
Establishing Maintainability in Systems Integration: Ambiguity, Negotiations,
and Infrastructure

Thomas Østerlie, Alf Inge Wang
Norwegian University of Science and Technology

thomas.osterlie@idi.ntnu.no, alf.inge.wang@idi.ntnu.no

Abstract

This paper investigates how maintainability can be

established in system integration (SI) projects where
maintainers have no direct access to the source code of
the third-party software being integrated. We propose
a model for maintainability in SI focusing on post-
release activities, unlike traditional maintainability
models where focus is on pre-release activities. Our
model describes maintainability as a process
characterized by ambiguity and negotiation that is
supported through an infrastructure of debugging and
coordination tools. Further, we describe how the
process going from a software failure to establishing
the fault causing the failure can be managed in SI. The
results presented in this paper are based on
observations from an ethnographic study of the Gentoo
open source software (OSS) community, a large
distributed volunteer community of over 320
developers developing and maintaining a software
system for distributing and integrating third-party OSS
software packages with different Unix versions.

1. Introduction

It has been repeatedly established over the past 30
years that more than half of the total life-cycle cost of
software systems goes into software maintenance
activities. The figures vary between 50 to 80 percent of
the total life-cycle cost [6]. This research indicates that
the maintenance burden has been increasing over the
decades rather than decreasing. To face this challenge,
maintainability has been proposed as a software
quality measure. This measure is used to assess how
easy it is to maintain a system and what decisions to
make in design of a system to limit the maintenance
costs. Existing research on maintainability builds on
the premise of application software that is maintained
by a single team of developers with full access to and
control over the source code. However, with increasing
attention on systems integration (SI) through

component-based development [5], Web services [22],
and information and enterprise systems integration
[14], this may no longer be a valid premise. A number
of distinguishing characteristics of SI diverge from
application software: systems integrators usually have
limited or no access to the source code of the software
being integrated, and control over the development and
maintenance of the software being integrated is carried
out by numerous third-party organizations [11]. Given
these differences, we ask: how can maintainability be
established in SI?

In this paper, we seek to explore a possible solution
to this problem; a solution that rests upon the premise
of software maintenance as knowledge-intensive work.
By studying the activities involved with reporting
software failures and determining their related faults,
we propose that corrective maintenance in SI unfolds
within an environment of ambiguity [1]. Ambiguity is
an uncertainty where the correct meaning of a
phenomenon cannot be established given sufficient or
appropriate information. Instead, ambiguity involves
uncertainties that cannot be resolved or reconciled due
to the absence of agreement on boundaries, clear
principles, or solutions. Ambiguity means that multiple
meanings or several plausible interpretations of the
observed phenomenon exist, and their meaning can
only be established through negotiation. The process of
establishing certain interpretations of ambiguous
phenomenon as stable scientific facts has been a
primary concern within the field of science studies. In
these accounts, this process is seen as unfolding within
an infrastructure of experimental tools, scientific
artifacts, social interaction, and practices [15]. It is an
infrastructure of scientific facts; the behind-the-scenes,
messy or boring items that form a crucial part of how
facts are made.

Building upon the notions of ambiguity,
negotiation, and infrastructures, we propose that
maintainability can also be understood as a function of
the external environment within which the software is
being maintained. Maintainability is a function of the

infrastructure of tools used during maintenance, the
texts produced by these tools, knowledge about the
system embedded in the tools, and tools for supporting
and coordinating interaction between developers. This
supplements existing models that focus on
maintainability as a function of characteristics of the
application software. The proposed explanation is
based on an empirical study of maintenance work in a
large-scale open source software (OSS) integration
project. OSS is well suited for studying software
maintenance, as OSS development is often understood
as a perpetual cycle of perfective and corrective
maintenance [20].

Limiting our inquiry to the issue of maintainability
in connection with corrective maintenance in SI, we
study the activities involved with reporting software
failures and determining the related fault. Through a
detailed narrative analysis of these activities, we
propose a model for the corrective maintenance
process that supports our suggestion for establishing
maintainability in SI.

The rest of the paper is organized as follows.
Section 2 reviews existing research on maintainability
and approaches to establishing maintainability during
pre-release activities. Section 3 describes the research
methods employed and the materials collected during
our field study. Section 4 describes a detailed narrative
analysis of the activities with reporting software
failures and determining the corresponding faults.
Section 5 concludes the paper by discussing our
findings in relation to establishing maintainability in
SI.

2. Related work

Intended as an indicator of the costs of maintaining
a software system, maintainability can be broadly
defined as the ease with which a software system can
be understood and modified [10]. By making the
software more maintainable, i.e. increasing its
maintainability, organizations should be able to reduce
the maintenance effort and free needed resources for
more new system development. Maintainability can be
viewed from different perspectives. In this section we
presents two of these:
• establishing and assessing maintainability using

software quality models; and
• making a system maintainable by using design

techniques when creating the software
architecture of the application

We then conclude the section by discussing the
issue of maintainability in relation to OSS
development.

2.1. Quality-based approaches

McCall [18] provides an overall description of
approaches to developing software based on software
quality frameworks. At the outset of a software
development effort quality factors are identified based
on the specifics of the software being developed.
Maintainability is one such quality factor. Once the
important factors are identified, they are specified as
requirements of the systems development by providing
their definition, identifying supporting software
attributes, and providing measurements to assess their
attainment. The software development is then
periodically measured in a quantitative fashion to
assess if the software product is capable of meeting its
identified requirements. Based on this assessment of
the software product's quality, decisions are made as to
efforts needed to improve the software product. This
process is repeated until the quality requirements, in
this case the requirements for maintainability, are met
and the product can be released.

Several approaches to assessing the software
product's maintainability have been proposed. McCall
[18], Martin & McClure [17], Boehm et al. [4], and
ISO9126 define maintainability as a quality factor in
their quality models. Wherein McCall limits
maintainability to include only corrective maintenance,
both Boehm et al., Martin & McClure, and ISO9126
provide definitions that encompasses both corrective,
perfective, and adaptive maintenance. Boehm et al.
defines maintainability to include the quality criteria
testability, understandability, and modifiability. Martin
& McClure argues for an expanded view of
maintainability, arguing that its definition needs to be
expanded with a high degree of reliability, portability,
efficiency, and usability in addition to the attributes
provided by Boehm et al. Landing on the middle
ground, ISO9126 defines maintainability as
analyzability, changeability, stability, and testability. In
all of the above models, the quality criteria are broken
into a set of metrics for measuring code characteristics.

2.2. Architecture approach

In the software architecture domain, software
maintainability is a quality of the end-system the
developer can obtain by carefully choosing the correct
structures and making the correct decisions when
designing the system. Different terms are used to
describe maintainability.

In Bass et al. [2], maintainability is described in
terms of the quality attributes modifiability and
testability. Modifiability describes the costs of
changing the system. Typical changes can be both
changes of functionality as well as changes of non-

functional properties of the system like performance,
availability, change of operating system etc.
Testability refers to the ease with which software can
be made to demonstrate its faults through (typically
execution-based) testing. To obtain a high level of
modifiability and testability in a system, the developers
must consider both architectural and non-architectural
aspects. The architectural aspects typically concerns
important design decisions that affect the way the
software is organized, structured and decomposed.

Non-architectural aspects typically concern
implementation details, graphical layout of user-
interfaces etc. Bass et al. use the term architectural
tactics for important design decisions that affects the
software architecture. Several such tactics have been
collected over the years based on experiences from
several software projects. Examples of tactics to obtain
high maintainability involves recommended design
guidelines for object-oriented systems like maintaining
semantic coherence, hide information, restrict
communication paths, use of intermediary, etc. There
are also similar tactics to obtain a high level of
testability in a system.

2.3. OSS and maintainability

The OSS development cycle have three
distinguishing characteristics. First, source code is
made available on the Internet, released early, long
before all functionality is in place and faults have been
eliminated. Second, by releasing the software early,
developers around the world can contribute code,
adding new functionality and improving the present
functionality. This is often called parallel development
[9]. Parallel debugging is the third characteristic of the
development cycle, wherein failure reports and fixes
are submitted to the project. This process has been
characterized as a perpetual cycle of perfective and
corrective maintenance.

Seeing OSS development as software maintenance,
the question can be raised whether the success of OSS
development can be explained by the software's
maintainability? In determining the categories of
maintenance work in two large OSS products, 53.4%
of all changes to the source code of these products
stem from corrective maintenance [21]. Given that the
cost of corrective maintenance are at least an order of
magnitude more expensive to fix than those found
during testing [7], the question concerning OSS
success and maintainability becomes even more
pressing.

In measuring the maintainability index of five OSS
projects, Samoladas et al. [20] finds that OSS code
quality suffers from the very same problems observed

in closed source software (CSS) projects.
Maintainability deterioration over time is a common
phenomenon in CSS, and they project that is
reasonable to expect this as OSS products age, too. In
a comparison of OSS and closed source software
products, Paulson et al. [19] investigates the claim that
OSS succeeds because of code simplicity. Measuring
the overall project complexity, average complexity of
all functions, and average complexity of functions
added, they find that for all three metrics the OSS
projects had higher complexity than the CSS projects.
Similarly, they compare the perfective maintenance of
OSS and CSS by measuring the growth rate of the
projects. They find that OSS and CSS have similar
growth rate. Albeit based on a limited population, the
inference from combining the conclusions of
Samoladas et al. and Paulson et al. is that the
maintainability of OSS and CSS is mostly the same.

Paulson et al. also reports that faults are found and
fixed more rapidly in OSS projects. Holding to the
definition of maintainability as the ease with which a
software system can be understood and modified,
questions may be raised with basis in these findings as
to how to understand maintainability? It seems that
commonly used maintainability metrics do not
correspond to the actual facts of maintainability as
measured in ease of which software systems can be
understood and modified.

3. Methods and materials

This paper reports on one of the authors' study of
software maintenance in a large OSS community. The
study is based on the view that to better understand
software engineering, "it is imperative to study …
software practitioners as they solve real software
engineering problems in real environments" [16]. As
such, the study has been conducted as ethnographic
fieldwork, expanding on a growing body of
ethnographic studies of software engineering practice.
Ethnography is a research method where the researcher
participates with the subjects being studied. Through
longitudinal observations of naturally occurring
activities, the researcher builds an increased
understanding of the object under study. However, if
we want to understand how software is developed in
practice, it is important not to start out assuming what
we want to explain. Therefore the ethnographer does
not give any prior significance to particular features of
practice. Giving primacy to the empirical data,
ethnography is a systematic approach for reaching
empirically validated conclusions.

In Section 3.1 we present the research setting. In
Section 3.2 we present the data collection process. In

Section 3.3 the data analysis process is presented, and
in Section 3.4 we discuss the validity of our findings.

3.1. Research setting

This paper reports on an ethnographic study of the
Gentoo OSS community. As of March 2006 Gentoo is
made up of over 320 developers distributed across 38
countries and 17 time zones. We use the term
community here about those involved with Gentoo, as
users play an important role in OSS development [9].
Enumerating the number of users in the community is
difficult because there are no lists of purchased
licenses or registered users available.

Gentoo is a large systems integration project.
Broadly speaking, the Gentoo community develops
and maintains a software system for distributing and
integrating third-party OSS software packages with
different Unix versions. The software is distributed in
the form of installation scripts, one script for every
supported version of each package distributed. As of
March 30 2006 Gentoo distributes one or more
versions of 8486 software packages, for a total of
23911 installation scripts. As well as integrating
software for 5 different hardware architectures for the
GNU/Linux operating system, the installation scripts
can also integrate software with both the MacOS X,
FreeBSD, and OpenBSD operating systems. Such
heterogeneity is a defining characteristic of integrated
systems [11].

In distributing software developed by other OSS
projects, the development and maintenance of these
packages are outside the control of the Gentoo
community. Such autonomy is also a distinguishing
characteristic of integrated systems [11], but also
manifest a variety of human interests and activities. In
defining largeness of software systems, Belady &
Lehman [3] find variety to be a distinguishing
characteristic. In terms of largeness, the software
distributed is outside the scope of a single individual
and require not only one group of people to develop
and maintain the software, but numerous groups; both
the Gentoo community developing and maintaining the
installation script and the third party OSS communities
who develop and maintain the software distributed.
Furthermore, the installation scripts developed and
maintained by the community is also outside the grasp
of a single individual. Gentoo is organized into 124
teams, each responsible for a discrete set of installation
scripts.

There are complex interactions between parts of
Gentoo, both technologically and socially. Complex
interaction is another characteristic of largeness.
Technologically these interactions manifest themselves

in the specific relations between different packages and
that the same package is supported both on different
hardware platforms and for different operating
systems. This is made further complex by the
introduction of virtual packages, identical functions
that are provided in different packages. Socially, the
complex interactions are not only between members of
the Gentoo community or among the teams, but also in
the interface between the Gentoo community and the
OSS communities developing the software distributed
by Gentoo.

So far, we have used the term Gentoo without any
clear definition. This is done on purpose, as the term
itself is ambiguous. The term has three meanings. First,
it is used for talking about the Gentoo community of
developers and users. Second, it is used about the
Gentoo GNU/Linux distribution. Sometimes the term
Gentoo Linux is used to specify this. Third, Gentoo is a
software system for distributing OSS software
packages for different Unix implementations. The
distributed packages are developed by third-party OSS
projects, and the Gentoo community develops and
maintains installation scripts for these packages. These
scripts are made available through a central repository.

The term Gentoo is ambiguous; it is particularly
problematic to draw a clear boundary between Gentoo
Linux and the Gentoo software distribution system. At
the heart of Gentoo Linux is the Gentoo distribution
system. Historically, however, the distribution system
has grown out of the Gentoo Linux distribution. The
term Gentoo is used interchangeable between the two,
and often used by developers as a means to avoid
drawing the problematic boundary between the two.
Technically speaking, there are both installation scripts
and other files distributed by the Gentoo distribution
system that are particular to Gentoo Linux. However,
most installation scripts distributed are not specific for
the GNU/Linux distribution.

The lack of consensus on boundaries is a trait of
ambiguity. Both variety and complex interactions
produces unclear technological boundaries and
ambiguity in the Gentoo software product.

3.2. Data collection

The first author conducted the ethnographic
fieldwork. We therefore present this section in first-
person view. Participant-observation is the primary
method for data collection in ethnographic fieldwork
[12]. In this study this meant that I observed the
Gentoo developers online through dedicated Gentoo
IRC channels, dedicated mailing lists, the Gentoo Web
site, and Web-based front-ends for Gentoo's defect
tracking system and revision control system. My

participation included submitting and assisting in
resolving bug reports, submitting installation scripts, as
well as participating in a large restructuring effort of
Gentoo's package manager. I used both Gentoo Linux
and MacOS X with a Gentoo installation as operating
systems on my workstations during the period of
fieldwork. I made no formal interviews with
participants in the Gentoo community, but conducted
informal talks with participants on a regular basis to
test my own informal theories.

Throughout the period, I made daily field notes
[12]. In addition, the Gentoo IRC channels were
logged to disk throughout the period of study; one file
each day for each IRC channel totaling 1027 files. 71
documents were collected throughout the period and
organized in a documentary database. I also surveyed
online data sources that provide static data. These
include the Gentoo bug tracking database, the Gentoo
mailing list archives, and the Gentoo revision control
system. As the Gentoo Web site is under revision
control, I did not organize relevant documents from
this Web site in the documentary database. Instead, I
decided to rely on Gentoo's revision control system.

3.3. Data analysis

Ethnographic data analysis is an ongoing process
from the moment the field worker enters the field until
the complete research report is written. During field
work the data analysis is informal. Upon withdrawing
from the field, the data analysis is gradually
formalized. Informal data analysis is a continuous
activity through out the period of fieldwork. Because
this analysis is closely connected with the daily details
of fieldwork, there are no clear links between this
analysis and the topics discussed in this paper. We
have therefore opted for a more general description of
the activities of informal analysis, and instead present
the details of the formal analysis as this is closely
connected with the topic of this paper.

Informal analysis takes the form of writing out the
notes that have been quickly and briefly jotted down in
the notepad during the day's observation, and
organizing them into more coherent field notes. By
relating the day's observations to previous field notes, I
continuously looked for patterns in my observations
for building informal theories. These informal theories,
in turn, inform how I continued performing the
fieldwork. This way, I was able to better fit the way I
performed my fieldwork with basis in an increased
understanding of the research setting.

Upon withdrawing from the field the first author
spent a year working systematically through the
collected data, looking for recurring patterns. Once the

recurring patterns are identified and formulated, formal
data analysis commenced. Formal data analysis is a
process of incrementally generalizing from a multitude
of singular observations to increasingly more
generalized descriptions of activities. Throughout this
process, non-recurring details of the singular
observations are omitted and recurring issues included.
However, determining which details to omit in the
final analysis and which to include is an iterative
process of working on generalizing the descriptions
while continuously returning to the more detailed
analyses looking for recurring patterns that may shed
light on the generalized description.

During formal analysis we identified a set of bug
reports in the Gentoo bug tracking system. The bug
reports were identified to capture the width of bug
reports submitted. The selection criteria were based on
the field notes and experiences from the fieldwork.
Upon identifying a set of relevant bug reports, we went
through each report, reconstructing a time line for the
bug report based on the bug report activity log feature
provided by the defect tracking system. Into this time
line we also placed discussions about the bug from the
Gentoo IRC channel logs collected during the period of
fieldwork, the Gentoo mailing list archives, and the
Gentoo Web forums. In this timeline we simply cut
and pasted from the various data sources. With basis in
this, we wrote an executive summary of the bug
report's life cycle as well as writing out a complete
narrative of the bug report's life cycle with
explanations.

With basis in these narratives, one for every bug
report in the set, we started relating our data to theory.
At this stage we focused on establishing relevance and
context of our observations. We tried a number of
theories for interpreting our data; ranging from social
theories on decision-making, via theories on
distributed cognition from the field of computer
supported cooperative work, to more standard software
engineering theory on software maintenance. From this
analysis the focus on maintainability, which led us to
the last part of the formal analysis, which is to write up
the results and analysis presented in section 4.

3.4. Research validation

Ethnographic research does not follow a step-wise
process. Rather, the data collection requires flexible
responses to the specific circumstances of the moment.
This flexibility also means that the research design
changes in the face of in-field realities that the
researcher could not anticipate at the outset of the
study. It is therefore difficult to ground the study's
validity in the procedural rigor of controlled

experiments. Instead, the validity is established
through a rigor in argumentation by following the
seven principles for conducting fieldwork [13] as
shown in Table 1.

4. Results and analysis

Following the definition of maintainability as the ease
with which a software system can be understood and
modified, we are focusing on the aspect of system
comprehension in this paper. In this section we discuss
systems comprehension in relation to each of the three
concepts raised in the introduction – ambiguity,
negotiation, and infrastructure – relating them to the
empirical data collected and existing literature. The
main point is that systems comprehension is a
collective process of generating a consensus-based
comprehension of the system and how it causes the
observed failures.

4.1. Ambiguity

Some software systems fail. A software failure is an
externally observable error in the program behavior.
Software failures are caused by software faults that are
triggered under specific circumstances during

execution. Upon experiencing a software failure that
cannot be corrected locally, Gentoo users submit a bug
report to the Gentoo defect tracking system
(http://bugs.gentoo.org). The bug report is analyzed by
Gentoo developers and resolved either by rejecting the
reported failure as a real failure, by correcting the fault
causing the failure, or by forwarding the report
upstream. As the Gentoo developers repackage
software developed by external OSS projects,
forwarding bug reports upstream means that the failure
is not caused by Gentoo specific code or interaction of
components distributed by Gentoo, but found to be
caused by faults in the third-party software. This is the
overall description of Gentoo's corrective maintenance
process.

Gentoo uses Bugzilla, a Web-based OSS defect
tracking system. In Bugzilla, failures are reported as
bug reports in a standardized Web form. Bugzilla
provides a standardized schema for describing the
failure and for administration of bug reports. This
schema is mostly used for assigning bug reports and
tracking their status. A recurring pattern in the use of
Bugzilla is that the Gentoo users and developers use
the optional text field at the end of the bug report,
named Additional comments, during corrective
maintenance. Why is that?

Table 1. Research validation
Principle Description Validation
1. The fundamental principle of the
hermeneutic circle

This principle suggests that all human
understanding is achieved by iterating
between considering the interdependent
meaning of parts and the whole that they
form.

Discussion of the iteration between the day's
findings and previous field notes during
informal data analysis, and the process of
working on generalized descriptions while
returning in detailed analysis, Section 3.3.

2. The principle of contextualization This principle requires critical reflection of
the social and historical background of the
research setting

Discussion of the shift from application
software to SI, Section 1. Relating Gentoo to
SI and discussing of the historical relationship
between Gentoo Linux and distribution
system, Section 3.1.

3. The principle of interaction between
researcher and subjects

Requires critical reflection on how the
research materials were socially constructed
through the interactions between the
researchers and participants.

Discussion of interviews during participant
observation, Section 3.2.

4. The principle of abstraction and
generalization

Intrinsic to interpretive research is the attempt
to relate the particulars described in the
unique instances observed to abstract
categories and concepts that apply to multiple
situations.

Presentation of ambiguity, negotiation, and
infrastructure as theoretical constructs,
Section 1. Relating the analysis to these
constructs, Section 4.

5. The principle of dialogical reasoning Requires sensitivity to possible contradictions
between the theoretical preconceptions
guiding the research and the actual findings.

Discussion of establishing relevance and
context of observations, Section 3.3.

6. The principle of multiple interpretations This principle requires the researcher to be
sensitive to difference in interpretations
among the studied subjects.

Central topic throughout analysis and
conclusion, Sections 4 and 5. Multiple
interpretations the process of negotiation is
discussed in Section 4.3.

7. The principle of suspicion Requires sensitivities to possible biases and
systematic distortions in the narratives
collected from the participants.

Discussion of no clear principles for resolving
bug reports, Section 4.2.

 It need not be obvious what the failure "really is".
Reporting failures is a balancing between providing too
little information and too much information, but
sufficient and relevant information [23]. However, it is
difficult for a user to determine what sufficient and
relevant information is when it is not obvious what the
failure really is. Instead, the process of describing the
failure is often a series of exchanges where the
developers ask the user reporting the failure to generate
more information about the failure. These exchanges
may span over days, weeks, or even months before the
bug report is resolved, and this is what the Additional
comments field of the bug report is used for.

Martin & McClure [17] argue that programmers
doing corrective maintenance "do not know where to
look and often waste a great deal of effort looking in
the wrong place". The exchanges back and forth
between Gentoo users and developers may seem like a
process of trial and error like that described by Martin
& McClure. However, the view that corrective
maintenance is a question of following the infection
chain from the observed failure to its fault,
presupposes that the observations of the software
failure are unambiguous. However, as Endres [8]
notes, "[t]here is, of course, the initial question of how
we can determine what the error really was". He
equates the error with the correction made, noting that
this is not always correct but sometimes the bug lies
too deep to be grasped or corrected. In SI the most
significant problem is that failures are caused by
external packages that the Gentoo community cannot
control. Typically, this would lead to rejecting the bug
report [23], but in Gentoo this problem is so prevalent
that the developers have to bypass it.

The software being integrated by Gentoo is
developed and maintained by other OSS projects,
While some Gentoo developers may be quite familiar
and knowledgeable of the source code of the
components they integrate, most treat the software
being integrated as a black box. It is therefore usually
not possible to trace the infection chain of the failure.
Instead the Gentoo developers use standard Unix tools
and diagnostic tools developed specifically for Gentoo
to generate indirect information about the failure.
Along with the textual information provided in the bug
report, we call the output of these tools debug texts. It
is often impossible to establish what the failure "really
is" from these indirect observations. However, during
this exchange between users and developers, the users
iteratively provide developers with additional debug
texts in an attempt to reconcile the data. During this
process multiple interpretations of what the failure
"really is" are constructed from combining elements
from the different debug texts. "Ambiguity means that
a group of informed people are likely to hold multiple

interpretations or that several plausible interpretations
can be made without more data or rigorous analysis
making it possible to assess them" [1]. As such, these
failures can be considered ambiguous because what the
failure "really is" cannot be established given sufficient
information. Instead, this information gives rise to
several plausible interpretations of the failures.

With ambiguity the possibility of clear cause-effect
relationships and exercised qualified judgment
becomes seriously reduced. Cast another way, the
understandability of the software becomes seriously
reduced. Instead, an understanding of the software
failure and its corresponding fault is established
through negotiation.

4.2 Negotiation

Gentoo as a software system lies outside the
intellectual grasp of a single individual, requiring
several organized groups of people to develop and
maintain it (see section 3.1). As no single individual
can have complete systems comprehension,
understanding failures and their corresponding faults
becomes a collective activity where individual Gentoo
developers' partial comprehension is combined. This is
further accentuated by the fact that there is no single
Gentoo installation, but thousands of Gentoo
installations where software failures occur. As such,
the users' knowledge of local system configuration is
an important part of the knowledge required to
generate a comprehension of the software failure. An
understanding of the failure is therefore reached
through an iterative process where the user produces
new debug texts and the developers generate
interpretations of these texts by negotiating over the
meaning of the texts. These negotiations often lead to
new requests for debug texts in an iterative cycle until
a consensus interpretation of the failure is reached. As
such, negotiation is the collective process of sharing
existing system comprehension and generating new
through the production of debug texts. However, this is
also a process of reducing the number of
interpretations to reach a closure of the bug report.
Through consensus interpretations are made invalid.

During negotiation there is often a wide variety in
interpretations of the source of failures. It is often hard
to find the source of failures resulting from
unpredictable interaction of several packages, and as
"deciding upon who is to blame is a political process"
[23]. Complex interactions among the packages
provided by Gentoo produce similar situations in
Gentoo. Such interaction effects can also be observed
in the interface between the software distributed by
Gentoo and the underlying operating system. Varying

standards of system calls among Unix versions can
also increase the complexity of the failure. This is a
sort of interaction effect akin to architectural mismatch
[5]. Finally, failures may also be caused by specific
configurations of the user's system. Common to the
above failures is that it is hard to locate the fault. The
failures are ambiguous in the sense that they lack clear
boundaries.

Negotiation is the approach for overcoming this
problem. As such it is very much like the political
process described by [23]. If it cannot be resolved
technically, the fault is located through consensus.
However, there are no clear principles for doing so. For
instance, one might assume that failing to reproduce a
failure would be an indication that the fault is with the
user's local configuration and be grounds for rejecting
the bug report. Sometimes irreproducibility means the
rejection of a bug report. At other times, irreproducible
failures or even failures found to be caused by user
configuration are resolved. What we see is that the
criteria for resolving or rejecting failures varies from
bug report to bug report. This is but one of many
examples of a pattern of no clear principles to
determine what constitutes a valid failure or for
resolving unclear boundaries in failures.

Such a lack of clear principles is another trait of
ambiguity, and can be seen as the result of several
people with differing priorities and practice doing
corrective maintenance. This is a reasonable
explanation and can in part explain the lack of clear
principles. However, the explanation should not
overshadow the interpretation that some of this lack of
principles is also a product of the ambiguity of
software failures as a result of the complexity and
variability of Gentoo. This can explain the uncertainty,
complexity, instability of principles, and uniqueness in
the way bug reports are handled. The lack of clear
principles raises issues of power, but this is outside the
scope of this paper.

One might be tempted to see the process of
negotiation as a way of reducing or overcoming
ambiguity. Yet, at its very heart lies the need for
ambiguity. It is not uncommon that developers refuse
to assist in helping to resolve bug reports even though
the fault can be identified within their area of
responsibility. When this happens, ambiguity plays a
role in getting the bug report back on track again. If
there were no room for interpretation, there would be
no way of proceeding with resolving the bug report.
However, with multiple interpretations it is possible to
pursue another interpretation in order to resolve the
bug report.

4.3. Infrastructures

In the above analysis we have moved from the
ambiguity generated in the technical domain to the
social processes of interpretation and negotiation to
cope with and handle this ambiguity. In this section we
will once again return to the technical domain, albeit
with a definite connection to the social. From the
above analysis we see that knowledge and systems
comprehension may be understood as a product or an
effect of various materials. It occurs in the form of
debug texts, in the skills for using the debug tools
embodied by the Gentoo users and developers, and in
the knowledge about the system and typical failures
embedded in the debug tools. Not only is systems
understanding the product of these materials along with
the tools and people generating them, but through
knowledge about the system and frequently occurring
failures embedded in the tools the tools themselves
participate in generating the possible interpretations.
As such, corrective maintenance is made possible by
this network, or infrastructure, of tools and people
[15].

We find that the Gentoo infrastructure of debug
tools consists of two groups of tools. Tools in the first
group are standard Unix tools like, for instance,
strace for tracing system calls and signals or ldd
for printing shared library dependencies. These are
debug tools known to most Unix developers. The other
group of tools is the custom tools specifically made for
Gentoo. Among these are tools that are distributed as
part of Gentoo, tools available from private home
pages of developers and super users, and tools
available from an unofficial repository for Gentoo
tools. Debug tools are also proposed and discussed on
the IRC channels, and it is common for people to
submit debug tools they have developed as bug reports
in the Gentoo defect tracking system.

The infrastructure of debug tools is used for
generating debug texts. As such, their role is to
generate data and to support the negotiation over
possible interpretations of these data. We include the
Bugzilla defect tracking system as part of the
infrastructure of debug tools, too, since it both supports
the communication among developers as well as being
used for marking duplicate bug reports. Duplicates
often provide valuable information on invariants of a
software failure.

While the Gentoo developers are not explicit on the
process of developing and maintaining the Gentoo-
specific debug tools nor on the importance of this job,
in practice they are performing a process where
knowledge about typical error situations and typical
diagnostic actions are inscribed in tools. As typical

failures change over time, tools are made obsolete and
new tools are added either in the official distribution or
on the unofficial locations such as home pages and the
tools repository. It is quite common to see references to
Web pages with tools on the developers' IRC channel.
This devising of relevant debug tools and the demise of
irrelevant tools is a continuous process contingent
upon the current reported failures.

4.4. A proposed maintainability model

We see, then, that developing and maintaining
Gentoo involves ambiguity both in product as
described in the research setting and in process as
described in the results and analysis above. This
ambiguity of process and product manifests itself in the
corrective maintenance activities. Tracking down the
source of failures is a process of generating systems
comprehension through the production and
interpretation of debug texts. We see from the above
analysis that tracking down the bug need not be all that
simple in practice. It need not be obvious what the bug
"really is". Rather, it is subject to interpretation and
negotiation. A number of possible interpretations are
discussed, and none are dismissed on conclusive
evidence but rather made less plausible. Alternative
explanations for what the failure "really is" are
constructed from combining elements of the different
debug texts. The explanations are made more or less
plausible both by producing new debug texts, trying to
reproduce the failure, drawing on external texts like
installation scripts and change logs, or simply by
refusing to enter a discussion over possible
interpretations.

What we see then, is that reaching an agreement as
to what the failure really is, is made with both
ambiguous and inconclusive evidence and is more or
less open throughout the process. Finding the source of
the problem is a process where the person reporting the
failure and those trying to understand it work together
to find relevant pieces of information and producing
additional debug texts. Making the software
maintainable can therefore be interpreted as a
collective process including both the person submitting
the bug report, those trying to understand and resolve
the problem, as well as the tools involved in producing
the various debug texts being interpreted. The software
is made maintainable by iteratively producing debug
texts, extracting fragments of information from these
texts and assembling these fragments into meaningful
combinations.

With basis in this, we propose a model to describe
the corrective maintenance process to support our
explanation of maintainability. We present two views

of this model. Figure 1 shows the cyclic process of
producing new debug texts and generating new
interpretations through negotiation. The vertical arrow
in the middle of the cycle illustrates the number of
interpretations.

Figure 1. Cyclic view of the corrective
maintenance process

Through iterations of the process, the number of

interpretations may contract or expand. This is shown
in Figure 2. This figure provides a temporal view of
the process from the bug report is submitted until it is
closed. The number of interpretations is a function of
both the level ambiguity and the degree of consensus
among developers. Reaching the point of closure can
therefore be achieved through the elimination of
ambiguity or simply by reaching a consensus about
how to resolve the bug report by possibly rejecting it
without any technical basis. These are the extremes.
More commonly, though, bug reports reach their
closure through reducing the ambiguity and reaching a
consensus.

Figure 2. Temporal view of the corrective
maintenance process

5. Conclusion

With this basis, we return to our research question:
how is maintainability established in systems
integration? We find that maintainability is established
through the development, operation, and maintenance
of a debug infrastructure. This infrastructure mostly
supports interaction between developers, like the way

Bugzilla, IRC, and mailing lists are used in Gentoo.
The infrastructure must also consist of tools that
generate relevant debug information. This is done by
constantly evaluating the usefulness of existing debug
tools towards the typical failures reported. For Gentoo,
we see that this is a continuous process of developing
new tools, revising existing tools, and the demise of
tools that are no longer useful.

With basis in this we may rephrase our solution to
the problem of establishing maintainability in SI.
Maintainability in SI may be established through an
infrastructure that bridges both the geographical and
knowledge gaps between actors in the corrective
maintenance process.

6. References

[1] Alvesson, M., Knowledge Work and Knowledge-Intensive
Firms, Oxford University Press, Oxford, 2004.

[2] Bass, L., P. Clements and R. Kazman, Software
Architecture in Practice, Addison-Wesley, Boston,
Massachusetts, 2003.

[3] Belady, L.A. and M.M. Lehman, "Characteristics of
Large Systems", Research Directions in Software
Technology, P. Wenger (ed.), pp.108-138, MIT Press,
Cambridge, Massachusetts, 1978.

[4] Boehm, B.W, J.R. Brown and J.R. Kaspar, Characteristis
of Software Quality, TRW Series f Software Technology,
Amsterdam, North Holland, 1978.

[5] Boehm, B. and C. Abts "COTS Integration: Plug and
Pray?" IEEE Computer, pp. 135-138, January 1999.

[6] Calzolari, F., P. Tonella and G. Antonioli, "Dynamic
model for maintenance and testing effort", Proceedings of the
International Conference on Software Maintenance,
ICSM'98, pp. 104-112, 1998.

[7] Dalal, S.R., J.R. Horgan and J.R. Kettering, "Reliable
software and communication: Software quality, reliability,
and safety", Proceedings of the 15th Conference on Software
Engineering, ICSE'93, pp.425-435, 1993.

[8] Endres, A., "An Analysis of Errors and Their Causes in
Systems Programs", Proceedings of the 1975 Conference on
Reliable Software, pp. 327-336, 1975.

[9] Feller, J. and B. Fitzgerald, Understanding Open Source
Software Development, Addison-Wesley, Boston,
Massachusetts, 2002.

[10] Gibson, V.R and J.A. Senn, "Systems Structure and
Software Maintenance Performance", Communications of the
ACM, pp. 347-358, March, 1989.

[11] Hasselbring, W., "Information Systems Integration",
Communications of the ACM, pp. 32-38, June, 2000.

[12] Fetterman, D.M., Ethnography, Newbury Park, CA:
Sage Publications, 1998.

[13] Klein, H.K. and M.D. Myers, "A Set of Principles for
Conducting and Evaluating Interpretive Field Studies in
Information Systems", MIS Quarterly, pp.67-93, January,
1999.

[14] Lam W. and V. Shankararaman, "An Enterprise
Integration Methodology", IT Professional, p. 40-48,
March/April, 2004.

[15] Law, J., "Notes on the Theory of the Actor Network",
1992, http://www.lancs.ac.uk/fss/sociology/papers/law-notes-
on-ant.pdf

[16] Lethbridge, T.C., S.E. Sim and J. Singer, "Studying
Software Engineers: Data Collection Techniques for
Software Field Studies", Empirical Software Engineering,
pp.311-341, July, 2005.

[17] Martin, J. and C. McClure, Software Maintenance: The
Problem and Its Solutions, Prentice-Hall, Englewood Cliffs,
New Jersey, 1983.

[18] McCall, J. A. "Quality Factors. In Marciniak",
Encyclopedia of Software Engineering, Vol. II, John J. (Ed.),
John Wiley & Sons, New York, pp. 958-969, 1994.

[19] Paulson, J.W., G. Succi and A. Eberlein, "An Empirical
Study of Open Source and Closed-Source Software
Products", IEEE Transactions on Software Engineering, pp.
246-256, 2004.

[20] Samoladas, I., I. Stamelos, L. Angelis and A.
Oikonomou, "Open Source Software Development Should
Strive for Even Greater Code Maintainability".
Communications of the ACM, pp. 83-87, 2004.

[21] Scach, S.R., B. Jin, L. Yu, G. Z. Heller and J. Offutt,
"Determining the Distribution of Maintenance Categories:
Survey versus Measurement", Empirical Software
Enginering, pp. 351-365, 2003.

[22] Vogels, W., "Web Services are not distributed objects",
IEEE Internet Computing, pp. 59-66, November/December,
2003.

[23] Zeller, A., Why Programs Fail: A Guide to Systematic
Debugging, Elsevier, Amsterdam, 2006.

