein/gene name knowledge bases available. Here we will look
at four of them in more detail. They contain roughly the same information, but because
they are made for slightly different purposes, there are small variations in the information
registered for a “single protein”. UniProt tries to capture all protein names from several
species, while Entrez Gene focuses on the genes that these proteins are translated from.
Affymetrix 8 is a company making Micro-Array chips for physical experiments, so they have
to deal with another type of ambiguity between (fragments of) proteins that have similar
physical properties. Among the resources hosted by the ExPASy (Expert Protein Analysis
System) server at the Swiss Institute of Bioinformatics, one of particular interest for our
work is the ENZYME database, 9 which describes special proteins that have an enzymatic
effect inside our cells. These enzymes are typically named after the substances that they act
on.

Since there are several common identifier systems in use, there are also several indepen-
dent services available for mapping between the different identifiers. One example of such
a system is the IdConverter 10 .

2.1.1 UniProt KB

The UniProt Knowledgebase (UniProtKB) assigns identifiers to a vast number of proteins
and describes their amino-acid sequences. UniProt is organized in two section: SwissProt
(manually curated) and TrEMBL (automatically derived). The experiments described in this
paper are based on the XML version of the SwissProt section of UniProtKB version 14. The
identifiers come in two forms: numeric accession numbers (e.g. P04637), and mnemonic
identifiers that make visible the species that the protein originates from (e.g. P53 HUMAN).
In the following we always use the mnemonic identifiers for better readability.

In addition to enumerating proteins, UniProtKB lists their names that are commonly used in
the literature. The set of names covers names with large lexical difference (e.g. both ‘Orexin’
and ‘Hypocretin’ can refer to protein OREX HUMAN), but usually not names with minor
spelling variations (e.g. using a space instead of a hyphen). UniProt sees as one of its func-
tions to help with the standardization of protein nomenclature and thus tries to cover all
the common ways of referring to a protein 11 , while at the same time specifying a single
name as “recommended name”, following certain naming guidelines 12 . In addition, the

8 <http://www.affymetrix.com/>
9 <http://au.expasy.org/enzyme/>
10 <http://idconverter.bioinfo.cnio.es/>
11 <http://www.uniprot.org/faq/9>
12 <http://www.uniprot.org/docs/nameprot>
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Table 1 Frequency ranking of paths to XML elements that contain terms in UniProtKB.

Frequency XPath

752,019 /uniprot/entry/gene/name

397,539 /uniprot/entry/protein/recommendedName/fullName

284,782 /uniprot/entry/protein/alternativeName/fullName

90,397 /uniprot/entry/protein/recommendedName/shortName

65,500 /uniprot/entry/protein/alternativeName/shortName

16,400 /uniprot/entry/protein/component/recommendedName/fullName

8913 /uniprot/entry/protein/domain/recommendedName/fullName

6339 /uniprot/entry/protein/component/alternativeName/fullName

5269 /uniprot/entry/protein/domain/alternativeName/fullName

5023 /uniprot/entry/protein/component/recommendedName/shortName

1416 /uniprot/entry/protein/CdAntigenName

1207 /uniprot/entry/protein/domain/recommendedName/shortName

1069 /uniprot/entry/protein/component/alternativeName/shortName

787 /uniprot/entry/protein/domain/alternativeName/shortName

names of functional domains and components of proteins, and also names of genes that
encode the proteins are provided. UniProtKB attempts to cover proteins of all species. The
top five species ranked by the number of their different proteins are Homo sapiens (Human)
with 20,325 proteins, Mus musculus (Mouse) with 15,915, Rattus norvegicus (Rat) with 7170,
Arabidopsis thaliana (Mouse-ear cress) with 6970, and Saccharomyces cerevisiae (Baker’s yeast)
with 6553. 13

We extracted 626,180 (different) names from the UniProtKB XML file, using the XPath ex-
pressions listed in Table 1. The ambiguity of a name can be defined as the number of different
UniProtKB entries that contain the name. UniProtKB names can be very ambiguous. This fol-
lows already from the naming guideline which states that “a recommended name should be, as
far as possible, unique and attributed to all orthologs” 14 . Thus, a protein that is found in several
species has one name but each of the species contributes a different ID. In UniProtKB, the
average ambiguity is 2.61 IDs per name. If we discard the species labels, then the average
ambiguity is 1.05 IDs. Ambiguous names (because the respective protein occurs in multiple
species) are e.g. ‘Cytochrome b’ (1770 IDs), ‘Ubiquinol-cytochrome-c reductase complex cy-
tochrome b subunit’ (1757), ‘Cytochrome b-c1 complex subunit 3’ (1757). Ambiguous names
(without species labels) are e.g. ‘Capsid protein’ (103), ‘ORF1’ (97), ‘CA’ (88).

Table 2 shows the orthographic/morphological properties of the names in UniProtKB in
terms of how much certain types of characters influence the ambiguity. Non alphanumeric

13 The amount of proteins for a species reflects the amount of research done on the given species,
rather than the amount of proteins that the species has.
14 <http://www.uniprot.org/docs/nameprot>
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Table 2 Ambiguity of UniProtKB terms. ID ORG stands for the actual identifiers, which in-
clude the species ID. ID stands for artificially created identifiers where the qualification to
the species has been dropped. “Unchanged” = no change done to the terms; “No whites-
pace” = all whitespace is removed; “Alphanumeric” = only alphanumeric characters are
preserved; “Lowercase” = all characters are preserved but lowercased; “Alpha” = only let-
ters are preserved.

Unchanged No whitespace Alphanumeric Lowercase Alpha

ID ORG 2.609 2.611 2.624 2.753 10.616

ID 1.049 1.050 1.053 1.058 4.145

characters or change of case, while increasing ambiguity, influence the ambiguity relatively
little. But as seen from the last column, digits matter a lot semantically, i.e. they are very
discriminative among different proteins. These findings motivate the normalization that we
describe in section Section 3.2. Table 2 also shows the main cause for ambiguity of the names
- the same name can refer to proteins in multiple species. While these proteins are identical
in some sense (similar function or structure), the UniProtKB identifies them as different
proteins.

2.1.2 Entrez Gene

Entrez Gene 15 is a gene-based resource supplying connections for map, sequence, expres-
sion, structure, functional and homology data. Entrez Gene assigns identifiers to 6.3 million
genes, from 6440 different species, ranging from humans to viruses. The database is updated
daily, and we have automatic processing in place in order to ensure that our dictionary is up
to date.REMOVE THIS CLAIM?

Every Entrez Gene identifier is linked to the terms commonly used to describe the gene,
including official name, nomenclature name, aliases and other designations. Each entry also
has a short description which we use to extract more possible synonyms for a given term.
Most of the entries contain 2 names for each gene, but the most studied proteins usually have
around 5-10 synonyms. Each gene has an official reference term (ideally unique). However,
because occasionally very simple reference terms are used, a degree of ambiguity remains.
For example, A is the name of 27 genes (e.g. GeneID: 396713, blood group A transferase-like),
9 corresponds to 71 genes (e.g. GeneID: 920967. 9 tail spike protein). On average, each of the
extracted official gene terms corresponds to 1.2 identifiers.

2.1.3 Affymetrix Identifiers for Micro Array probes

Affymetrix produces Micro Array chips for all the proteins in several different species. An-
notation information is stored in a single file for each array type, and that information is
updated quarterly. In June 2010, there were 58 annotation files with references to SwissProt
and Entrez Gene available. These files cover 1.5 million probe-sets, which are used to detect
the presence of a protein in a biological experiment. Among these probe-set ids, 800,000 are

15 <http://www.ncbi.nlm.nih.gov/gene>
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mapped to SwissProt identifiers, and 860,000 are mapped to Entrez Gene identifiers. In the
AGRA project, 16 Affymetrix probes have to be mapped to protein identifiers in order to use
existing BioNLP systems like Facta+ [8]. 17

As already mentioned, there is some ambiguity when mapping a probe (which usually
contains just a part of a protein sequence) to a protein identifier. In the current version of
Affymetrix, 456,000 (57%) of the SwissProt entries are ambiguous, but only 37,000 (4%) of
the Entrez Gene entries. This reflects the fact that genes are closer to the probes used on the
chip, than proteins are. The Affymetrix annotation tables also contains references into other
common protein knowledge bases such as UniGene, Ensembl, EC, OMIM, RefSeq, FlyBase,
AGI, WormBase, MGI, RGD, SGD, Gene Ontology, Pathway, InterPro, Trans Membrane and
QTL.

2.1.4 Enzymes

Our list of enzymes was extracted from the ENZYME database hosted by the ExPASy pro-
teomics server of the Swiss Institute of Bioinformatics (SIB). It contains 4188 identifiers with
a total of 27,000 synonyms (6.5 pr. id). All identifiers have at least two synonyms, e.g. the
enzyme commission (EC) number, and an “English” name. The highest synonym count is
EC:2.7.10.1 (Drosophila Eph kinase) with more than 200 synonyms. Enzymes are usually
named after their substrate (the chemical they catalyze), with the word ending -ase added.
Because of this, a single protein may be associated with multiple EC numbers and multiple
proteins may be associated with the same EC number.

2.2 Species

The National Center for Biotechnology Information provides a resource called NCBI Tax-
onomy 18 , describing all known species and listing the various forms of species names (e.g.
scientific and common names). As explained in section Section 2.1.1, knowledge of these
names is essential for disambiguation of protein names.

We compiled a term list on the basis of the taxonomy names list, 19 but kept only names
whose ID mapped to a UniProtKB species “mnemonic code” (such as ARATH for Arabidop-
sis Thaliana). 20 The final list contains 31,733 entries where the species name is mapped to
the UniProtKB mnemonic code. To this list, 8877 entries were added where the genus name
is abbreviated to its initial (e.g. ‘C. elegans’) as names in such form were not included in
the source data. These entries can be ambiguous in general (e.g. ‘C. elegans’ can refer to
four different species), but are needed to account for such frequently occurring abbrevia-
tion in biomedical texts. Furthermore, six frequently occurring names that consist only of
the genus name were added. In these cases, the name was mapped to a unique identifier

16 <http://agra.fzv.uni-mb.si/>
17 <http://refine1-nactem.mc.man.ac.uk/facta_events/>
18 <http://www.ncbi.nlm.nih.gov/Taxonomy/>
19 <ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz>
20 <http://www.uniprot.org/help/taxonomy>
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(e.g. ‘Arabidopsis’ was mapped to ARATH), as it is expected that e.g. ‘Arabidopsis’ alone is
generally used to refer to Arabidopsis thaliana, and not to e.g. Arabidopsis lyrata. 21

2.3 Experimental Methods

The Proteomics Standards Initiative (PSI) Molecular Interactions (MI) Ontology 22 contains
2207 terms (referring to 2163 PSI-MI IDs) related to molecular interaction and methods of
detecting such interactions (e.g. ‘western blot’, ‘pull down’). There is almost no ambiguity
in these names in the ontology itself. Several reasons motivate including the PSI-MI names
in our term list. First, names of experimental methods are very frequent in biomedical texts.
It is thus important to annotate such names as single units in order to make the syntactic
analysis of the text more accurate. Second, in some cases a PSI-MI name contains a substring
which happens to be a protein name (e.g. ‘western blot’ contains a UniProtKB term ‘blot’).
If the annotation program is not aware of this, then some tokens would be mistagged as
protein names. Third, some PSI-MI terms overlap with UniProt terms, meaning that the cor-
responding proteins play an important function in protein interaction detection, but are not
the subject of the actual interaction. An example of this is ‘GFP’ (PSI-MI ID 0367, UniProtKB
ID GFP AEQVI), which occurs in sentences like “interaction between Pop2p and GFP-Cdc18p
was detected” where the reported interaction is between POP2 and CDC18, and GFP only
‘highlights’ this interaction.

2.4 Cell line names

Cell line names occur frequently in biomedical articles, and it is necessary to be aware of
these names in order to avoid tagging them as e.g. protein names. Besides, almost every
cell line comes from one species (although also “chimeric” cell lines are sometimes used),
thus the mention of a cell line can give a useful hint of which species are central in a given
document or document fragment.

We extracted 8741 cell line names from the Cell Line Knowledgebase (CLKB) 23 which is
a compilation of data (names, identifiers, cell line organisms, etc.) from various cell line
resources (HyperCLDB, ATCC, MeSH) [7]. The data is provided in the standard RDF format.
The cell line names in CLKB contain very little ambiguity and synonymy.

CLKB does not map the cell line organism labels to NCBI IDs. This is not directly possible
because the organism label often points to a strain, breed, or race of a particular organism
(e.g. ‘human, Caucasian’, ‘mouse, BALB/c’), but NCBI does not assign IDs with such granu-
larity. In total, there are 257 organism labels, the most frequent of which we map to the Uni-
ProtKB species mnemonic codes (e.g. HUMAN, MOUSE) and the rest to a dummy identifier

21 We maintain a way to distinguish between terms that are sourced unambiguously from a single
DB entry, and simplified terms introduced by us. Ultimately it is up to the application to decide in a
given context which interpretation of a term is the most reliable.
22 <http://psidev.sourceforge.net/mi/psi-mi.obo>
23 <http://stateslab.org/data/CellLineOntology/>
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( CLKB). When processing CLKB, we ignored (did not follow) the MeSH ID cross references,
which would have maybe provided additional synonyms (and possibly ambiguity).

Another interesting resource for cell line names is HyperCLDB 24 which covers 9 cell line
catalogues with the total of about 5600 different cell line names. However, because it is more
difficult to link this resource to NCBI, and because most if it appears to be included in CLKB
anyway, we have so far restricted our source of cell line names to CLKB.

2.5 Small molecules and chemical compounds

This section of our dictionary (and the enzyme section as well) was largely derived from re-
sources developed for the FACTA project [8]. The naming conventions for small molecules
and compounds are in general more complex than those for protein and thus pose addi-
tional challenges to a text mining system. However, small molecules and chemical com-
pounds are usually named after their structure, and there are also more guidelines available
for proper naming than for proteins in general. The main source for chemical compounds is
the ChEBI 25 and the CAS 26 databases. ChEBI, also known as Chemical Entities of Biolog-
ical Interest, focuses on ’small’ chemical compounds, and is a part of the Open Biomedical
Ontologies effort. Unlike CAS, ChEBI does not contain many entities that are encoded by
the genome.

The CAS registry contains a wide variety of substances, including the world’s largest col-
lection of organic and inorganic compounds, metals, alloys, minerals, organometallics, ele-
ments, isotopes, nuclear particles, proteins and nucleic acids, polymers, nonstructurable ma-
terials (UVCBs). The registry contains term identifiers, like “CAS:100-33-4”, which is linked
to synonyms for that substance, ranging from “Pentamide”, via “C19H24N4O2” to “ Ben-
zenecarboximidamide, 4, {4’-[1,5-pentanediylbis(oxy)]bis-} ”.

Our current list of compounds contains 129,000 identifiers, with a total number of 624,000
synonyms (4.8 pr. id). More than thousand of the identifiers have only one synonym (like
CAS:991-56-0 is C31H16BrN3O7, or CAS:55508-42-4 is Neurotensin), while one identifier has
746 synonyms (CAS:95422-24-5, containing both ethyl and methyl in many different forms).

2.6 Medical terms

The domain of articles in PubMed is not only molecular interactions, but also the effects
of these interactions on human health, including diseases, their symptoms, and medicines.
Therefore we also extracted disease and symptom names from the Unified Medical Lan-
guage System, 27 and medicine names from the DrugBank 28 .

24 <http://bioinformatics.istge.it/hypercldb/>
25 Chemical Entities of Biological Interest: <http://www.ebi.ac.uk/chebi/>
26 Chemical Abstract Service <http://cas.org/>
27 <http://www.nlm.nih.gov/research/umls/>
28 <http://www.drugbank.ca/>
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2.6.1 Disease (UMLS)

The diseases part of UMLS covers 112,000 unique identifiers, with a total of 425,000 syn-
onyms (3.8 pr. id). 28,000 identifiers have only one synonym (like UMLS:C1876206, LADD
SYNDROME), while seven identifiers have more than 100 synonyms (like UMLS:C0851140,
CIN 3).

2.6.2 Symptom (UMLS)

The disease symptoms part of the UMLS covers 6163 identifiers, and 23,000 synonyms (3.7
pr. identifier). 1800 identifiers have just one synonym (like UMLS:C1868968, “Regurgitation
of medication”), while the most ambigous identifier has 63 synonym terms (UMLS:C0039070,
“Faint”, “syncope”, “swoon” etc.)

2.6.3 Drug (DrugBank)

The DrugBank database [9] is a unique bioinformatics and cheminformatics resource that
combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with com-
prehensive drug target information (i.e. sequence, structure, and pathway). The database
contains nearly 4800 drug entries. Each DrugCard entry contains more than 100 data fields
with half of the information being devoted to drug/chemical data. We extracted 9505 unique
identifiers from the DrugBank. They are covered by 33,000 synonyms (3.5 pr. id). 3900 of the
identifiers have one associated synonym, while one identifier can be represented by 320
terms (DrugBank:APRD00552 is B50, “Biamine”, “Big Friends”, etc.).

2.7 Compiled term list

We compiled a term list of 11,387,557 terms based on the terms extracted from all the men-
tioned resources, including for each entry the term name, the term ID, and the term type. The
type corresponds roughly to the resource the term originates from. For UniProtKB, there are
two types, PROT and GEN. For NCBI, there are six types, distinguishing between common
and scientific names, and the rank of the name in the taxonomy. For the PSI-MI Ontology
terms and CLKB cell line names there is one type - MI or CLKB, respectively. The frequency
distribution of types is listed in Table 3. There is relatively little type ambiguity - three terms
(‘P22’, ‘LI’, ‘D2’) can belong to three different types, 300 terms to two different types. In
the latter case, the ambiguity is between PROT/GEN and CLKB in 209 cases, and between
PROT/GEN and MI in 69 cases.

In the term list, 746,226 of the terms are multi-word units (e.g. 258,835 contain two tokens,
189,948 three tokens, and about 1000 terms even more than 10 tokens). We did not normalize
the names to any canonical representation nor generate all possible spelling variations of the
names. Our text mining system includes a ‘normalization’ module which is used once when
the terms are stored into an internal data structure, and again when candidate terms from
the document are processed. This approach is capable of recognizing as equivalent terms
that differ in a number of surface details like spacing, hyphenation, etc.

10



Table 3 Frequency distribution of types in the compiled term list, together with the source
of the IDs that are assigned to the terms.

Frequency Type ID Description

884,641 PROT UniProt UniProtKB protein name

752,019 GEN UniProt UniProtKB gene name

16,979 ocs NCBI NCBI common name, species or below

8877 oss NCBI NCBI scientific name, species or below

8877 ogs2 NCBI oss name, genus abbreviated (e.g. ‘A. thaliana’)

8741 CLKB NCBI CLKB cell line name

3316 oca NCBI NCBI common name, above species

2561 osa NCBI NCBI scientific name, above species

2207 MI PSI-MI PSI-MI term

6 ogs1 NCBI NCBI selected genus name (e.g. ‘Arabidopsis’)

3 Automatic annotation of terms

Using the described term list, we can annotate biomedical texts in a straightforward way.
First, the sentences and tokens are detected in the input text. We use the LingPipe 29 tok-
enizer and sentence splitter which have been trained on biomedical corpora. The tokenizer
produces a granular set of tokens, e.g. words that contain a hyphen (such as ‘Pop2p-Cdc18p’)
are split into several tokens, revealing the inner structure of such constructs which would
e.g. allow to discover the interaction mention in “Pop2p-Cdc18p interaction”. The process-
ing then annotates the longest possible non-overlapping sequences of tokens “starting at any
given point”, and assigns all the possible IDs (as found in the term list) to the annotated
sequence. The annotator ignores certain common English function words (we use a list of
about 50 stop words), as well as figure and table references (e.g. ‘Fig. 3a’ and ‘Table IV’).

3.1 Preprocessing

In the preprocessing step the input text is transformed into XML (if needed) and a set of lin-
guistic annotations are applied using LingPipe 30 , namely: sentence splitting, tokenization,
and part-of-speech tagging.

The LingPipe part-of-speech tagger has been trained on biomedical texts and also the sen-
tence splitter and tokenizer are aware of the nature of biomedical texts. E.g. the tokenizer
provides a very granular tokenization as often two protein names are hyphenated together
and as such they should be split up. We have modified the LingPipe sentence splitter by
adding a list of abbreviations commonly found in species names (e.g. ‘sp.’, ‘subsp.’). Note

29 <http://alias-i.com/lingpipe/>
30 <http://alias-i.com/lingpipe/>
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that at the moment the subsequent steps in our term annotation pipeline ignore the part-
of-speech information. This information, however, is used by the syntactic parser to detect
syntactic dependencies between tokens.

3.2 Normalization

In order to account for possible orthographic differences between the terms in the term list
and the token sequences in the text, a normalization step is included in the annotation pro-
cedure. The same normalization is applied to the term list terms in the beginning of the
annotation when the term list is read into memory, and to the tokens in the input text. In
case the normalized strings match exactly, the input sequence is annotated with the IDs of
the term list term. Our normalization rules are similar to the rules reported in [10,11], e.g.

• Remove all characters that are not alphanumeric or space
• Remove lowercase-uppercase distinction
• Normalize Greek letters and Roman numerals, e.g. ‘alpha’→ ‘a’, ‘IV’→ ‘4’
• Remove hyphens if between alphanumeric strings
• Remove the final ‘p’ if it follows a number, e.g. ‘Pan1p’→ ‘Pan1’
• Remove certain species-indicating prefixes (e.g. ‘h’ for human, ‘At’ for Arabidopsis thaliana),

but in this case, admit only IDs of the given species

In general, these rules increase the recall of term detection, but can lower the precision. For
example, sometimes case distinction is used to denote the same protein in different species
(e.g. according to UniProtKB, the gene name ‘HOXB4’ refers to HXB4 HUMAN, ‘Hoxb4’ to
HXB4 MOUSE, and ‘hoxb4’ to HXB4 XENLA). The gain in recall, however, seems to out-
weigh the loss of precision. This is probably due to the fact that authors are not very good at
respecting such conventions, and often inadvertently introduce minor variants.

3.3 Disambiguation

A marked up term can be ambiguous for two reasons. First, the term can be assigned an
ID from different term types, e.g. a UniProtKB ID and a PSI-MI Ontology ID. This situation
does not occur often and usually happens with terms that are probably not interesting as
protein mentions (such as ‘GFP’ discussed in section Section 2.3). We disambiguate such
terms by removing all the UniProtKB IDs. (Similar filtering is performed in [12].) Second, the
term can be assigned several IDs from a single type. This usually happens with UniProtKB
terms and is typically due to the fact that the same protein occurs in many different species.
Such protein names can be disambiguated in various ways. We have experimented with
two different methods: (1) remove all the IDs that do not reference a species ID specified in
a given list of species IDs; (2) remove all IDs that do not “agree” with the IDs of the other
protein names in the same textual span (e.g. sentence, or paragraph) with respect to the
species IDs.

For the first method, the required species ID list can be constructed in various ways, either

12



automatically, on the basis of the text, e.g. by including species mentioned in the context of
the protein mention, or by reusing external annotations of the article. We present in [13] an
approach to the detection of species names mentioned in the article. The species mentions
are used to create a ranked list, which is then used to disambiguate other entities (e.g. protein
mentions) in the text.

The second method is motivated by the fact that according to the IntAct database, interact-
ing proteins are usually from the same species: less than 2% of the listed interactions have
different interacting species. Assuming that proteins that are mentioned in close proxim-
ity often constitute a mention of interaction, we can implement a simple disambiguation
method: for every protein mention, the disambiguator removes every UniProtKB ID that
references a species that is not among the species referenced by the IDs of the neighboring
protein mentions.

In general, the disambiguation result is not a single ID, but a reduced set of IDs which must
be further reduced by a possible subsequent processing step.

4 Evaluation

We evaluated the accuracy of our automatic protein name detection and grounding method
on a corpus provided by the IntAct project. 31 This corpus contains a set of 6198 short textual
snippets (of 1 to about 3 sentences), where each snippet is mapped to a PubMed identifier (of
the article the snippet originates from), and an IntAct interaction identifier (of the interaction
that the snippet describes). In other words, each snippet is a “textual evidence” that has
allowed the curator to record a new interaction in the IntAct knowledge base. By resolving
an interaction ID, we can generate a set of IDs of interacting proteins and a set of species
involved in the interaction, for the given snippet. Using the PubMed identifiers, we can
generate the same information for each mentioned article. By comparing the sets of protein
IDs reported by the IntAct corpus providers, and the sets of protein IDs proposed by our
tool, we can calculate the precision and recall values.

We annotated the complete IntAct corpus by marking up with an entry in the term list the
token sequences that the normalization step matched. Each resulting annotation includes
a set of IDs which was further reduced by the two disambiguation methods described in
Section 3.3, i.e. some or all of the IDs were removed. Results before and after disambigua-
tion are presented in Table 4. The results show a relatively high recall which decreases after
the disambiguation. This change is small however, compared to the gain in precision. False
negatives are typically caused by missing names in UniProtKB, or sometimes because the
normalization step fails to detect a spelling variation. A certain amount of false positives
cannot be avoided due to the setup of task - the tool is designed to annotate all proteins con-
tained in the sentences, but not all of them necessarily participate in interactions, and thus
are not reported in the IntAct corpus.

31 <ftp://ftp.ebi.ac.uk/pub/databases/intact/current/various/data-mining/>
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Table 4 Results obtained on the IntAct snippets, with various forms of disambiguation, mea-
sured against PubMed IDs. The evaluation was performed on the complete IntAct data (all),
and on a 5 times smaller fragment of IntAct (subset) for which we automatically extracted the
species information. Three forms of disambiguation were applied: IntAct = species lists from
IntAct data; TX = species lists from our automatic species detection; span = the species of
neighboring protein mentions must match. Additionally, combinations of these were tested:
e.g. IntAct & span = IntAct disambiguation followed by span disambiguation. The best re-
sult in each category is in boldface.

Disamb. method Corpus Precision Recall F-Score True pos. False pos. False neg.

No disamb. all 0.03 0.73 0.05 2237 81,662 848

IntAct all 0.56 0.73 0.63 2183 1713 804

span all 0.03 0.71 0.06 2186 68,026 899

IntAct & span all 0.57 0.72 0.64 2147 1599 840

span & IntAct all 0.57 0.72 0.64 2142 1631 821

No disamb. subset 0.02 0.69 0.04 424 20,344 188

IntAct subset 0.51 0.71 0.59 414 397 170

span subset 0.02 0.67 0.05 407 16,319 205

IntAct & span subset 0.53 0.69 0.60 404 363 180

span & IntAct subset 0.52 0.69 0.59 399 369 177

TX subset 0.42 0.59 0.49 340 478 241

TX & span subset 0.43 0.57 0.49 332 445 249

span & TX subset 0.42 0.57 0.48 329 457 244

5 Related work

There is a large body of work in named entity recognition in biomedical texts. Mostly this
work focuses on the detection of the entity mentions in the text and does not cover the
second aspect of the problem, namely grounding the detected named entities to existing
knowledge base identifiers. Recently, however, as a result of the BioCreative workshop, more
approaches are extending from just detecting entity mentions to their normalization to a
standardized version of the term, or to a database identifier. The most common application
is the normalization of gene names, as practiced in the Gene Normalization tasks of the
recent BioCreative competition [14], using Entrez Gene as the reference database.

Various web services have become recently available which provide term detection and
grounding in arbitrary text provided by the user. One of the outcomes of the BioCreative II
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competition was a web-based tool called the BioCreative MetaServer (BCMS) [15], 32 which
combines the results from different remote servers to provide an ‘harmonized’ entity anno-
tation service, including gene and protein normalization. Another well-known annotation
service is Whatizit,[16] 33 a webservice which annotates input texts with UniProtKB, Gene
Ontology, 34 and NCBI terms. A preliminary comparison showed that our approach gives
results of similar quality. Harvester [17] 35 is a service that crosslinks many bioinformatic
sites with protein information. They make their results available on their homepage, but un-
like this project, it is not possible to download the resources in the form of dictionaries for
use in other programs.

[18] provides a thorough overview of terminological resources for chemical compounds
(PubChem 36 , KEGG 37 ), and describes a machine learning approach (using conditional ran-
dom fields) to detect names of chemical compounds in biomedical literature. [19] describes a
computationally intensive approach towards the detection of terminological variants for the
purpose of correct term matching and disambiguation. A method of protein name ground-
ing is described in [11]. It uses a rule-based approach that integrates a machine-learning
based species tagger to disambiguate protein IDs. The reported results are similar to ours.

JoChem [20] is an example of a dictionary that focus on a narrow subset of the classes that we
cover in this paper. Their dictionary is available in two different formats, including an XML
file in the Simple Knowledge Organization System format on their web site. 38 In order to
standardize the dictionary efforts, we also make our dictionary available in the same format
as the JoChem dictionary. DO WE WANT TO KEEP THIS CLAIM?

Several linguistic resources have been compiled from existing biomedical databases. The
BioThesaurus [21] 39 is a thesaurus of gene and protein names (and their synonyms and tex-
tual variants). The latest version (6.0) of BioThesaurus contains more than 9 million names,
extracted from 35 different databases. The biggest contributor, however, is UniProtKB, mainly
its TrEMBL section. Another extensive compilation of biomedical terms is the BioLexicon
[22]. The BioLexicon aims at being a linguistically-rich resource, containing not only infor-
mation about terminology, but also verbs, adjectives and adverbs which are of relevance for
biomedical text processing. Additionally, it includes semantic links among the terms, such
as derivations relations. The domain relevant verbs (658) are further specified by subcate-
gorization frames (1710), as well as semantic event frames (850) which increase the range
of possible usages of this resource. Originally compiled within the scope of the BOOTStrep
European Project [23], the BioLexicon is now available through the European Language Re-
sources Association (ELRA).

PathText [24] is an interesting example of an advanced application which combines text min-
ing technologies with a sophisticated visualization approach for the graphical rendering of

32 <http://bcms.bioinfo.cnio.es>
33 <http://www.ebi.ac.uk/webservices/whatizit/>
34 <http://www.geneontology.org>
35 <http://harvester.fzk.de/harvester/>
36 <http://pubchem.ncbi.nlm.nih.gov>
37 <http://www.genome.jp/kegg/>
38 <http://www.biosemantics.org/chemlist>
39 <http://pir.georgetown.edu/iprolink/biothesaurus/>
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biological pathways, linking each relation with its supporting information in the biomedical
literature.

6 Conclusions and future work

In this paper we presented a large terminological resource, compiled through the aggrega-
tion of a number of different manually-curated sources. We also presented results related
to the lexical properties of such resources, specifically the degree of ambiguity of the terms,
and we inspected the causes of such ambiguity, in particular for protein names. This infor-
mation is of vital importance for the implementation of an efficient term normalization and
grounding algorithm.

We believe that our harmonized terminological knowledge base constitutes a valuable re-
sources for all research groups involved in biomedical text mining.The current version is
available at <http://www.ontogene.org/resources/>. We are constantly monitor-
ing and updating the terminological resources included in our system. Additional resources
are added when judged of sufficient quality.

Additionally, we presented the usage of the terminology in an application focusing on the
detection of protein-protein interactions. For the evaluation, we have used the freely avail-
able IntAct corpus of snippets of textual evidence for protein-protein interactions. We show
results which are certainly competitive. The same approach has been recently used within
the BioCreative II.5 task of protein-protein detection, where it has obtained the best results
[25].
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