Register-based Implementation of the Sparse General Matrix-Matrix Multiplication on GPU

Junhong Liu, Xin He, Weifeng Liu and Guangming Tan
Institute of Computing Technology, Chinese Academy of sciences
Department of Computer Science, Norwegian University of Science and Technology
liujunhong@ncic.ac.cn, hexin2016@ict.ac.cn, weifeng.liu@ntnu.no, tgm@ict.ac.cn

Abstract
General sparse matrix-matrix multiplication (SpGEMM) is an essential building block in a number of applications. In our work, we fully utilize GPU registers and shared memory to implement an efficient and load balanced SpGEMM in comparison with the existing implementations.

2. Methodology
We first propose the register-based SpGEMM algorithm (reg-spgemm) for the short rows of A so that the threads within a warp are sufficient to handle the corresponding intermediate products. Reg-spgemm relies on the warp shuffle instruction at the register level and the N-to-M product-thread binding scheme.

Figure 1 shows an example of our method. It can be seen that the example needs to merge four rows of matrix B, which is implemented by two threads of one warp. In step 1, the intra-thread min() is the operation that gets the minimum column index of two rows of matrix B within each thread. While the inter-thread min() is the operation that gets the minimum column index of four rows of matrix B across threads, which is implemented by using the reduction of warp-level shuffle instructions. Then, by using the inter-thread add() operation that is also implemented by leveraging the warp-level shuffle instructions, the first output element of vector c, i.e., \(a + w + g \) is obtained. Also, with the same operations, in step 2, the second output element of vector c, i.e., \(d + e + k \) is obtained. Actually, the steps are in one for loop until all four rows of matrix B are added up and the results of one row of the output matrix C are directly stored to global memory from registers.

When the row number of matrix B is large, the reg-spgemm will be insufficient, because the warp size of current Nvidia GPU is 32. Then the shared memory-based SpGEMM algorithm (smem-spgemm) is implemented to handle the long rows of matrix B by using the same warp-level shuffle instructions. Reg-spgemm relies on the warp shuffle instruction at the register level and the N-to-M product-thread binding scheme.

3. Experiments
We use Nvidia K40m (Kepler) and Titan X (Pascal) GPUs for comparing the performance of our algorithm and several existing methods (CUSP [1], cuSPARSE, bhSPARSE [5] and RMerge [3]) that compute \(C = A^T A \) in double precision. The CUDA versions are 7.0 and 8.0 on K40m and Titan X, respectively. The selected benchmark suite includes 956 square sparse matrices with 100k ≤ nnz ≤ 200M from the SuiteSparse Matrix Collection [2].

The relative speedups are shown in Figures 2 and 3. It can be seen that the performance of our FastSparse is in general superior to the four existing libraries. Specifically, on K40m, our approach delivers a harmonic average speedup of 6.57x (up to 31.56x), 2.48x (up to 38.38x), 1.97x (up to 7.90x), and 1.12x (up to 2.82x) over CUSP, cuSPARSE, bhSPARSE and RMerge, respectively. On Titan X, the speedups are 3.75x (up to 25.76x), 1.16x (up to 56.48x), 1.07x (up to 3.82x), and 1.78x (up to 6.50x), respectively.

4. Conclusion
This work chooses the vertical-merge approach as an early baseline and the N-to-M product-thread binding strategy to achieve the goal. Our library is the first to use register and shared memory to implement SpGEMM.

5. References

Figure 2. Performance comparison for double data on an Nvidia K40m (Kepler).

Figure 3. Performance comparison for double data on an Nvidia Titan X (Pascal).